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We have thoroughly investigated electron capture from a hydrogen atom by bare nuclei at inter-
mediate and high energies. The first Born approximation with and without correct boundary condi-
tions is used to compute total cross sections. Both methods possess the same perturbation potential
for the reaction under study. The only difference is in the logarithmic phase distortion of the exit
channel state due to the long-range Coulomb interaction between the two aggregates. Evidence is

presented which substantiates that these Coulomb phases for the relative motion of heavy particles
are of paramount importance for an adequate description of charge exchange. The standard
Jackson-Schiff approximation which does not consider the boundary condition problem fails com-

pletely in comparison with the measurement. In contrast, the first Born approximation with the
correct boundary conditions, which takes the asymptotic Coulomb effect into full account, is found to
be systematically in excellent agreement with the experimental data for values of the projectile charge
ranging from 1 to 6.

I. INTRODUCTION

Much confusion exists about the boundary condition
problem, and misconceptions have repeatedly been intro-
duced. ' This is partially due to misinterpretation of a
remark by Wick. In a footnote to the paper by Jackson
and SchiA; G. C. Wick contended that the internuclear
potential Vz(R) can be removed from the total Hamiltoni-
an of the system by means of a canonical transformation.
This would subsequently imply that the exact eikonal to-
tal cross section for charge exchange is independent of the
internuclear interaction. Later, in a number of stud-
ies, ' it has been freely taken that the Hamiltonian is
defined up to an additive function W(R) of the internu-
clear distance R. Furthermore, this function W(R) has
been chosen arbitrarily without imposing the correct
asymptotic behavior to the channel wave functions. '

This has been justified by making reference to Wick's con-
tention. The underlying "standard argumentation" for
such a rationale is that the internuclear potential should
be discarded from the onset, since it might lead to a spuri-
ous contribution to the total cross section.

The above approach is based upon the following reason-
ing. Perturbation potentials V; and Vf are of short range
and, therefore, detailed knowledge of scattering states is
necessary only up to a certain distance. This implies that
all the Coulomb potentials should be screened asymptoti-
cally, irrespective of whether or not the two aggregates are
charged. " Hence, no distortion is required for the chan-
nel states with regard to the relative motion of the heavy
particles. Based upon the above assumptions, plane waves
for the relative motion of nuclei have most frequently
been used by screening Coulomb potentials.

In order to resolve this basic dilemma, we shall split
our analysis into two parts: (i) Wick's contention and (ii)
the asymptotic screening of the Coulomb potentials.

(i) A canonical transformation suggested by Wick is
capable of removing the internuclear potential from the to-
tal Hamiltonian. An explicit form of the transformation
has first been obtained by Cheshire. ' The transformation
is connected with the appearance of the phase factor in
the complete wave function which does not contribute to
the total eikonal cross sections. Belkic et al. ' have ar-
rived at the same conclusion in their derivation of the ex-
act eikonal T matrix, by imposing the correct boundary
conditions to both channel states. In other words, the
scattering states, exact or approximate, having the correct
asymptotic behaviors are in perfect accord with Wick's
contention. The converse is not, however, necessarily
true, i.e., introduction of an arbitrary function W(R) into
the Hamiltonian will not always yield asymptotically
correct wave functions, even though the acquired phase
factor exp[i Jo" dt W(R)] has no effect upon the total
cross section. Hence, it is, in general, inappropriate to
define the Hamiltonian of the system up to an additive
function W(R). It is more consistent to impose the
correct boundary conditions to the scattering states. This
will automatically guarantee that the internuclear poten-
tial Vr(R) does not contribute to the total cross section in
the eikonal limit.

(ii) Screening the Coulomb potentials adds even more
confusion to charge exchange. The perturbation poten-
tials V; and Vf, as defined by Belkic et al. ,

' are indeed
of short range as R ~ (x). This implies that in the case of
electron capture from hydrogenlike atoms by bare nuclei,

V; =Zp/R —Zp/rp ~ 0(1/R )

V/=ZT/R —ZT/rT - 0(1/R ) .
R

Here Zp and ZT are the projectile and target nuclear
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charge, whereas r~(K =P, T) is the distance between the
electron and the Kth nucleus. These interactions V; and
Vf, however, have not been introduced freely but instead
emerged as the result of imposing the correct boundary
conditions to the channel states. ' The scattering channel
wave functions of Belkic et al. ' 4,+ and Nf are ob-
tained, respectively, from the usual unperturbed states N;
and Nf by inclusion of the appropriate 1ogarithmic
Coulomb phase factors. In other words, the correct
boundary conditions imply that the asymptotic scattering
states must be distorted, and, moreover, that the perturba-
tion potentials V; and Vf must be of short range as
R ~ oo. This has been proven exactly in the eikonal lim-
it. ' Hence, merely screening Coulomb potentials without
obeying the boundary conditions leads to incorrect con-
clusions and should be discarded from further considera-
tion.

From the standpoint of formal scattering theory, the
boundary condition problem consists of demonstrating the
existence of Metier wave operators II+ and 0 . The
presence of a Coulomb potential in the asymptotic scatter-
ing region invalidates the standard concept of these opera-
tors and, furthermore, the transition amplitude does not
exist in the sense of the strong limit. ' However, this
problem can consistently be resolved by introducing a
Coulomb phase distortion into the Mufller operators. ' '
This implies that the scattering incoming and outgoing
waves must also exhibit logarithmic phase distortion in
the asymptotic region (R~co). It is only in this way
that distinct wave packets can consistently be defined for
scattering states when there is a Coulombic tail in the
original perturbation potentials.

