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The Born-Oppenheimer (BO) and Born-Huang (BH) treatments of molecular eigenstates are
reexamined. It is argued that in application of the BO approximation to nonrigid molecules and
chemical dynamics involving single potential-energy surfaces (PES’s), errors on the order of tens of
percents can easily occur in many computed properties. Introduction of a BH expansion (in BO
states) will always lead to poor convergence when the BO approximation fails; its diagonal (or adi-
abatic) approximation will not change this situation. The main problem in the above applications
is the absence of well-developed, well-separated minima in the PES (or no minima at all). Inspired
by a non-BO view of a molecule by Essén [Int. J. Quantum Chem. 12, 721 (1977)], a molecular
coupled-cluster (MCC) method is formulated. An Essén molecule consists of neutral subunits
(“atoms”), weakly interacting (“bonds”) in some spatial arrangement (“structure”). The
quasiseparation in collective and individual motions within the molecule comes about by virtue of
the virial theorem, not the smallness of the electron-to-nuclear mass ratio. The MCC method not
only should converge well in the cluster sizes, but it also is capable of describing electronic shell
and molecular geometric structures. It can be viewed as the workable formalism for Essén’s physi-
cal picture of a molecule. The time-independent and time-dependent versions are described. The
latter one is useful for scattering, chemical dynamics, laser chemistry, half-collisions, and any oth-
er phenomena that can be described as the time evolution of many-particle wave packets. Close
relationship to time-dependent Hartree-Fock theory exists. A few implementational aspects are
discussed, such as symmetry, conservation laws, approximations, numerical techniques, as well as
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a possible relation with a non-BO PES. Appendixes contain mathematical details.

I. INTRODUCTION

Molecular physics and quantum chemistry are dom-
inated by the Born-Oppenheimer (BO) approximation'
and its most important consequence, the potential-energy
surface (PES) concept. A PES is usually defined as the ei-
genvalue E,(R) of the clamped-nucleus electronic Hamil-
tonian for all nuclear configurations R. Different eigen-
values lead to different surfaces in (3N, —6)- [(3N, —5)
for linear molecules] dimensional spaces, where N, is the
number of nuclei (or atoms) in the molecule. The PES
concept has made, and continues to make, a profound im-
pact on chemical physics. Not only does it provide a pre-
cise and computable meaning to molecular structure in a
quantum context as the nuclear configuration R, for
which the PES is a minimum, it pervades the thinking
and conceptualization of virtually all subdisciplines of
chemistry.

The advantages of the PES construct are undeniable.
The elimination of the electronic degrees of freedom
from the picture of a molecule and its properties, partic-
ularly on its lowest PES, is a great simplification. Con-
cepts such as internal rotation barriers, transition states,
isomerization, etc., can be understood, at least qualita-
tively. Dissociation also has a nice and computable ex-
pression with a PES. Electronic excitations as transi-
tions between two PES’s, with nuclear-dynamics-
generated broadenings, shifts, and intensity changes, are
other examples. The whole of infrared and microwave
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spectroscopy is unthinkable without a PES. Finally,
chemical dynamics and various scattering phenomena in-
volving atoms and/or molecules, regardless of their clas-
sical, semiclassical, or quantum descriptions, rely heavily
on these surfaces. Thus the industry of calculating
PES’s in computational quantum chemistry was
spawned.

But we should not close our eyes to the shortcomings
of the PES concept. Not surprisingly, the limitations and
errors that are gradually being accumulated, particularly
under the probing of high-resolution laser spectroscopies
and accurate scattering experiments, are caused by the
very elimination of the electronic degrees of freedom. In-
teraction among PES’s, problems near (avoided) crossings,
intersurface jumping, etc., are manifestations that this to-
tal elimination is physically unacceptable. In principle
one can improve upon the BO approximations by intro-
ducing the so-called Born-Huang (BH) expansion.® This
expansion uses the electronic eigenstates WV, (r,R) associat-
ed with the PES E,(R) as a basis for the molecular wave
function W(r,R). V¥, must be known for all R and for all
electronic quantum numbers including the continuum.
This is obviously an awesome task, and it has never been
implemented to convergence. Only the adiabatic (or diag-
onal) approximation to the BH expansion preserves the
single PES. All other truncations involve interactions
among them, thus eliminating many conceptual niceties of
the PES concept.

