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Alternative approach to the Schrodinger equation: Shifting operators between Hilbert spaces
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For a given one-dimensional Hamiltonian we construct a family of Hamiltonians whose Hilbert
spaces are related by shifting operators such that each level of the original Hilbert space corresponds
to the ground state of another one of the family. This allows us to establish the equivalence between
the Schrodinger equation and a sequence of Ricatti equations.

I. INTRODUCTION

we will have

~(n) ~(n +1)
&m =&m -i ~ m)1.

We get this by using operators that connect the Hilbert
spaces &"of the Hamiltonians H" among them. They
are obtained by an adequate factorization of the H' 's.
At this point we make contact with the factorization
method of Infeld and Hull.

Using this structure, the determination of the spec-
trum of a given Hamiltonian H' ' is reduced to the eval-
uation of a sequence of ground states. The latter has an

Recently Mielnik presented a paper' with an interest-
ing derivation based on the factorization method for a
family of potentials with the same spectrum as that of
the harmonic oscillator. On the other hand, P. Kumar
et al. uses a supersymmetric partner of the
anharmonic-oscillator Hamiltonian in order to evaluate
approximately the first excited state of the latter using
the ground state of the former. These works can be em-
bedded in a wider perspective so as to obtain an alterna-
tive technique to solve the eigenvalue problem as it ap-
pears in quantum mechanics. This is the aim of the
present work. Unlike the classical method which con-
sists in finding general solutions for the Schrodinger
equation and then determining the energy values con-
sistent with the boundary conditions, this method allows
us to obtain in a sequential way the eigenvalues and
eigenfunctions for a given potential from the ground
state. In this aspect it reminds us of the method based
on the usual ladder operators, ' but here we use shifting
operators between Hilbert spaces, and generate as a pri-
mary ingredient a sequence of ground states whose ei-
genvalues integrate the searched spectrum.

To set forth this approach we build from a given
Hamiltonian H ' a sequence of Hamiltonians IH'"'I,
such that given a pair of consecutive Hamiltonians of
the sequence, their spectra are the same except for a
truncation of the ground state. That way the eigenvalue
for the first excited state of H'"' coincides with that cor-
responding to the ground state of H'+", and so on. In
general, given

interesting advantage, as the calculation of such states is
particularly simple, either in exact form or in a perturba-
tive one, compared with that of excited states. The Hil-
bert space of the system, &' ', is given by the application
of' the shifting operators between Hilbert spaces,
and W(") .

(n) g (n), ],(n +1)
m ')t'm —1

therefore
(0) g. (0) g (1) . . . g (m —1) y)m)

, 0

On the other hand, the formulation of the Schrodinger
equation in terms of the Ricatti equation has awakened
interest for years, particularly in relation with the pertur-
bation theory. ' For one-dimensional problems it gives
place to a scheme where the perturbative solutions can be
obtained in quadrature for any order in terms of the non-
perturbed solutions and the perturbative potential. But
this method has the drawback that its application is
dificult if the wave function has nodes, and for this
reason it has been used mainly for first-order approxima-
tions for excited states. However, it is of simple and
direct application in the case of a ground state, both in the
exact and the perturbative evaluation.

In this work we combine both ingredients: the use of
the shifting operators between Hilbert spaces, in order to
reduce the determination of the spectrum and the eigen-
functions of a given Hamiltonian to a sequence of ground
states, and the application of the Ricatti equation to evalu-
ate these ground states.

The work is organized as follows. In Sec. II we give a
brief review of the use of the Ricatti equation in the case
of a ground state. In Sec. III we show the factorization of
the Hamiltonian and the construction of a partner Hamil-
tonian, which has the same Hilbert space except for the
truncated ground state. In Sec. IV we restate the
Schrodinger. problem as a sequence of Ricatti equations,
developing the mentioned family of Hamiltonians IH " I.
Section V contains two simple example, and finally in Sec.
VI we make some general comments.