Hence, boundary conditions (or the asymptotic con-
vergence problem) are of essential importance for atomic
collisions whenever the aggregates are charged in the
asymptotic channels. Such a conclusion has been
rigorously reached in formal scattering theory. ' ''" This,
however, does not necessarily imply that the numerical
results will markedly differ between the case when the
boundary condition problem is correctly solved and
when it is overlooked. Therefore, the relevance of the

Coulomb phase distortions of asymptotic channel states
must be thoroughly established in comparison with ex-
perimental data.

For this purpose, we have designed a critical and sys-
tematic test of the first Born approximation with and
without correct boundary conditions. Comparison with
the measurement is carried out for charge exchange in
H+-H, He +-H, Li +-H, B +-H, and C +-H collisions at
intermediate and high energies. Atomic units wi11 be used
throughout unless otherwise stated.

II. THEORY

We will investigate the following basic charge-exchange
problem:

Zp + (Zy', e); ~(Zp, e)j+ZT (2.1)

where ZP and ZT are the nuclear charges of the projectile
and target, respectively; e is the electron; parentheses sym-
bolize the bound states; and Ii,f I are the usual sets of
quantum numbers In'l'm'), In jl m j. The customary
first Born approximation of Jackson and Schi)F' (JS) which
violates the correct boundary conditions for reaction (2. 1)
is given by

Tj '(g)= f f dRdrpgj *(rp) Zp

rP

, Z&, , ik; rf+ikf'rfXj; (2.2)

where k, and kf are the initial and final wave vectors, g
ZT

is the transverse momentum transfer, and P; (rT) and

Pj (rp) are the initial and final bound-state wave func-
tions. Here rK(K =P, T) is the position vector of the
electron with respect to the Eth nucleus. Furthermore,
R=rr —rP, and r; =brT —rP, rf ——arP —rT, a =MP /
(Mp+1), b =Mr/(MT+1), where M~ is the mass of
the Kth nucleus (K =P, T).

The first Born approximation of Belkic et al. ' '
with asymptotically correct wave functions reads as fol-
lows:

Zp
if P f

ZP z i k, .r, +i kf .rf —i g ln( v.R+ UR )

d; '(rT)e
rP

(2.3)

2
Tj(g)

cr;j(ao)= J dg
2&U

(2.4)

where Tf is either Tf'" or Tf" It is easily verified that
2iZ&(ZT —1) /t)

the phase factor (pU) disappears from the
right-hand side of Eq. (2.4) when dealing with transition
amplitude (2.3). Hence for the purpose of computing the
total cross section (2.4), evaluation of matrix element

where v is the vector of incident velocity, p =R—Z
(p.2=0) and g = (ZT —Zp ) /U. In the eikonal limit
MP T &~ 1, the total cross section is introduced by the rela-
tion

Tf" can be carried out by omit ting the term
2iZp(ZT 1 )/U

(pU) from the onset.
Transition amplitudes Tf ' and T;f ' differ markedly

in the general case of arbitrary nuclear charges ZP and
ZT. Both the perturbation potential and the channel
wave functions are different in Eq. (2.2) from those in
Eq. (2.3). It is expected, from the physical point of view,
that the internuclear potential Vr(R) =ZpZT/R will not
contribute to the total cross section in the eikonal limit
(as per Wick). This holds true for TIj', however, transi-
tion amplitude T;f ' contradicts Wick's contention since
Vr(R) significantly contributes to the total cross section
even in the high-energy limit, i.e, U »max(Zp, ZT). Ac-
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III. RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA

Exhaustive numerical computations of total cross sec-
tions o.

,'~' and o.,'~
' have presently been carried out for

the following reaction:

Zp+ H( ls) ~(Zp, e)g-+ H+, (3.1)

by varying projectile charge Zp from I to 6. For this

cording to previous computations' based upon Eq. (2.2),
total cross sections obtained from the JS approximation
overestimate experimental data by orders of magnitude.
Thus, Omidvar et al. concluded that Vz(R) should be
screened. By so doing, these authors left the channel
states N; and N& unperturbed, which implies that the
Hamiltonian of the system has been arbitrarily changed.

Consequently, there is a need for adequate treatment of
charge exchange within first orde-r theories Eq.uation (2.3)
represents a natural starting point, where the usual
scattering theory is modified by appropriate inclusion of
the asymptotic long-range Coulomb effects. ' ' This has
recently been shown to be very important for the ground-
state-to-ground-state transitions in collisions between mul-
tiply charged projectiles and neutral targets. ' '

Electron transfer into excited states is required, howev-
er, for a quantitative comparison with experimental data.
The newly formed ion (Zp, e)I in the exit channel of reac-
tion (2.1) is left preferentially in a high excited state. For
example, the resonant level in C +-H(ls) collision occurs
when ion C +(n 1 m ) remains in the state with the prin-
cipal quantum number n =6. Hence, final excited states
are expected to play a dominant role for process (2. 1), at
least at lower and intermediate energies for which mea-
surements are available.