Quite independent of the problems connected with the
implementation of the BO approximation, a debate
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evolved in the literature between 1976 and 1982 concern-
ing the relationship between quantum theory and molecu-
lar structure. This exchange was initiated with an article
by Woolley* and quieted (albeit not settled) in 1982 by
Claverie® (see also the references cited in Ref. 5). The
main theme of the debate was the impossibility to recon-
cile the notion of molecular structure with quantum
theory because of the classical nature of the former. The
articles revealed the profound schism between the ways
chemists view and treat electrons (as quantum particles)
and nuclei (as classical particles), the latter being the car-
riers of the classical way of thinking in chemistry. At the
heart of this dichotomy is the BO approximation, which
must be viewed as the culprit of the apparent conflict. Al-
though the debate ended inconclusively, it had the salu-
tary effect of raising the prospect that there may be a
problem, and that the BO approximation is not sacred, or
even uniquely reliable in all cases. In my opinion the most
constructive critique of the BO approximation was pro-
vided by Essén.® His telling conclusion is that the form of
the Coulomb interaction, and not the smallness of the
electron-to-nuclear mass ratio, is responsible for the ap-
proximate separation of collective and individual internal
molecular motion. (This separation leads to the spectro-
scopic sequences associated with rotational, vibrational,
and electronic excitations which inspired the BO approxi-
mation in the first place.) Although Essén did not provide
a workable formalism, his arguments are compelling and
the resulting framework is intriguing. Invoking only the
virial theorem for Coulombic forces and treating all parti-
cles on an equal footing, a molecule according to Essén
can be viewed as an aggregate of nearly neutral subsys-
tems (“atoms”) that interact weakly (‘“‘chemical bonds”) in
some spatial arrangement (‘‘molecular structure”). No
adiabatic hypothesis, or interpretation, as in the BO ap-
proximation, is made, and the analysis should hold for all
bound states.

In this paper I would like to propose the use of the
coupled-cluster (CC) method for treating the electrons and
atomic nuclei of a molecule on the same quantum dynam-
ical footing. I will argue that the time-independent CC
method is ideally suited for bound states, and the time-
dependent version for any scattering state describable as a
time-evolving many-particle wave packet. 1 will also con-
clude that bound and scattering states alike can be de-
scribed with the same cluster truncation. There will be no
PES, only cluster operators that can provide structurelike
correlation among nuclei. My proposal can be viewed as
the beginnings of a practical implementation of Essén’s
molecule. Yet, by including scattering states the proposal
also goes beyond his view. To stress the physical content
of my approach the details of the formalism are left to
later publications; only a bare minimum in notation and
definitions will be presented. Experience with the CC
method in very varied contexts will be used to support my
proposal.

In Sec. II T have revisited the analysis by Born and Op-
penheimer and of the BH expansion. I will point out the
most important requirements underlying the BO approxi-
mation (which are usually forgotten), and stress their
consequences (which are equally ignored). Moreover, a

more complete and careful discussion is given of the
effects of the elimination of the center-of-mass (c.m.)
motion. These effects are largely ignored in the original
BO and BH treatments. Essén’s view of a molecule will
be presented in some detail, with emphasis on the qualita-
tive physical ideas. This section serves to set the stage for
leaving the PES concept.

In Sec. III I present the arguments in favor of a
molecular coupled-cluster (MCC) method. After a brief
survey of some crucial results with the CC method for
identical particles, I formulate the time-independent and
time-dependent MCC approximations. Some formal and
implementational questions are raised.