II. THE GROUND STATE
AND THE RICATTI EQUATION

The wave function for the ground state has no nodes;
therefore, we can write it as
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A-e&p I"4 g (~)
0

(5) from which follows

where g(y) is a regular function, without poles. Replac-
ing it in the Schrodinger equation,

1Hgp= —— + V{x) $0(x) =up/0{x),
dX

g (0)
U

but this implies

g (0) g (0) /2

(15)

(16)

we obtain the well-known Ricatti equation

—,
' (g +g') —V+ ep =0 . (7)

3$0=0

and taking into account Eq. (5), we have

d —g(x) .
dX

Let us remark that this operator that corresponds, as
we will see further on, to a factorization of the Hamil-
tonian, has in general no connection with ladder opera-
tors in the Hilbert space because it does not relate its
different states.

III. THE FACTORIZATION
OF THE SCHRODINGER OPERATOR

From here on, in a rather obvious notation, we will use
a superscript to indicate the different Hamiltonians and
related quantities From 3 ' ' we can build the following
second-order Hermitian operators:

The solution of this equation gives us directly the
ground state, which has been isolated from the Hilbert
space by the transformation (5). Although it cannot be
solved for an arbitrary potential in a closed form, for a
great number of usual systems in quantum mechanics
g (x) and ep can be determined without difficulty.

Furthermore, in these terms we can easily obtain the
first-order differential operator that annihilates the
ground state. Defining it by

(0)This shows that —,
' A' 'A' ' —=H'" is an Hermitian

operator with the same spectrum as H ' ', except for the
eigenvalue corresponding to its ground state. The
ground-state energy of H"' is the energy of the first excit-
ed state of H ' '.

(1) (0) (0) (0)
EQ =Z

1
=E'] —60 (17)

or

=60 +60(0) (1) (0)

The structure of this pair of correlated Hamiltonians
can be considered as a manifestation of a supersymmetry
underlying the Schrodinger equation. '

IV. THE SHIFTING OPERATORS
BETWEEN HII.BERT SPACES

AND THE RICATTI SEOUENCE

) —ep
(1) 1 (0) (0)' (1) (20)

The ground state of H ' " has zero energy, and will
satisfy the Ricatti equation

%'ith the elements given in Secs. II and III we can
now develop the approach outlined in Sec. I. Redefining

0)lthe operator H"'=
—,
' 2' '3' ', by a shifting e0(

' in the
energy, we have

2

H (1) H(1) ~(1) + P (1)

dX

with

g (0) g (0) +(g(0) +g(0)')d 2

dX

g (0) g (0) + (
(0) (0)')d 2

dX

{10)
and finally, by using Eq. (7), we obtain

g
( ( ) +g ( i ) 2 V 2 (g ( 0 ) + e ( 0 )

) 2e ( i )

(21)

(22)

g (0) g (0)

For A,&0 we can define

w(0)u =xU,

(13)

(14)

where g' ' =(d jdx)g( '. The interpretation of the first
operator is straightforward. From (6) and (7), it corre-
sponds to 2H' ' with a shift in the energy such that th=
ground-state energy is zero:

H (0) I g (0) g (o) H (0) p(0) (12)2

We now have to evaluate the meaning of (11). H ' ' is
an Hermitian operator; therefore, its eigenvalues are posi-
tive definite except the one of the ground state, which is
zero:

This equation gives us both g"' and e0".
Of course, it is possible to iterate the previous transfor-

mation and get a new Hamiltonian,

2

H = —— + —,(g —g ),(2) 1 (1) (1)'

dX
(23)

whose ground state corresponds to the first excited state
of H'", and to the second one of H' '. This process can
be continued until we find a Ricatti equation without a
solution, which points to the existence of an upper bound
for the spectrum.

Resuming, the sequence of Ricatti equations thus gen-
erated is equivalent to the Schrodinger equation (6), and
has the following generic expression:
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n —1

1(g(n) + (n)') V( ) y (
(m)'+ (m)) (n) and the solution is

n =0, 1,2, . . . , and from here on24

as can be straightforwardly proved by complete induction.
The eigenvalue for the nth state of H' ' is, iterating

(18),

(n) + (n)' + 1 2 (n)

which implies

(36)

(0) (m)
&0

m=0
(25)

Taking this into account we finally have

(37)

and the corresponding eigenfunction, from Eq. (15), is
given by

,I (0) g (0) g (1) . . . g (n —1),I (n) (26)%0 and

m =1
(38)

with

g (m) (m)( )
dX

(27)
q(o)(x)

n

—x /2

dX
(39)

the shifting operators between Hilbert spaces.
the well-known solution for the harmonic oscillator.

