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Kummer-function representation of ridge traveling waves

S. Watanabe
Observatoire de Paris-Meudon, 92190 Meudon, France

(Received 10 December 1986)

We present Kummer-function representation of an infinite set of local solutions for describing the
double continua of two atomic electrons. Specific connection between the rate of flux loss from the
ridge region and the double-excitation mechanism is discussed. Analysis based strictly on the local
behavior of the solution leaves some ambiguity in threshold law for 'S' and 'P'; otherwise Wannier's
threshold law holds beyond reasonable doubt. The quantum-mechanical treatment is complemented
and elucidated by classical trajectories.

I. INTRODUCTION

The ionization cross section of an atom depends sensi-
tively on the energy sharing between a pair of escaping
electrons. Two-electron correlations thus attain a
paramount importance near the double-ionization thresh-
old. Wannier inferred that only a limited class of two-
electron motion, confined to a neighborhood of the poten-
tial ridge, ' results in double ionization, leading to the
threshold law

EL 13 (1)

The derivation of (1) by Wannier, ' and Vinkalns and Gail-
itis relied on classical trajectories and motivated critical
examination using quantum mechanics. ' This paper ad-
vances previous quantum treatments by providing
Kummer-function representation of local ridge solutions.

The present treatment retains the concept of the
effective potential energy considered by Macek and Rau.
Its imaginary part relates the rate of flux loss from the
ridge region and accounts for the double ionization and
excitation mechanism, albeit qualitatively. This paper elu-
cidates the double-excitation mechanism with the aid of
the ridge solutions and displays of classical trajectories.

This paper is organized as follows, Section II A defines
various quantities and concepts as a preparation for the
discussions to follow. Section IIB solves for the local
ridge solutions in terms of Kummer's functions. We
demonstrate in particular that the solution of Rau and
Peterkop and that of Klar and Schlecht are two
members of a denumerably infinite family of local solu-
tions. Section III presents classical trajectories
representing double excitation, leading to the discussion
of its mechanism and the connection with the in-
tramolecular energy-transfer problem. Spin dependence
of the threshold law relies on the scaling property of the
wave packet propagating astride the ridge. Two cases
are separately discussed. Section IV closes this paper
with comments on remaining theoretical questions.
Atomic units are used throughout.

II. KUMMER-FUNCTION REPRESENTATION
OF RIDGE SOLUTIONS

A. Preliminary discussion

The hyperspherical coordinates' are convenient for
parametrizing the radial motion of the two electrons, par-

ticularly astride the ridge and orthogonally across it. '

The radial distances r1 and r2 are reparametrized by

R =V'r', +r', , (2a)

a =arctan
r2

(2b)

Let us represent the wave function 0'(r~, rq) as follows:

'P(r~rq)=(R ' r, r2) 'F(R)@(R;a,r~, r2) .

Although this has a form akin to the adiabatic channel
representation of Macek, we will not employ his adia-
batic approximation in this paper. The Schrodinger
equation for (R' r, r2) I'(r„r2) is expressed in terms of
the reduced Hamiltonian H given by

T(r„rz)H= —— +

Z(a, 8i2)
8R' R (4)

where T(r~, rq) is the angular kinetic energy operator
whose representation depends on the specific choice of a
reference frame, and Z (a, 8~2) is the effective charge given
by

z z 1Z(a, 8tp) =R
r2 r&2

(4z —1)Zo= — )ov'2

(1 —12z )
v1 —— (0v'2

1v2= —)0,v'2

as in Refs. 4 and 5, and T(r~, r2) is given by Eqs. (2-

The ridge motion is characterized by its propagation
near r1 ——r2 and r1 ———r2, namely, near the saddle point
of the potential surface. Expanding Z (a, 812) and
T(r~, r2) about this point, we have

2 2
2 2Z(a, 812)=Zp — p ——y

2 2

with
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4) —(2-6) of Nikitin and Ostrovsky. ' In (6) and hereaf-
ter, we use the parameters

modes, U(R) is complex valued in general,

U(R)= Ug(R)+iUt(R) . (13)