The most general result of T,&
' for arbitrary quantum

numbers n 'l'm ' and n I m has recently been obtained
by Belkic and Taylor. Although Eq. (2.2) can be fully
solved ana)ytically, in applications the Feynman repre-
sentation of T;&

' in the form of a one-dimensional para-
metric real integral provides the most efficient algorithm
for comprehensive numerical computations. ' '

Integrals of type (2.3), however, are much more
difficult to evaluate in the most general case, due to the
presence of Coulomb phase distortions. Nevertheless,
the problem is considerably simplified when dealing with

2iZ+(, Z& —i)/Utotal cross sections crI&', since factor (pu )

disappears from Eq (2.4). .With such a reduction, Belkic
and Taylor' recently demonstrated that the most gen-
eral expression for T;'I" can also be derived in terms of a
one-dimensional real Feynman integral over a number of
easily obtainable polynomials for any triad of quantum
numbers n'l'm' and n~I m~. Furthermore, treating g as
an arbitrary and independent parameter in Eq. (2.3), we
can obtain T;~~

' from TJ" by setting g'=0 and changing
perturbation potential Zp/R into ZpZz-/R. In this way
a single algorithm of Belkic ' is used to simultaneously
compute both first Born cross sections o';I' and o',& ', i.e.,
with and without correct boundary conditions, respec-
tively.

process, "prior" transition amplitudes T;~ ' and T;'I '

have the same perturbation potential, i.e.,
V =Zp /R —Zp /7 p, since Z& ——1. Hence, the only
difference between Eqs. (2.2) and (2.3) occurs in the pres-
ence of the Coulomb phase factor
exp[ —i(in( vR+ UR)] in T~' where (pv)
=1.

Since the initial state is fixed, it is convenient to intro-
duce a simplified notation for the cross sections, such as

f =oif ~ (3.2)

~f =~nhfmf ~ (3.3)

o„flf=
+ If

~n~I~m j
mf= —lf

(3.4)

nf —i

~n~= X ~n~t~ &

If=o
(3.5)

~total = g ~r „f ~

„f
(3.6)

In actual computations of the total cross sections o.t,t,']
and o.,",t,], an approximation formula' is adopted:

~total —teetotal ~N = g o „f+1(3,N)trav+ t

nf=&
(3.7)

+i N+1)'(3,N) = 1+(N + 1) g(3 )—
nf=i nI (3.&)

where j(3) is the Riemann j function. Here N is an in-
teger which is chosen to coincide with the lowest value of
n required for convergence of the sum over all the final
bound states of system (Zp, e)~. We have computed
state-to-state cross sections oy" and o.~

' by generally go-
ing one level above the resonance, which occurs at
n =Zp. The value N =Zp+ 1 is thus found to be
sufficient for convergence of the summation in Eq. (3.7).

The results of the present computation are displayed
both in tabular and graphic forms. In Table I, the cross
sections are reported for proton impact on atomic hy-
drogen. In this case, T;&' is coincidently reduced to
T,&

' and we have extended the computation consider-
ably above the resonance level. At the overlapping ener-
gies, the present results agree with previous findings of
Mapleton, Roy et al. , and Toshirna. The corre-
sponding JS results of Band, however, are significantly
different from the true first Born cross section for H+-H
charge exchange. Present results for this process are
compared with a number of experimental data in Fig. 1.
It can be seen that agreement between the present cross
sections and measurement is satisfactory.

The results for electron capture from a hydrogen atom
by a particles are depicted in Tables II and III and Fig.
2. This process has previously been studied by many au-

This expression is based upon the Oppenheimer scaling
(n~) ' law which yields:"
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thors. . Recently, Datta and Mukherjee have investi-
gated charge exchange in He +-H(ls) collisions by us-
ing a distorted-wave first-order perturbation theory. The
method of Ref. 28 for an n particle incident on hydrogen
diff'ers from the present transition amplitude (2.3) only in
using the full Coulomb scattering wave for the relative
motion of heavy particles instead of its asymptotic form,

i.e., the logarithmic phase factor. In the eikonal limit,
however, this would yield a negligible difference, of the
order 1/Mp z. . This is indeed the case, as seen by com-
paring the present results in Table II with those of Datta
and Mukherjee. It should be noted, however, that
these authors have incorrectly termed their computa-
tions the Coulomb projected Born (CPB) approximation
of Geltman. ' The origina1 CPB method, ' however,
possesses only one Coulomb wave in the most general
case of reaction (2.1) for the relative motion of the nu-
clei, which is due to to the internuclear potential
&&(R ) =ZpZy'/&. This is precisely the reason for the
failure of Cieltman's approximation which does not obey
the correct boundary conditions. Furthermore, the per-
turbation interactions in the CPB model are of long
range, i.e., V;= —Zp/)p Vy'= —Zy/7y and this is in
disagreement with the proper asymptotic behavior (1.1)
of these potentials as R ~ oo. Even in the case of the
H+-H collision, the CPB method exhibits Coulomb dis-
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FIG. 1. Total cross sections for electron capture by H+
from H(1s). Present results, [the first Born approxima-
tion (2.3) with correct boundary conditions is fortuitously re-
duced to the standard Jackson-SchiS' (JS) approach (2.2) for
this process]. Experimental data (atomic hydrogen target):
Bayfield (Ref. 31);, Fite et al. (Ref. 32); 0, Gilbody and
Ryding (Ref. 33); Z, McClure {Ref. 34); $, Wittkower et al.
(Ref. 35). Experimental data with molecular hydrogen target
[absolute measurements are transformed to H target data ac-
cording to Belkic and Gayet (Ref. 27)]: A, Barnett and Rey-
nolds {Ref. 36); 4, Schryber (Ref. 37); 0, Stier and Barnett
(Ref. 38); ~, Toburen et al. (Ref. 39); ~, Welsh et al. (Ref. 40);
7, Williams (Ref. 41). Theoretical results o„„[are obtained

from the formula o, „]——o.]+1.616o.2 which is a special case of
Eq. (3.7) with N =2 [see also Eq. (3.5)]. Inclusion of higher ex-
cited states does not change the theoretical curve on the shell
given in this figure (see Table I). The condition u =vo occurs
at E =25 keV. In this and in the remaining figures, u denotes
the incident velocity and vo the classical orbital velocity of the
electron in the first Bohr orbit of the target hydrogen atom {v

and uo are in atomic units).