V. EXAMPLES

In this section we present two simple examples, in or-
der to show how this method works.

B. A central potential

The radial Schrodinger equation for potential
V(r)=a/r is

A. The harmonic oscillator

d 2
2+dr2 y dy

l(l +1)
(40)

V(x) = —,'x (28)

This is a rather peculiar system, in the sense that it has
an equally spaced spectrum. This will be rejected in the
very simple structure of the Ricatti sequence. We have

(()) 1 d 1 l (1 + 1)

dy 2 y
(41)

and defining il)=(llr)X, the problem is reduced to the
Hamiltonian

and Eq. (24) for n =0 gives

(0) + (0' 2 (0=X —Ep

The general solution for this equation is

xeg"'= —x+p
1+P f dy eJ

0

with

(29)

(30)

with e' '= —(1/2)e.
For n =0, Eq. (24) is now

(o)-' (o)' l(l +1) a
2 (o)+g —2E'0

r2 y

and the solution is given by

(p) l +1
2(l + 1 )

'

(42)

~(0)
0 (31) (0)

Ep
8(l + 1)'

(43)

and thus
therefore, the wave function is, from Eqs. (26) and (27),

1+p f dye~ e
p

(32) ~(0) I + 1 —[cx/2(l + 1)"] (44)

and

g
(0) (33)

but only the normalizable solutions are the relevant ones.
This implies P=O, and, therefore,

For n = 1, we have

(1)' (1)' (l +1)(l +2) a a (i) 4g +g =
2

— + —2mp, (45)
y 4(/ + 1)2

which gives

l.(0) —x /2
fop

For n = 1 we have

g
(1) +g (1) 2 V 2(g (0) +&(0) ) 2&() )

=x + I —2E0

(1)
60 '=

I+2 cz

2(l +2)

a 1+2(1+1)
8(l + 1)' (l +2)-

(34) From Eqs. (25), (43), and (46), we have

(46)
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2

=&O +&0(o) (o)

8(l +2)
(47) 1 d + V(x) f„(x)=e„1(t„(x)

dx

with

(n)
(n) a +I (n)

r
(48)

and

a(")=I +1+n, b'"'=—
2(l + 1+n )

2
(n)

Eo
8 (1+n +1)' (I +n)

(49)

in such a way that

(m)
&n = &O

m=0 8(1+n +1)
(50)

The corresponding wave functions can be directly writ-
ten from Eqs. (44), (26), and (27).

VI. CONCLUSIONS

and so on. Of course, it is easy to find the solution for an
arbitrary level, as in the preceding example. The corre-
sponding expressions are

is equivalent to the Ricatti succession (24), with the spec-
trum given by (25) and the Hilbert space (26).

Furthermore, given a Hamiltonian H' ', we have
defined a sequence of Hamiltonians IH'"II, in such a way
that each one has the same spectrum as the preceding one,
except the ground state, and with the Hilbert spaces con-
nected by the operators 3' ' and 3'

,I,(n) g (n), I,(n+ I)
'Vm Wm —1

.y, (n +1) g (n), I,(n)
')t'm 'Vm + 1

according to Eqs. (14) and (15). This in fact conforms to
a sequential approach to solve the Schrodinger equation in
which we use at all levels nodeless wave functions, simply
related with the actual ones.

If it is necessary or convenient, we can of course imple-
ment a perturbative approach from Eqs. (24), using the
appropriate techniques for Ricatti equations. An example
of a variational application is given in Ref. 2 for the first
excited state of the anharmonic oscillator. Here we have
shown that these procedures can be implemented without
difficulty for any level in a sequential way beginning with
the ground state.

In this work we have shown that the Schrodinger equa-
tion
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