CX

4

y= —,'(~—Oiz) . (8b)

A WKB-type approxiamtion simplifies the representation
of F (R) and of its logarithmic derivative ' Consider
now waves outgoing in R. F(R) may be written as

(N.B. Our definition of y differs from Rau's by the factor
of —,'.) The permutation symmetry of the two-electron
wave function plays an important role at the saddle point,
motivating the use of the body frame attached to the ridge
configuration. We take as the z axis the interelectronic
axis r~2 which is a stable principal axis of inertia, and
as the other two, the unit vectors parallel to t
=r~Xrzl ~1& Xrz

~

and tXr~z. " It is thus natural to
represent 4(r~, rz) as

F'+'(R)=XI+'(R)exp +i f P(R')dR' (14)

where

L (L +1)—T ——,'2ZOP(R)= k + —2'R R

' 1/2

(15)

The Langer correction is not made here. Then X'+'(R)
satisfies

C&(r~, rz) =(sin8iz) ' g PP(R, a, t3iz)DPI�(fl),
T

(9)
d 2y(+ ) dy(+ )

+2iP(R) +t 2U, X—'+'=0 .
dR dR

(16)
where L and S are the total angular momentum and
spin. Here Q represents the Euler angles of the transfor-
mation between the laboratory and body frames, T is the
projection of L onto the r&2 axis, namely, T=L r&z,
DTMi(Q) is the molecular rotor function defined by

The amplitude XI+'(R) being a slowly varying function of
R, we drop the term d2&(+ i/dR . Then

DTx/t(A) = ~—[DTM'(0, )+r/( —1) D (II)] if L~0V'2
(10)

X'+ (R)=P ' '(R)X'+'(R),

with

(17)

=DrM'(Q) if L =0 and i) =+ X'+ (R)= exp f [Ut(R')IP(R'))dR' (18)

where r/=~( —1), rr being the parity under inversion,
pertains to the parity under reflection with respect to the
plane orthogonal to r~2 at o.'=~/4. We note the following
symmetry properties" of PT:

which modifies the standard WKB amplitude due to the
Aux loss or gain since the exponent is equivalent to

Uq t' dt', P R' being equal to the local velocity in

a.u. We also have
pT (R, —p, y)=~( —1) +

i/T (R,p, y),

Ps(R P y) ( 1)T—1/2QLs(R P y)

(1 la)

(1 lb)

1 dP
dlnF . 2 dR

+Ur

dR P(R) (19)

to be used in Sec. II B.
It is easy to verify that the Hamiltonian is diagonal in T

at the ridge' and the Schrodinger equation is equivalent
to

which is dictated by the first term when R is large. Here-
after, we retain terms of order 1/R in the asymptotic
expansion. '

L (L +1)—T ——,
'

dR
+k'—

R

d lnF 8 1

&Rz+ dR BR+ Rz z

2ZQ

R
—2U(R )

XF(R ) =0, (12a)

B. Kummer-function representation

Pr~(R, P, y)=g'+ (R,P, y)f)(xi)fz(xz), (20)

We now solve for i/JT (R, /3, y) and U(R), neglecting
(d IBR )PP in comparison to 2iP(R)(dldR)gr . (This
assumption can be checked a posteriori )Let us int.roduce
a pair of scaling functions

u i (R) and uz(R ) and an auxili-
ary function g '+ '(R, /3, y ) through

Q2 T 2

+ —v~2R y2
R ~ A@2 y~

= —2U(R)i/

(12b)

where

xi ——ui(R)P, (21a)

where U(R) is the effective potential energy akin in spirit
to Macek s adiabatic one, although no adiabatic approxi-
rnation is used here. Since the Aux may get lost or gained
in the ridge region depending on the coupling with other

xz=uz(R)y . (21b)

It is easy to verify that the function fj(x~) satisfies the
standard radial Schrodinger equation for the three-
dimensional (anti) harmonic oscillator
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A,J ( J).J + 1 )
v—J'xJ' — ' ', f, (x, ) = 2—E,fJ (xJ ), (22)