021
03 05 07 2 3 4 5 6 7 8910

E(100keY)

20 30 40 5O

FIG. 2. Total cross sections for electron capture by He +

from H{1s). Present results, [the first Born approxima-
tion (2.3) with correct boundary conditions]; ———[the stan-
dard Jackson-SchiA {JS)method {2.2) with incorrect boundary
conditions]. Experimental data (atomic hydrogen target): o,
Shah and Gilbody (Ref. 42). Experimental data with molecular
hydrogen target [absolute measurements are transformed to H
target data according to Belkic and Gayet (Ref. 27)]:
Bayfield and Khayrallah (Ref. 43); ~, Pivovar et al. (Ref. 44);
~, Hvelplund et al. (Ref. 45); A, Allison (Ref. 46). Theoreti-
cal results o.„„[ are obtained from the formula
o tpta~ ——o ] +o.

2 +2.08 1o.3 which is a special case of Eq. (3.7)
with N =3 [see also Eq. {3.5)]. The condition v =vo occurs at
E =100 keV.
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TABLE III. Total cross sections (in units of cm ) for electron capture by He'+ from H(ls) as a function of laboratory impact
energy E (keV). The results are obtained by means of the standard Jackson-Schiff (JS) method with incorrect boundary conditions
[Eqs. (2.2), (24), and (3.7)]. The quantization axis for the final bound states

~

n~lfm fl is chosen along the incident velocity vector
v. The row labelled "Total" represents the cross sections summed over all the bound states of the He+(n l m ) ion by using Eq.
(3.7) with N =3, i.e., o„„'1=os +o'2 '+2.081o'z '. Notation: X[—N] implies XX10

n I E (keV)

2s
2p

3s
3p
3d

80

1.78[ —16]

2.26[ —16]
8.07[ —16]

8.53[ —17]
9.42[ —17]
2.85[ —16]

100

1.39[—16]

1.12[ —16]
5.77[—16]

4.87[ —17]
6.99[—17]
2.09[ —16]

200

4.66[ —17]

7.07[ —18]
1.41[—16]

3.51[—18]
2.94[ —17]
4.46[ —17]

500

5.20[ —18]

7.12[ —19]
7.39[—18]

1.89[—19]
2.45[ —18]
1.32[ —18]

1000

5.90[ —19]

1.06[ —19]
3.52[ —19]

3.37[ —20]
1.27[ —19]
3.38[ —20]

2000

4.41[—20]

7.66[ —21]
9.71[—21]

2.43[ —21]
3.52[ —21]
4.56[ —22]

5000

7.60[ —22]

1.16[—22]
4.58[ —23]

3.56[ —23]
1.65[ —23]
7.95[ —25]

Total 2. 18[—15] 1.51[—15] 3.55[ —16] 2.15[—17] 1.45[ —18] 7.48[ —20] 1.03[—21]

10
1 I I 1 ( I 1 1 1 I I I I (

io'5

CV

E
V

b"

10

10 8
( I 1 I I 1 I I

0.3 QS 0.1 1

"="o

I l I I I I ( I I

2 3 4 5 6 78910
E (100keV )

(

20

FIG. 3. Total cross sections for electron capture by 'Li +

from H(1s). Present results, [The first Born approxima-
tion (2.3) with correct boundary conditions]; ———[The stan-
dard Jackson-Schiff' (JS) method (2.2) with incorrect boundary
conditions]. Experimental data (atomic hydrogen target): ~,
Shah et aI. (ref. 47). Theoretical results o.t,&,. ] are obtained from
the formula o.«,j =o.

l +o.2+ o.
~ +2.561o.4 which is a special case

of Eq. (3.7) with N =4 [see also Eq. (3.5)]. The condition u =uo
occurs at E = 175 keV.

tortion and, hence, does not reduce to the correct first-
order limit. ' The approximation of Datta and Mukher-
jee differs from the CPB method in the perturbation in-
teractions V; f as well as in the distorting potential
which yields the Coulomb wave in the exit channel.
This latter distorting potential is an asymptotically

screened interaction between the two aggregates, i.e.,
[(Zp —1) && 1]/R which implies that the method of Ref.
28 satisfies the correct boundary conditions only for re-
action (3.1). The original method of Geltman' has re-
cently been applied by Lal et al. to charge exchange
between fast He + ions and atomic hydrogen H( ls).
Comparison with experimental data for u particle im-
pact on hydrogen is presented in Fig. 2. It is clear from
this figure that cross sections o.,','t, ] are in better agree-
ment with the measurements than the corresponding re-
sults of the JS approximation.

Next we shall examine electron capture from H(ls) by
Li + ions in the energy range from 20 to 2500 keV. The

present results for o-,'o,',~ and o.t~„'i are given in Tables IV
and V as well as in Fig. 3 ~ Recently, Mandal et al.
have used the method of Ref. 28 to study charge exchange
in Li +-H( ls) collision at high energies. Hence, as in the
case of the He +-H(ls) scattering, we expect that our
findings will agree with those of Ref. 30 to within the
eikonal approximation (1/Mp T —10 ). This is found to
be true for all the transitions considered, except
n l =300=3s, where the results of Mandal et al. are
unexpectedly low by approximately 15%. The present re-
sults are obtained from a single general program of Belk-
ic for both o.;fjs] and o.I~i j This program is valid for arbi-
trary initial and final bound states n'l'm' and n l m .
Mandal et al. , however, used parametric partial
differentiation for each of the transitions ls(initial)~n l m separately. This has been done in Ref. 30 for
the JS approximation as well as for the theory of Datta
and Mukherjee. The present JS cross sections from
Table V are in excellent agreement with the results o.f '

of Mandal et al. for each transition under study includ-
ing the 3s final state (n I = ls, 2s, 2p, 3s, 3p, 3d). Experi-
mental data of Shah et al. are compared with the
present cross sections o-„„~and o-'„'t,

~ in Fig. 1. The latter
cross sections are found to be in very good agreement
with the measurement, whereas the JS results are too high
throughout the energy range presented.