In Sec. IV I outline the program for future theoretical
and numerical developments to bring the MCC method
to life. Obviously, many questions need to be pursued,
and the outline can be only preliminary. Section V con-
tains a summary and concluding remarks. Three Ap-
pendixes are added on the reduction of an N-body to an
(N —1)-body problem on mathematical details, and on
the invariance of internal angular momentum to internal
coordinate transformations.

II. PRESENT STATUS OF MOLECULAR
QUANTUM THEORY

A. Preliminaries, notation, and definitions

In the BO analysis' and BH expansion® the presence of
the nuclear kinetic energy operator, denoted by K,, is
considered as a perturbation. Since typical electron and
nuclear momenta are comparable® (see also Sec. IIE
below), (K, ) values scale like M, ' (at least for ground
and low-lying states) with M, a nuclear mass. Therefore
we have

(K,) me

(K,) M, W

with K, the electronic kinetic energy operator, and m,
the electron mass. The smallness of (m,/M,), with
values of 107%+10~* for typical molecules, is obviously
a compelling reason to treat K, as a perturbation. How-
ever, as we will see below, a more relevant perturbation
parameter is provided by

k=(m,/M)'*, )

where M is the largest nuclear mass, with typical values
k~10"1. Below I will point out that in many applica-
tions of the BO approximation such « values are disturb-
ingly large.

As usual in perturbative expansions, no analysis is at-
tempted to determine the radius of convergence in k. The
fact that the kinetic energy operator is singular suggests at
best asymptotic convergence.” This possibility makes it
imperative to determine carefully the limitations of the
BO approximation.

In the original BO (Ref. 1) and BH (Ref. 3) analyses no
explicit separation of the c.m. motion was made. As a re-
sult the treatment of the kinetic energy operator was
somewhat unsatisfactory since the scaling with x is then
unclear. In this paper I will eliminate this problem and
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develop the theory for a manifestly internal molecular
Hamiltonian.
H s is the total molecular Hamiltonian

where K, is the total kinetic energy operator, and V is
given by

V= Vee +Ven+Van - 4)

Vees Ven, and V,, are the electron-electron, electron-
nuclear, and nuclear-nuclear potential-energy operators,
respectively. In Appendix A I have shown [see Egs.
(A10)—(A14)] that Ks can be written as

Ky=Kcm +K (5)

with K., the molecular c.m. and K the internal Kinetic
energy operator. For the purposes of this section I will
express K as follows: '

K=K, +K,+Kee +Ken + Ky » (6)
where
2
Pe
- , 7
=29, @
2
Pn
K,=3' , (8)
" 2,:’ pIT
Kee=M~"" 3 p.pe, )
(e <e’)
Ken :M_l z’pe'Pn ’ (10)
en
Knn :M_l 2' PrnPn' an
(n<n')

p. and p, are the electron and nuclear momentum opera-
tors associated with the position vectors r, and r, relative
to the heaviest nucleus with mass M. The primes on the
n sums in Eqgs. (8), (10), and (11) indicate the omission of
the heaviest nucleus. (As explained below, this nucleus
will be at the center of a molecular shell structure.) The
reduced masses p, and u, are given by

‘u,e_l:me——l—ls-]\_l—l: 1+m___e me—l N (12)
M
_ m, M
pol=m M T = — [1+ M Jm;‘ : (13)
M my

The last equalities in Eqgs. (12) and (13) are added in
preparation for the expansion of H in powers of k given
below. For notational convenience I denote with » and R
the set of electron and nuclear coordinates {r.} and {r,},
respectively. R denotes the so-called “equilibrium” nu-
clear configuration {r,o}, which is central to the BO
analysis.

B. The BO approximation
Consider the Schrodinger equation

(H —EW(r,R)=0 (14)
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for the molecular problem, where H is given by

with K and V defined above. We wish to relate the solu-
tions of Eq. (14) to those of a clamped-nucleus electronic
Schrodinger problem which we will define presently.

Assuming Eq. (2) for «x, which will be justified ex post
facto below, we can express H as a power series in K.
This will be possible under the following assumptions, 1,3
the significance of which will become evident shortly.