A, )
——0,

T 7

(22')

where A~ is a short-hand notation for

d lnUJ
AJ = —R P(R)

dR
(24)

where the spring constant v~ and energy of the oscillator
c~ are independent of R and are related to the potential
energy U(R) by

U(R)=
2 [s iv, +8 zvz+i —,'(A)+ Aq)], (23)

though there is no a priori reason to exclude the other
possibility. We shall show in Sec. III 8 that except for
the two symmetries 5' and 'P' the threshold law is given
by Eq. (1), regardless of whether 8) =0 or not, provided
that the radial motion is strongly unstable and the scaling
function vJ (R ) is real since this quantity has a direct
correspondence with the classical trajectory with real en-
ergy. For the two exceptions it is necessary to know
whether or not 8) ——0. Let us note that fJ (xJ ) may be ex-
pressed in terms of the regular spherical Bessel function
when v~ =0. We will not consider it separately since this
case may be realized as the limit of v ~

~0 in the
Kummer-function representation to be provided below.

We are ready to discuss the behavior of fJ(xJ ) of Eq.
(22) exploiting Kummer's functions. It is easy to verify
that, dropping the index j for brevity,

which satisfies the equation

2 2 4
v~ U~.

P(R) + +—=v
dR R' R (j =1,2) .

The scaling factor g'+'(R, )33, y ) now reads

(25)

X+ ) ) ) /2)vx

dN, dNq, +(A+ —', —q)
dq

1
( E+ A. + =,

'
)X =0,

2v

where N satisfies Kummer's differential equation

(30)

(31)

g +'(R,P, y)= e px[i ,'[A)(R)P—'+A2(R)y ]] . (26) with

It is now necessary to solve Eq. (25) for vJ(R). Letting 2
q = —vx (32)

SJ (R) = AJ (R) —iv J vJ (R), (27)

v, (R)=2iv uJ(JR)f, dR'+Bu (R),R' P(R')uJ (R')

we find that SJ satisfies Eq. (15) of Peterkop. The solu-
tion is reproduced in the Appendix for later reference.
Let us solve for vJ (R) formally. Equations (24) and (27)
reduce to an inhomogeneous first-order differential equa-
tion for vJ (R); we get

A solution which is finite at x =0 and gives f (x) the pari-
ty ( —1) + ' under x ~—x is

N ~M + —k+ —,A, + —,q1 3 3

2v 2 2 2
(33)

which is also commonly denoted as y&.
' Another solu-

tion which diverges as x ' +' ' at x =0 and gives
f (x) the parity ( —1) is

(2g)
—(/L. + 1/2)M

2v
A, +—,—A. ——,q1 3 1

2 2
' 2'

where uJ(R) is defined by (A2') and BJ is an arbitrary
constant which may depend on the nuclear charge.

There are two possible behaviors of vJ(R) corresponding
to B~=0 and B~&0. One sees readily by substituting
(A2') and (A3) into (25) that, for 8;&0, vJ =0 while for
Bq

——0,

—2 2 O

v~ = —p~ 2

where pJ is defined by (A5). For the y mode one can see
that by letting z~ co the separability of Eq. (12b) in this
limit implies B2&0. It is thus likely that the homogene-
ous solution B2&0 is important for the y mode when z is
finite. As for the P mode, it remains unclear which term
should play the more dominant role since the Coulomb
problem (z ~ m ) including exchange is generally non-
separable. Notice, however, that in the Coulomb zone

v)(R) behaves as R ' if 8) =0 and as R "' if 8) &0.
Since —,

' —iJ ) /2 is less than —1, the profile f ) (x) )

broadens as a function of f3 if 8)&0. This contradicts the
intuitive picture of double ionization and excitation that
the relevant configuration space shrinks as R increases.
For this reason the case B]——0 appears more sensible al-

which is commonly denoted as y2. ' The second solution
for f(x) resulting from (31) and (35) diverges at x =0 un-
less k( ——,'.