Cross sections for electron transfer
Be ++H(ls)~ Be +(n i )+H+ are listed in Tables

VI and VII and shown graphically in Fig. 4 in the ener-

gy range from 50 to 2250 keV. Figure 4 reveals a large
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TABLE V. Total cross sections (in units of cm ) for electron capture by 'Li'+ from H(ls) as a
function of laboratory impact energy E (keV). The results are obtained by means of the standard
Jackson-Schiff (JS) method with incorrect boundary conditions [Eqs. (2.2), (2.4), and (3.7)]. The quant-
ization axis for the final bound states

~

n lfm ) is chosen along the incident velocity vector v. The
row labelled "total" represents the cross sections summed over all the bound states of the
Li (n I rn ) ion by using Eq. (3.7) with X =4, i.e., o.„„']——o l '+o2 '+o'3 '+2. 561o4 '. Notation:

X[ N] —implies XX10
nflf

1s

2s

2p

3s
3p
3d

4s
4p
4d

E (keV)

6.78[ —17]

1.96[—15]
1.16[—15]

2.02[ —16]
1.01[—15]
1.90[—15]

6.09[—17]
3.46[ —16]
2.07[ —16]
7.05[ —16]

5.31[—17]

4.65[ —16]
9.21[—16]

1.30[—161
1.06[ —16]
9.76[ —16]

3.80[ —17]
7.04[ —17]
1.49[ —16]
3.44[ —16]

2.47[ —17]

1.15[—17]
2.19[—16]

9.62[ —18]
3.60[—17]
1.34[ —16]

5.45[ —18]
9.54[ —18]
5.57[ —17]
3.17[—17]

1000

7.66[ —18]

1.48[ —18]
2.79[—17]

2.73[—19]
9.53[—18]
9.45[ —18]

1.01[—19]
4.05[ —18]
5.25[ —18]
1.38[—18]

2500

5.68[ —19]

1.71 [ —19]
5.03[—19]

5.83[ —20]
2.00[ —19]
7.08[ —20]

2.57[ —20]
9.33[—20]
4.24[ —20]
4.97[—21]

Total 9.67[ —15] 4.19[—15] 6.96[—16] 8.39[—17] 2.00[ —18]

CV

E
V

lO

b

10-13

,0-14

1P

10

I I I I I (

discrepancy between the first Born approximation with
and without correct boundary conditions at all energies.
Unfortunately, no experimental data are available for
comparison.

A detailed account of the results for charge exchange in
''B +-H(ls) collisions at energies from 50 to 2500 keV is
found in Tables VIII and IX and Fig. 5. The present
theory derived from Eq. (2.3) describes experimental data
of Goffe et aI. quite successfully at higher impact ener-
gies, in contrast to the JS approximation which greatly
exceeds the measurement (see Fig. 5).

An exhaustive list of state-to-state cross sections for re-
action ' C ++H(ls)~' C +(n I )+H+ is given in
Tables X and XI. Total cross sections for capture
summed over all the final bound states are shown in Fig.
6. It follows from this figure that the first Born approxi-
mation with correct boundary conditions is in excellent
agreement with the experimental data of Csoffe et al.
The Jackson-SchifF (JS) method with incorrect boundary
conditions, however, considerably overestimates the mea-
surement (see Fig. 6).

IV. DISCUSSION

10"
0.3

I I I I I I

G,S O.r
I II I I I I I I I

2 3 4 5 678910
E (10PkeV )

I I

20 30

FICx. 4. Total cross sections for electron capture by 'Be +

from H(1s). Present results, [The first Born approxima-
tion {2.3) with correct boundary conditions]; ——— [The
standard Jackson-SchiF (JS}method (2.2) with incorrect bound-
ary conditions]. Theoretical results o„„~are obtained from the
formula o.„„]——o.]+o.2+o.3+o.4+ 3.049o. 5 which is a special
case of Eq. (3.7) with N =5 [see also Eq. (3.5)]. The condition
U = Uo occurs at E =225 keV.

Reaction (2.1) provides the most stringent test for the
theory of charge exchange, since the bound-state wave
functions are known exactly in both channels. Hence,
any inaccuracy of the predicted cross sections can directly
be attributed to fundamental theoretical inadequacies. Of
special interest are the distortion effects due to the long-
range Coulomb potentials between the two aggregates.