Assumption 1. The nuclear motion described by ¥ will
be confined to a small vicinity of Ry such that (R —Ry)
can be considered small expressed by

I, —Tr,0=xkU, . (16)

Assumption 2. W(r,U), with U={U,.,U,,,U,;}, the
collection of nuclear displacement coordinates defined by
Eqg. (16), is essentially different from zero only in domains
of r and U that are comparable in extent. The actual
smallness of the nuclear displacements from Ry is ac-
counted for by the scale parameter «.

With Eq. (16) we obviously have

d/9r,=k"'3/0U, , (17)
leading to the useful definition
P,=«p, . (18)
We can now express Eq. (15) alternatively
H=Hy,+H,, (19)
where
Ho=K+V, (20)
H =K+ K )+ K3 + k4K + KD 2n
with the definitions
K= 2 % , (22)
KP=3" 1+ M | P , (23)
" m, |2m,
K= 3 LRy (24)
(n<ny Me
e Py
K= }‘; —ane— , (25)
K=K, (26)
K= 5 PP 27)
(e <e’) e

We will call Hy the clamped-nucleus electronic Hamiltoni-
an, since it contains no nuclear dynamic terms. Its eigen-
functions satisfy the Schrodinger equation

[Hy—E.(R)]¥.(r,R)=0, (28)

with e denoting electronic quantum numbers, and R ap-
pears only parametrically. In order to relate ¥ to ¥, we
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make another assumption:>

Assumption 3. {E.(R),¥,(r,R)} are known and well
defined for a certain nuclear configuration Ry and all
neighboring configurations R. This assumption implies
the breakdown of the analysis below if Ry is at or near
crossings of PES’s defined by E.(R).

Under the above assumptions we can solve Eq. (28) per-
turbatively, invoking the expansions in R around R

Ho=Ho(r,Ro+xkU)=HY +kH{' +K?HF + -+,

(29)
E.(R)=E° +kE"+K*E> + - - -, (30)
W, (r,R) =V 4+ kWD 292y - (31)

All superscripted terms are homogeneous functions of U,;
of degree equal to superscript value. We assume the per-
turbative solution of Eq. (28) to be completed to any or-
der.

Before proceeding to solve Eq. (14), I will justify Eq. (2)
for k. According to Assumption 1, the nuclear motion is
expected to be oscillatory around Ry. We can then state

(Ky+Kpdo=~{(V(R)—V(Ro))y , (32)

similar to the virial theorem for the harmonic oscillator.
Using the relationship

V(R)—V(Ry)=Hy(R)—Hy(Ry)

=kH" +K*HE +0 () (33)
and assuming

(U, )y=0 (34)

for all n,i, which is consistent with the oscillatory nuclear
motion, we can write

(K, +Kpp Yy~ {HP Yy +0 (&%) . (35)

On the other hand, we can write [see Egs. (8), (11), (13),
(17), (23), and (24)]

m
(Ky +Kpn Yy=k2—AKP+K2)y . (36)
M
Therefore, we arrive at the relationship

k2 (KD L K2 ) gk (HE Dy | (32)
M
At this point it is timely to remember Assumption 2,
and to introduce the following observation: when defining
a perturbative expansion parameter for the Hamiltonian
as well as its eigenfunctions, the coefficients of «” should
be of comparable magnitude, i.e., the expectation values
appearing in Egs. (32’) should be comparable. In view of
Assumptions 1 and 2 the reader can easily see that the
operators of Egs. (19)-(27) and (29) satisfy this require-
ment. But then it follows from Eq. (32') that « should
satisfy an equation like
—2Me

K “—=«", (37)
M

which leads to Eq. (2).