The asymptotic expansion of M(c, d, q) is necessary for
imposing boundary conditions and to determine cz. As is
well known,

M(c, d, qj e —' 'q ' eqq'

r(d)
=

r(d —c) r(c)+ (35)

to the leading order when
~ q &&1. Here the upper plus

sign is taken if —ir/2 & arg(q) & 3'/2, and the lower
minus sign, if —3ir/2 & arg(q) & —ir/2.

C. Quantization of the ridge mode for B, =0

The spectrum of c becomes quantized by boundary con-
ditions at the limit of the ridge region where the ridge
mode begins to couple with a large number of alternative
ones. The nature of this coupling is discussed in Sec. III.
To represent the coupling, we impose the following condi-
tion at large x]. Only the outgoing wave in x& has an ap-
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e)= —i(n)+ —,')
~

v)
~

(n) ——0, 1,2, . . . ) . (36)

The eigenfunction corresponding to n~ ——0 is identical to
the local solution of Rau and Peterkop, , and that corre-
sponding to n ~

——1, to that of Klar and Schlecht.
Let us now consider the case where the absorptiveness

of the space surrounding the ridge region is finite. Be-
cause we do not have specific knowledge of the behavior
of the two electrons in the external space, this considera-
tion is necessary for knowing how susceptible their behav-
ior is to the change in the absorption coe%cient. If it is
too susceptible, we cannot circumvent a specific calcula-
tion of the modes prevalent outside the ridge. Friedman
and Goebel' rewrite the eigenvalue equation for 8 ~ as

preciable amplitude. In other words, the external region
is highly absorptive.

Let us calculate the spectrum of c~. With the aid of
Eq. (35), the instability of the radial motion expressed in
the above-mentioned condition leads to

detail of the angular correlation by constraining the elec-
trons to move only along the x axis. Newton's equations
read

(38a)

dp

dt

&i +
i
—&j

(38b)

where i&j=1,2. The result to be presented below has
been obtained by the Runge-Kutta method and checked
by the second-order predictor-corrector method. The
conservation of the energy is satisfied to at worst one part
in 10 . Let us first describe what types of periodic trajec-
tories are present in this problem. Several examples are
shown in Fig. 1 in the r~ r2 p-lane where r; = x; ~. Here
z =1 and the total energy E = —2.25&10—4 a.u. This
value of E corresponds to N =50 in the double Rydberg
formula of Read, '

( ~/2)e
1-~(,z, + ~) &2~e

( ——,
' i E

&
)!— (37)

(~ ——,
' )'

N
(39)

where A is the absorption coeKcient and P is the charac-
teristic time of the antiharmonic oscillator in units of

', namely, the time of a trip from f3=0 to the limit
of the ridge region and return. The value of P is large in
our problem, the limit being at a great distance, and the
velocity of the motion away from the ridge being small.
Under this circumstance, one readily finds the following
behavior of E ~.

' Spectrum (36) is valid up to n ~
——A. At

n» A~, Y.
& acquires a real part wihle its imaginary part

evolves very slowly. The lowest few values of c& are thus
unaA'ected by the finite-absorption coefticient unless the
ridge motion represents a quasi-stable periodic motion.
This is not the case, as discussed in Sec. III. Spectrum
(36) is therefore unaA'ected by the detail of the external re-
gion.

A few remarks before closing this section. Firstly, one
can show that our wave function coincides with that of
the product of outgoing spherical Coulomb wave func-
tions at R = oo, just as was done by Peterkop for the
lowest solution. Secondly, the parity of PT under
f3~ f3 is given by —( —1) '. This parity is denoted as 3
by Lin' and coincides with the phase in (1 la). Equations
(10) and (1 la) make it evident that the two symmetries S'
and 'P' cannot have 2=+ or n~, even as noted by
Greene and Rau' and StauA'er. ' The limit v~0 obtains
from Eq. 13.3.2 of Ref. 13, holding E~ constant in (33)
and (34). Owing to the fact that v~(R) is real, the regular-
ity condition on f (x) at x =0 and x ~ ca leads to the fact
that c is real and non-negative. Thus, the c-dependent
term of U(R) is real when v=O.