Process (2.1) is also of great importance to applied
problems in various fields, such as astrophysics, controlled
thermonuclear fusion research, lasers, etc. Multicharged
ions of the interstellar medium collide primarily with hy-
drogen and helium; electron transfer is one of the basic
mechanisms for reducing the charge state of these ions.
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225050

TABLE VII. Total cross sections (in units of cm ) for electron capture by Be + from H(1s) as a function of laboratory impact

energy E (keV). The results are obtained by means of the standard Jackson-Schi8'(JS) method with incorrect boundary conditions

[Eqs. (2.2), (2.4), and (3.7)]. The quantization axis for the final bound states
~

nflfrnf) is chosen along the incident velocity vector
v. The row labelled "Total" represents the cross sections summed over all the bound states of the Be'+(n I m ) ion by using Eq.
(3.7) with % =5, i.e., o'„„'~ c——r'~' '+rr2' '+o'3' '+o~' '+3 04. 9cr5' '

N. otation: X[ N]—implies X&& 10

n l E (keV) 100 500 1000 1500

1$

2$

2p

3$

3p
3d

4$

4p
4d

5s
5p
5d
5

5g

2.50[ —17]

1.52[ —15]
1.33[—16]

3.04[ —15]
2.52[ —15]
4.21[—16]

6.18[—16]
1.81[—15]
3.60[ —15]
1.99[—15]

2.34[ —16]
6.76[ —16]
8.36[ —16]
1.08[—15]
9.88[ —16]

2.38[—17]

1.32[ —15]
2.35[—16]

1.33[—15]
2.87[ —15]
7.97[—16]

3.17[—16]
4.67[ —16]
1.68[—15]
1.71[—15]

1.09[—16]
2.09[—16]
4.33[—16]
3.40[ —16]
9.45[ —16]

1.55[ —17]

1.65[ —16]
3.57[ —16]

8.14[—17]
5.87[ —17]
6.54[ —16]

2.49[ —17]
5.81[—17]
1.07[ —161
3.63[—16]

9.79[—18]
3.65[ —17]
2.73[—17]
1.59[—16]
1.07[ —16]

8.94[ —18]

8.04[ —18]
1.31[—16]

1.10[—17]
2.03[—17]
1.23[ —16]

6.66[ —18]
4.07[ —18]
5.49[ —17]
3.83[—17]

3.86[ —18]
1.29[ —18]
2.68[ —17]
2.67[ —17]
6.87[ —18]

5.26[ —18]

4.54[ —19]
4.59[—17]

6.54[ —19]
1.47[ —17]
2.70[ —17]

5.55[ —19]
5.53[ —18]
1.51[—17]
5.75[ —18]

3.78[ —19]
2.58[ —18]
8.53[ —18]
4.50[ —18]
7.55[ —19]

2.51[—18]

6.06[—19]
1.13[—17]

9.32[ —20]
4.76[ —18]
4.04[ —18]

2.57[ —20]
2.19[—18]
2.49[ —18]
5.89[—19]

1.07[ —20]
1.15[—18]
1.48[ —18]
4.83[ —19]
5.67[—20]

Total 2.73[—14] 1.69[—14] 2.92[ —15] 6.06[—16] 1.72[ —16] 3.83[—17]

The penetration rate of injection heating in high-
temperature plasmas in fusion energy research is predom-
inantly determined by charge exchange (3.1) between mul-
tiply charged projectiles and atomic hydrogen. ' Further-
more, capture into excited states which is followed subse-
quently by de-excitation to lower levels represents a possi-
ble pumping mechanism for production of short-
wavelength lasers.

In many applications, information is required about
the population of excited states by electron capture.
Tables I through XI contain state-to-state transitions.
From these, inferences can be made as to which final
state yields dominant cross sections in the energy range
of interest. We have found, for example, that in the first
Born approximation with correct boundary conditions,
excited states having n =3 and n =4 are producing
dominant cross sections for Be +-H(ls) and C +-H(ls)
charge exchange, respectively (see Tables VI and X).
The same conclusion has previously been reached at
lower energies by several authors.

Considering the distribution of the cross sections for
various angular momenta I computed at a fixed princi-
pal quantum number n, the present tables reveal that,
in general, the s states yield the smallest cross sections
for Zz ~ 1. Moreover, cross sections cr"f'&f correspond-
ing to the highest value (n —1) of lf are often dominant
at lower and intermediate energies. This holds true, for
example, in the case of the Li + -H( ls) collision, for
n =3 below 1500 keV but not for n =4 at any energy
of Table IV (E =20—2500 keV). A similar trend was
previously detected in the continuum distorted-wave
(CDW) approximation (see Refs. 57 —61 where this
question has also been addressed).

The discovery of scaling laws is frequently of great
practical value because of substantial reduction in compu-
tation. Cross sections for process (3.1) have first been
shown empirically by Shah and Gilbody to scale accord-
ing to the Zp law at intermediate energies. This scaling
has subsequently been confirmed theoretically by Crothers
and Todd in a number of first- and secorid-order
theories. It can be readily verified from our tables that
cross sections O. t,'t', ~ also exhibit the Zp scaling with a sa-
tisfactory degree of accuracy for Zp & 2 at intermediate
energies starting from E= 100 keV/amu.

The main goal of the present study was to establish the
relevance of the boundary condition problem within the
two simplest first-order theories [Eq. (2.2) and (2.3)j. For
this reason, we have not compared our results with other
numerous theoretical models. Nevertheless, it
should be noted that the classical trajectory Monte Carlo
(CTMC), unitarized distorted-wave (UDW), ' two-state
atomic expansion (TSAE), and CDW approximations,
which are the most frequently used in computations, are
successful to various degrees in predicting the experimen-
tal data. In the case of Li + —H(ls) scattering, for exam-
ple, CTMC, UDW, and TSAE methods are in good
agreement with the measurement at energies lower than
300—400 keV. At higher energies, however, these theories
largely overestimate the observed findings. Further, the
CDW approximation compares favorably with the mea-
surement of Shah et al. at energies beyond 700 keV.
On the other hand, the first Born approach with correct
boundary conditions is, as we have already seen in Fig. 3,
in excellent agreement with experimental data at energies
E)250 keV. This is close to an energy of E= 175 keV
for which the incident velocity (v) of Li + ion is equal to