Notice that this result is not
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unique; M can be replaced by a nuclear mass different
from the heaviest one. However, the crucial point of Eq.
(37) is the behavior of « like the one-fourth power to
(m,/M). This behavior determines its magnitude. A
different derivation of Eq. (2), starting from the BH ex-
pansion, has been given by Kresin and Lester.® Their
derivation relies on the supposition that nuclear and elec-
tronic motions are approximately harmonic with compa-
rable force constants. This supposition is similar to Eq.
(32) and the requirement of comparable expectation values
to perturbation operators.

We can now proceed to solve the exact Schrodinger
equation (14) by the usual perturbation method,

E=E(0)+KE(1)+K2E(2)+ s, (38)
‘I’=W(0)—+—K\P(”+K2\p(2)+ e (39)

The details are subtle, and somewhat involved albeit
straightforward, for which I refer the reader to Appendix
B and the original articles."* For this paper the two most
significant results are (1) in order to continue the solution
of the equations beyond zeroth order at all, Ry must be
the equilibrium configuration, i.e.,

EV=[3E,(R)/3R]g -, =0, (40)

Eq. (40) arises from one of the solubility conditions. (See
Appendix B.) (2) The so-called adiabatic separability of
nuclear and electronic coordinates is only possible
through second order in k, i.e.,

W(r,U)=[X"2U)+X V(U)+ X P ()Y, (r,U) ,
41)

with X? determined by linear inhomogeneous equations.
When Eq. (40) is not satisfied, separability is impossible
beyond zeroth order. Equation (41) is usually called the
Born-Oppenheimer approximation (or BO separation) to
the molecular wave function W.

In my judgement these two results, and Assumptions
1-3, are insufficiently appreciated in many applications of
the BO separation. Before discussing their consequences I
will review the BH expansion as the supposed alternative
to the BO analysis.

It is interesting to note that the terms K/!}» and
(KY4+K2) do not affect the above results, since they
contribute to H only in third and fourth order in x and,
consequently, to E. However, in discussions of the rota-
tional fine structure of the molecular spectrum these terms
must be included.?

C. The Born-Huang expansion

We can adopt the point of view that the solutions
{E.,¥.} provide a complete set of states with which to
expand the exact state ¥(r,R).> Although one has to in-
clude the continuum states, it is anticipated that for the
low-lying bound states W, it is sufficient to restrict con-
sideration to bound W, states only. Thus we write

V(r,R)= 3, X.(R)W,(r,R) . (42)

Substituting this expansion in Eq. (14), multiplying with
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V¥ (r,R), and integrating over r, we obtain
S (¥, |Hoy+H —E |V, ), X AR)=0 . (43)
Substituting expressions (20) and (21) for Hy and H,,

respectively, several terms occur. Using Egs. (7)-(11) and
(22)-(28) we can summarize the result as

[Ky+K,y +E.(R)—E]JX.(R)= 3 C,X.(R) . (44)
C,.. are operators given by

Cee':<\Pe ‘Hl |\Pe'>r+ 2’“;1<\l’0 ‘pn ‘\Ile’>r'pn

\ye'>r Pr >

(45)

where it is to be understood that the factors { ), are ¢
numbers (H; and p, operate only on W,). Since the
bound states ¥, can be chosen real, it can be shown that

Coo =Coo(R)=(V, |H, | ¥, ), (46)

v *12’<\y€ S pet 3 pu
n e (

n's£n)

(i.e., the last two terms vanish identically), and C,, is a
multiplicative operator. Therefore we can write instead of
Eq. (44)

[Ki+Kun +U(R)—E)X,(R)= 3 CeX.(R), 47)

(e's=e)
where I have introduced
U, (R)=E,(R)—C,.(R) . (48)

According to Eq. (21), H, contains terms that scale like
k% to k*. If we only keep terms of order k2, we get

C,.(R)={V¥, |K,+K,, |¥,), . (49)

This approximation, combined with a neglect of the
right-hand side of Eq. (4.7), is known as the adiabatic ap-
proximation. This truncation of the BH expansion
scheme is the only one that preserves the separability of
nuclear and electron coordinates. The right-hand side of
Eq. (47) represents the interaction with PES’s defined by
E.(R) (e'#e) giving rise, for example, to what is known
as intersurface hopping in chemical dynamics.