C3
C3D.- Sg

There are two elementary types of periodic trajectories,
one unstable and the other less unstable (quasistable for
contrast). (There are numerous periodic trajectories
which visit the neighborhood of these elementary ones.
They may be considered as representing the coupling of
the elementary types of periodic motion. ) The unstable
trajectories are of the ridge type pertaining to radial ex-
citation. Let us first explain these trajectories labeled
s&,s2. . . . Trajectory s& represents the in-phase motion
of the electrons. It starts from the origin with the initial
condition p& ———p2 and always stays on the line r& ——r2,.
it hits the turning line satisfying

III. PERIODIC TRA JECTORIES
AND DOUBLE-EXCITATION PROCESS

A. Classical trajectories
5000 10000

This section aims at providing a physical picture of the
excitation mechanism, whereby elucidating the role of the
ridge traveling waves. For brevity, let us disregard the

FIG. 1. Various periodic trajectories. s l, s &, . . . .. unstable
ridge-type trajectories. al, a2. quasistable antisymmetric stretch-
ing trajectories.
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Zo . I
SX

(43)

where

Zo &„Ul(R ')
I=2, dR',

8~N'
(44)

which is to be evaluated at s„. (Note that the integrand
is finite. ) This width I is equal to the average of the
imaginary part of the effective potential over one Kepler
period of the electron pair because half the Kepler
period of an electron moving in the field of an imaginary
nucleus with the charge z ' =z ——,

' is

ri, —'rrN /z* = 8rrN /zo. Let us find the N dependence
of I . This can be readily accomplished by introducing a
new variable of integration

ER
ZQ

(45)

Those trajectories which prematurely deviate from the
ridge lead either to the elastic scattering or to the single
excitation of the hydrogen atom without mediating the
intermediate-resonant antisymmetric stretching mode.
We italicized "almost always" because this assumption
does not hold for certain values of pi/pq which lead to an
immediate violent collision after rejecting back from the
caustics, thus bypassing resonance. These values, howev-
er, occupy rather narrow windows in the phase space.
Put differently, the phase-space density of the trajectories
which will come close to trajectory a~ is expected to be
high, thus insuring qualitative validity of the assumption.
On the other hand, evaluation of the energy position of
each resonant state and its width necessitates the
knowledge of the system's behavior at the intermediate
and later times so that an analysis based only on the early
evolution of the ridge traveling waves would not be of use.

Let us impose the exponential decay condition on the
R-mode wave function F'+' (R) and on its complex con-
jugate. We readily find the WKB-type phase shiftR„R„UI(R')
&w~, = f "P(R )&R' i f— , dR'=2Nvr, (42)

RE, P(R')
where R„and R„are the interior and exterior turning
points. (The Maslav indexes are dropped, N being large. )

This quantization condition differs slightly from the usual
one owing to the appearance of the even integer 2N. This
is because the state formed astride the ridge consists of a
pair of electrons moving in phase, the factor 2 accounting
for this fact.

Let us solve Eq. (42) for eigenenergies. Noting that
the imaginary part is small compared to the real part,
we may solve it iteratively. A single iteration gives the
following quasibound state energy:

should occur to all other unspecified modes at the rate
given by 2/I . The estimate is qualitative since it is
equivalent to the quantized energy of trajectory s& only
and disregards energy distribution in the other neighbor-
ing trajectories. Nonetheless, this energy formula coin-
cides with the double Rydberg formula with o. = —,'. As
noted earlier, the resonance energy of an intrashell-type
doubly excited state, namely, the quantized energy of an
ensemble of trajectories near trajectory ai, is given by
the same formula (41), but with cr slightly different from

Meanwhile the value of I is of the order of the ener-

gy spacing of a pair of doubly excited states in the neigh-
boring N shells. Efficient energy transfer thus occurs
from the ridge mode to the doubly excited states. This
energy-transfer mechanism is analogous to the (1,1) reso-
nance in molecular physics, ' that is, rapid energy
transfer occurs from the symmetric stretching mode to
the antisymmetry stretching mode when they have near-
ly equal frequencies and when the symmetric stretching
mode becomes quantum-mechanically unstable. Molecu-
lar states formed by this energy-transfer mechanism are
analogous to the doubly excited states in atoms. A
series of doubly excited states corresponding to an en-
semble of trajectories which travel back and forth be-
tween the region of trajectory a i and the asymptotic re-
gion (such as az) appear as Feshbach or shape reso-
nances. Excitation mechanism of such excited states is
similar to that of the intrashell-type doubly excited
states discussed above.