1612 DZEVAD BELKIC, SUBHASH SAINI, AND HOWARD S. TAYLOR 36

U

c o
II

0
P.
a5

X t

cA

p

bQ 0 ~c~ P
CCt

g

E ~-'

0 X

p
~ ~

0
O

&D

E
0 " E

cA
+

CA

0
cl

(/j

0
0

P o
FQ E

~ ~

c ~ I

0 ~ + o

0

Co
0 + 0

~ ~

o++
0 Q

aS—c o+
O ™0

chW

c ~~

E~s

O

OO

O

OO

O
I

Ch

I

O

QO

t

QO QO

I

I

QO

I

W O

VO

I

VOO

t

O oo

I

O

QO

I I

QO QO

I I I

O

I I

& OO

VO

QO QO
O
Ch

I I

QO

QO

I I

l

QO

OO QO

I f

QO
oO N O

QO

I I I

QO

I

VO
QO

QO

I

QO

t

f I I

QO
oo
t

I

O

I

QO

VO

QO
O,

VO

I I

O

I

QO QO

Ch

t VO

I

VO

oo

oO oO t t

I

O

oO oO

I I I I

O
oO

QO QO

t

O

QO QO

t

QO

oo t t

I I I I

eh Vl g OO

I

O

I

QO

t

I I

Ch W O

VO

I t

O
t

I

O O

VO M

I

O

QO

QO

I

V) O
Ch

QO QO

f

VO t

O
I

O O

oo t t t

I I I I

Cr M oo
oo oo

t

I

QO QO

QO

I I I I

oO

oo

I

O

oo QO

I

O
l

OO

QO QO

I

t

QO

O t

QO

I

QO

QO

I I I I I t

QO Ch Ch

QO

I

O N
QO

QO

I I I

CV

QO QO

I I

cV W O

t oo

I I I

QO
QO

QO QO

f

Ch
QO QO

O O Ch

t

t~OO
QO

I I I

QO QO
O t O

QO

QO

I I I I

Ch

I

QO

I

O

I

O



CRITICAL TEST OF FIRST-ORDER THEORIES FOR. . .

zi'

o
cA

Ch

Ch g0
a
o~

E
c5 ~

+

&o„
Ch

cA

Q
Q

E g g
cd

o

0 ~

o ~
0

~ 'IH
0

E~~= E&
c5

O

&V

ce

~ ~

C
Q

cG4 ~ O
O ~ Z

O

+a5

~ ~

O +
cn

~ 2
+

0 ~g
b

CI5 ~ v +
I

g O

cn

II
Vs ~ 'G-~
Q

4j
o C6

bQ ~ ~
g

II

8
E u

Q
oo

I

oo
O

oo

I

oo

oo

I

Q

Q

O

Q

oo
Q

I I

Qo

l

Q
QC

O

I

O

I

oo

I

O
oo

oo

I I

O

oo

I

oo

oo vo

I I

I I

oo

I

O Q

I I

oo ch

I I

M ChO
oo

t

I I

Qo

I

oo

Qo oo

I I I

oo O oo
oo

oo

I I I

OQa

oo Qo

I I I

t

Qo Q ch

I I

oo

I I I

oo

I

I

oo

I

oo

oo Qo oo

I I I I I

t WMMt
t oo

oo

t

I I I

O Q

VO ~
I

ooO

O

Q
oo

I I

t l

I I I I I

m ~ ~™

t

I I I I I

oo
t Ch

oo Qo

I I I I I

oo
t W ~ W oo t

t ~ ~ oo

I I I

VO
Ch

I I

oo
t

t

I I I

Ch Q

I I I

oo
oo

I I I

oo

I I I

VO

VO VO

I I I

t Q
oo

t vo uD

I I

Qo
Qo
t

I I I

t
O

I I I

O
I I I

tO Qo O
t

I I I

I I

Q

oo oo

I I I I I I

oo O oo ~
oo t

I

O

I

O

ooQ

I

O



1614 DZEVAD BELKIC, SUBHASH SAINI, AND HOWARD S. TAYLOR 36

g

~~IIc y0
ca W

~ M g e real

~ o—
cA

U'