At first sight it seems that the BH expansion represents
an improvement over the BO treatment. No restrictive
assumptions, equilibrium configuration R,, or conver-
gence of the perturbative type are needed. However, we
are not getting something for nothing here, and that this
is so, can be easily suspected by reminding the reader that
both approaches use H| as the operator that “disturbs”
the clamped-nuclear model for a molecule.

D. Practical application of BO and BH treatments—a critique

The BO analysis was mainly motivated to explain the
observed ir and microwave spectroscopies, which can be
associated with vibrational and rotational transitions of a
semirigid molecule. It also had the agreeable effect of be-
ing consistent with the presupposed existence of a struc-
ture for such a molecule, and giving an operational
definition of R,. This supported the notion, firmly
grounded in interpretations of many experiments of chem-

ists, that molecules have structure. Therefore, insofar as
each PES has well-defined, well-separated deep minima
(leading to a satisfaction of all BO requirements), we can
expect the BO treatment to be physically sound, and to
provide good predictions.

Unfortunately that is not the way the PES concept is
being used in many cases. Two examples follow:

(1) Nonrigid molecules.’ The entire theory of such mol-
ecules is based on the assumed appropriateness of a single
ground-state  PES. Notwithstanding  its  obvious
mathematical elegance and qualitative predictive power, it
must be remembered that essentially none of the BO re-
quirements are satisfied: the PES minima are shallow and
there are many. Thus they are poorly separated, and the
vibrational amplitudes are intrinsically large. It should
therefore come as no surprise that quantitative aspects of
the theory (rotation barriers, level splittings, etc.) need a
parametrization often in poor agreement with other exper-
iments.°

(2) Chemical dynamics.’® 1 include in this field all
phenomena that involve non-self-bound (or continuum)
molecular states, such as traditional scattering, collision-
al or photon ionization and dissociation, as well as reso-
nance phenomena. All these phenomena are character-
ized by the existence of either reagents or products, or
both, in more or less highly excited bound or continuum
states. (Here 1 skip questions with regard to the
quantum-mechanical definitions of reagents and prod-
ucts, and whether such definitions have a place in quan-
tum theory. I assume them to be identifiable in the con-
ventional chemical sense.) Using the PES language, such
systems are usually in rovibronic states with nuclear
configurations far from the equilibrium one R, (‘“hot
states”), or even on surfaces without any minima at all
(“‘dissociative states’’). Moreover, it is known that mul-
tidimensional excited PES’s have very often conical inter-
sections, 112 for which the BO treatment breaks down im-
mediately. It seems totally inappropriate, or at least un-
reliable, to invoke the BO approximation in these phe-
nomena.

It is possible to make a more quantitative statement
about this breakdown. I reminded the reader in Sec. II B
that for R away from R, the BO separability is impossible
beyond zeroth order. So, since BO is used in chemical
dynamics manifestly away from R, configurations, the er-
ror in wave functions and energies already appears to first
order in «. This is, of course, particularly true for PES’s
without any minima such as a dissociative PES. Further-
more, in conventional chemical dynamics, which is
equivalent to nuclear dynamics on PES’s, the cross sec-
tions, branching ratios, etc., are sensitively determined by
the entire effective potential (minima, maxima, shapes,
curvatures). Therefore errors in these scattering quantities
can only become larger than suggested by the above
analysis. I conclude that with k~10~"!, which is typical,
errors of tens of percents can be expected to occur.