Let us now consider the energy dependence of the
double-excitation cross section. The reader familiar with
Wannier's theory of double ionization must have noticed
that the assumption described in the first paragraph of
this section sounds similar to his assumption that at ener-

gies slightly above the double-ionization threshold, trajec-
tories reaching the asymptotic region g=- 1, lead to dou-
ble ionization. This correspondence permits us to antici-
pate that the double-excitation cross section behaves just
like the double-ionization cross section. Since our result
in Sec. II is more general than the previous ones, let us
outline the derivation.

An asymptotic observable requires one to define a
wave function satisfying appropriate boundary condi-
tions. This wave function is an incoherent superposition
of local solutions obtained in Sec. II. Explicit connec-
tions between the initial ridge traveling waves and the
final-state wave function thus necessitate a fuller
knowledge than afforded by the local solutions. For the
sake of brevity, let us ignore the incoherent sum for now
and estimate the inelastic differential cross section for
double excitation over an energy interval of order I"
mediated by a ridge traveling state labeled by the set of
quantum numbers n i, c.z, T, L„and M; we get

and using Eqs. (23), (24), and (28). The result is - ~ I&'„+-, «)f, r(xz»r'w" (&) I'.
dQ

(47)

I" ~N lnN, (46)

whether or not B~ =O.
The real part of c„ is a qualitative estimate of the

quantized energy at which efficient energy transfer

The phase-space volume available to the bundle of tra-
jectories reaching the neighborhood of the turning line is

P(R) due to the constraint pi-=—pz, R being of the or-
der of R„. This has canceled the Vr"KB amplitude factor
P '(R). Using Eqs. (23), (24), (28), and (45), we find
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dO

dOi2d A

(48a)

(48b)

(The condensation point Ro has been assumed to occur at
a distance much smaller than R„.) Integrating over an-
gles, we get

H ('S')+hv H++2e (51)

with a linearly polarized photon, obtains immediately.
Since T = 1, for n i

——O, L = 1, S =0 and since M =0, we
have

I

[( ), 1/2)P, )
—)/4]

if Bi ——0 (49a) I
Dr/(II)

I

~ sin 0, (52)

(49b)

- "If, r«z»rM«) I'-
di2d

(50)

The preservation of the angular correlation pattern
characterized by T is known to hold well in the adiabatic
treatment of the doubly excited states. " (This treatment
amounts to freezing the symmetric stretching mode and
averaging over the antisymmetric stretching mode as done
for HqO in molecular physics. ) An examination of the
accurate calculation by Hyman et al. indeed shows this
to be true for the electron-impact ionization of H( is)
through the final H(2s, 2p)+e channels with L =1, reso-
nant energy transfer occuring by way of the intermediate
antisymmetric stretching mode characterized by n ~

——0
and T = 1 which is also known as the + type channel.

Before closing this section, let us note that the cross
section, Eq. (49), gives the double-ionization threshold law
for positive values of F. The angular distribution given by
Eq. (50) also holds well at E positive. The dynamically
unfavored angular distribution studied by Greene and
greene and Rau for the photodetachment process

—1/4+
I Re@2

lHere the singular factor
I

E
I

is canceled
by the scaling factor

I
vq(R«)

I

o:
I
b.8)q

I

~
I

E
I

' . If 8) =0, the double-excitation cross
section should be dominated by the n i

——0 component, ex-
cept for the 'S' and 'P' symmetries. Thus for z =1,
o ~

I
E I" for all but the two exceptions for which

the n) ——1 component dominates, thus cr cc
I

E
I

'
disregarding nonresonant excitation. If 8)&0, then the
threshold law is independent of the nodal structure of
f) (x) ). The classical experiment of Cvejanovic and
Read supports Wannier's threshold law but shows a
slight departure ' at negative energies. The energy
dependence of angular distribution, (48), is identical to
that of Vinkalns and Gailitis. Let us simply add that
when p2 is purely imaginary the case 82 ——0 leads to the
same threshold law as above.