bQ

ch

0

0 ~

g ~~wUo
a5

g

00

o g0
a5 g

C
a5

O

C5

ch

(Q

a
Ch x
cn+ 0 G6

tQ

M p
«h

ceo
g 00. ~& g0

0 ~ a5
O

4H

E &
o 0 0

cn

+
O

g et b

0
.0

N

o & i +0
Q 0
Q

'4
0 ~ b~~'o+

)
II

c4

o o b

Q

Q
I

I

O

QQ QO

Qo

Qo
O N

I I

Qo

I I

O a
Qo

t

Qo

I I

QO

I I

Qo

t

I I I

CVWaO

4D

I I

Ch

I

O

t

I I I

Qo ~ QoO t O

I I I

Qo

I I I

Ch
Qo

cV

I I I

Qo
Qo

w a t

Qo Qo

I I I

Ch

Qo

I

QO

Qo M t

I I I

Q

I I I I

t O n

t

I I I I

t Ã~ QO
Ch

I I I I

~Qt

I I I I

Qo

I I I I

Qo
Ch

O

Qo Qo Qo Qo

I I I I

YCO~nt

Qo

I I I I I

I I I I I

QO

t t uDMu0

I I I

t
t O W

I I I

t OO

I I

O YcO
cV u5

I I I

O~O

O % R R Ch Q
I I I I I IF rt- O ~ O tMMuDQOM

Qo ~ ~ Qo

Qo Qo Qo

I I I

t QO

I I I

VOnOO
CV Ch

Qo t

I I I I I I

rt. Q ~ Ã ~ W
CV l

VO

Qo t

I I I I I I

V) n n QO

'40 VO

I I I I I I

I I I

O

M M &0

I I I

O OOar

I I I

Ch
Q n QO

I I I

Q M Ch

t

I I I

Q
VO ~ t

t MOM

I I I

Qo Q

Qo

I I I

Ã tO n Qo
Qo

Qo Qo Qo

I I I I I I

Q Qo rt- ~ W 4
t

t ~ ~ M '45
O

Ch Qo Qo

I I I

Ch

Qo Qo

I I I

Qo

Qo

I I I

Qo

Qo

I I I

QO QO M
cV
t

Qo

I I I

t

Qo

I I I

O R t

Qo Qo Qo

I I I

Ch ~ QO

Qo t Qo

I I I

Qo QO

Qo

t

I I I

~&O
Qo

I I I

O
Qo m Q

Qo

I

Qo

I I

Qo

Qo

t t

I I

Qo

I I

O

I I

O O

I I

O Qo

t Qo

I I

I

Qo

O



36 CRITICAL TEST OF FIRST-ORDER THEORIES FOR. . . 1615

«I3

a E
~ ~
a5

o
C/I

Ch

&u 0

& o
cn

0
eV

E
c5

aS

0 ~
Ej

0
0

c

2 a
Q
c5

C0
&D

0

2
0

0
cn

E
C

0 N
I

5

0

0
X

U'

bG

0
TK

0

C
0

a5

0 p

XE

Q
E

O

0

&D
cA

b
0+ o

V

+

+
C/30 ~~

+

b
+i

0 ~
0 b

+
~ ~
0 b0

Y) +

II—ea

b

OO

O
O

O

O

OO
red

oO

I

OO

oO

I I

oO O

t

oo

OO

t

oo oo

I I I

oO

oO oO l

I I

O
t

I

O

I I I

O
oO

I I I

oO

t
oo

oO ~ oO

I I I

O rt.
oO ~ t

oo

I

oO t t

I I I

O
t

OO

I

oo
oo O

O

t

oO oO
oO
t

I

VO

V0

I I 1

oO

oO

I

V0 ~ VO

oO

O
Ch

oO

I I I

VO

VO

oO t oO

I

oO
oO

OO

I I

OOoo~

t

I I

O

I

t ~ oO
oO

t ~ V0

I I I

O oo
oO oO
oO

t

I I I I I

oo
oOM t

t

oo

I

t

I I I

O

I I

t

t

I

oO

VO

I

t

I I

oo

I I I

O

I I

oO
O

I I I

oO
O

t

oO M ~ t

I

t

VO ~ oO
oo oo

oo M oo

t
O

O

oO t

I

O O
oO

oO t

I I I

O n oo

oO

oo t t

I

t
t

t

oo

I

O
oo

oO

oo gO
oO

oO

OO

t oO

I I I I

t M oO
oO ~ oO

oO
t

O

I I I

oO

oO

t ~ M VO

I I I

Ã t

I

O O A O
t

go t

Vs II

o



1616 DZEVAD BELKIC, SUBHASH SAINI, AND HOWARD S. TAYLOR 36

—13
I I I I 1 i

j 10
I I ( & I I

10
—14

10

CV

E
CP

EO

6

10
CV

E
V

lO

b

10
-15

10 6

-17

0.3
I ( I I I (

0.5 0.7 1

V=V

( &~i i ) i I ( I (

2 3 4 5 6 78910
E(100keV )

i

20 30
l

4 5 6 7 8 910
i

20 30

FIG. 5. Total cross sections for electron capture by "B +

from H(1s). Present results, [The first Born approxima-
tion (2.3) with correct boundary conditions]; ——— [The
standard Jackson-Schiff (JS) method (2.2) with incorrect bound-
ary conditions]. Experimental data (atomic hydrogen target):
~, Goffe et al. (Ref. 48); o, Crandall et al. (Ref. 49). Theoret-
ical results o.„„[ are obtained from the formula
otota] —o ]+o2+o 3+o 4+o.5+ 3.541o.6 which is a special case
of Eq. (3.7) with %=6 [see also Eq. (3.5)]. The condition
u =uo occurs at E =275 keV.

E(100keV )

FIG. 6. Total cross sections for electron capture by "C +

from H(1s). Present results, [The first Born approxima-
tion (2.3) with correct boundary conditions]; ———[The stan-
dard Jackson-Schiff (JS) method (2.2) with incorrect boundary
conditions]. Experimental data (atomic hydrogen target): ~,
Goffe et al. (Ref. 48). Theoretical results o.&,t,~ are obtained from
the formula o.&ot,]=o.

~ +o.2+ o.3+o.4+ o g+ o.6+4.035o.7 which is
a special case of Eq. (3.7) for N =7 [see also Eq. (3.5)]. The con-
dition u =uo occurs at E =300 keV.

the classical orbital velocity (Uo) of the electron in the first
Bohr orbit of the target hydrogen atom.

V. CONCLUSIONS

The present theoretical analysis and exhaustive numeri-
cal computations indicate that a fundamental reformula-
tion of atomic collision theory is needed. The asymptoti-
cally correct scattering wave functions and consistently in-
troduced perturbation potentials are crucial for under-
standing the basic physics of atomic collisions.

First-order perturbation theories for charge exchange
have previously been discarded since they disagreed
severely with experimental data. The present study estab-

lishes the first Born approximation as a very accurate
theory for rearrangement collisions. It is systematically in
good agreement with the measurements. This has been
achieved by imposing the correct boundary conditions to
the channel scattering states.
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