Let us note that an efticient energy transfer should
occur when the angular correlation pattern is preserved.
The antisymmetric stretching mode would thus resonate
when the correlation characterized by T is retained. If
the two electrons do not lose memory of this correlation
pattern during its exit into ~i or r2 ——~, the angular dis-
tribution following autodetachment should be given by

where 0 is the angle between the z axes of the laboratory
and body frames and g = +. The experimental cir-
cumstance identifies the z axis of the laboratory to be
parallel to the polarization vector c whereas that of the
body frame is parallel to r&2 hence the result. Physically,
the final state represents a pair of electrons rotating
about the axis. This axis is orthogonal to E by the dipole
selection rule. The electrons escape retaining this
geometry. This is an illustrative example of the useful-
ness of the molecular viewpoint.

IV. SUMMARY AND CONCLUSION

We deduced an infinite family of local solutions ap-
propriate to describing wave propagation astride the
ridge. The result is used to discuss the double-excitation
process with the aid of classical trajectories. From the
mechanical viewpoint, the double excitation occurs owing
to the initial evolution of the system astride the ridge fol-
lowed by the quasistable out-of-phase motion of the elec-
tron pair. Near threshold, the double-excitation cross sec-
tion per unit energy interval depends on the energy just
the way the double-ionization cross section does. Howev-
er, a slight departure occurs possibly due to nonresonant
processes.

Our treatment has centered on the wave packet propa-
gating astride the ridge maintaining the profile given by
fj(x/). The two possible behaviors of the scaling function
U)(R) led to mutually exclusive results for the two sym-
metries S' and 'P'. The specification of v ~ remained in-
determinant in the present strictly local treatment.

We have not deduced the absolute total or di6'erential
cross sections. Let us mention that an attempt to deduce
the absolute magnitude ab initio has been recently made
by Crothers ' applying a certain normalization procedure
to a local solution.

Temkin and his collaborators considered the
modification of the Wannier threshold law by the
Coulomb-dipole region of the configuration space. Criti-
cal examination of their theory lies outside the scope of
the present analysis geared to the ridge region.

Although our treatment of Sec. II is largely quantum
mechanical, it is not completely devoid of classical-
mechanical aspects. The condensation point Ro which is
equivalent to the integration constant c

&
of the Appendix

is a specific example. Since the propagator has a more
direct relationship with classical trajectories than does the
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wave function, it appears of interest to reformulate the
theory from such a point of view. In any event, no one
has successfully constructed a fully quantum-mechanical
ridge theory thus far. This is an open problem.

Sl(R)=R P(R) Inui(R),
dR

ul(R) =c,u)" +u,'",
where u&I'(R) (a =1,2) is given by

(A2)

(A2')
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APPENDIX: ACTION FUNCTIONS

(aj m- 3 ER
u~' =R ' 2F& mja~mja+1, 2mja+

2 2ZQ
(A3)

fthm JQ

1 p&

4

1 p2
4 2

1 p&

4 2

1 pz
4 2

(A4)

where' '

1 100z —9
2 4z —1

1/2

1/2 (A5)
1

pp=
2

4z —9
4z —1

and cj is an arbitrary integration constant. Here the con-
stants mj, are given by

We may write

P (R ) = [2(E+Zo/R ) ]

to the order of R . SJ (R) is given by

(A 1)
Extension to E & 0 involves one technical question,

namely, the behavior of Sj(R) across the exterior turning
point R„. Fortunately, a useful set of connection formu-
las have been recently developed by Macek and Feagin.
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