It is not possible to remedy this situation by going to
the BH expansion. There are three reasons: 1. BO and
BH use the same H, as the perturbation and coupling
operator, respectively. 2. When the BO treatment
breaks down, say, at the 10% level like in chemical dy-
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namics, the BH expansion can simply converge slowly.
To appreciate this possibility it is sufficient to recall the
implications of Assumption 1. Assume there is an equi-
librium configuration R, and that ¥ describes motions
of the nuclei far from this configuration, as expressed by
R —Ry=kU~R,. Then the expansions for Hy, and H,
[Egs. (29) and (21)] will converge slowly. In fact, in view
of Assumption 1, these expansions are questionable be-
cause kU is not a small quantity anymore. But then we
can expect the expansions for E and ¥ [Egs. (38) and
(39)] to be poorly convergent. The result is the inade-
quacy of Eq. (41) to describe W(r,U). In other words,
large non-BO terms are needed, implying slow conver-
gence of the BH expansion. In cases of dissociative
PES’s the situation is even worse: no single R, can be
found about which U is small for nonzero W(r,U). 3.
Even if the adiabatic approximation of Eq. (49) were
used, thus saving the PES concept, we would benefit lit-
tle, because

| Cee | << | E. | (50)

and C,,(R) is only weakly dependent on R. As a result,
R3 ~R, with R3% the extremum in the adiabatic PES
according to Eq. (48). A separation of H like

H=Hy,+K, ,
where
H6:HO+Ceay Kr::Kn+Knn_Cee

will not help either; it effectively shifts only the E,(R)
values, and does not stop the breakdown of the BO sepa-
ration.

We must conclude that the BH expansion most likely
converges slowly when BO breaks down, displacing the
problem to a nasty numerical one, and at the same time
removing the conceptual niceties of the PES concept.

The spectroscopy of the bound states of the hydrogen
molecule provides strong support for the BO and adiabat-
ic approximations, but it also represents a special case.
Long regarded as an archetypical example of chemical
bonding, it is probably the most extensively and accurate-
ly studied molecule, experimentally as well as theoretical-
ly.!* These studies have provided accurate values for
bound state energies of electronic ground and many excit-
ed states. The rovibrational states associated with the
'3+ electronic ground state have been particularly well
investigated. The nonadiabatic corrections amount to
only 5% of the adiabatic shift C..(R). The reason is sim-
ple: only hydrogen has no inner shells, and therefore its
lowest few PES’s are energetically the most separated of
all molecules, leading to small ratios of off-diagonal ele-
ments to the difference in diagonal elements in the BH
matrix. Moreover, avoided crossings occur only for high-
ly excited PES’s. Nonetheless, the work of Dressler
et al.'’ indicates that the density of closely lying, interact-
ing PES’s increases rapidly enough for vibronic energy
shifts to become substantial fractions of differences in ex-
citation energies. We must conclude that the hydrogen
molecule cannot be regarded either as a perfect showcase
for the usefulness of the PES concept, and that at best it
must be viewed as a unique system.

E. Essén’s view of a molecule

The BO (and adiabatic) separabilities are usually ex-
plained by emphasizing the sluggishness of the nuclear
motion in comparison with that of electrons. Due to their
small masses, electronic states are viewed to follow nu-
clear motion adiabatically, i.e., to undergo progressive de-
formations with nuclear displacements rather than transi-
tions. '3 In turn, the nuclei experience the electrons like a
gas, providing an effective interaction. This physical pic-
ture is tacitly assumed to hold for any configuration R.

There is immediately something wrong with this ex-
planation: BO’s analysis shows this interpretation of the
wave function to be correct only through second order in
« for small nuclear displacements around the equilibrium
configuration Ry. For other configurations the BO sepa-
ration of electron and nuclear coordinates breaks down
after the zeroth order. Therefore, not only is this separa-
tion of limited accuracy, it is qualitatively inferior for
nonequilibrium configurations. Moreover, BO says noth-
ing about dissociative states, which are heavily used in
chemical dynamics. It seems that the so-called ‘‘adiabat-
ic” separation is only an interpretation of a very limited
result, the BO analysis, rather than a physical reality.

Essén,® in an interesting contribution to the debate over
the relationship between molecular structure and quan-
tum theory, argued in favor of the existence of a separa-
tion between ‘‘collective” and individual” motions in
low-lying molecular bound states. This separation arises
from the form of the Coulomb potential, and has nothing
to do with the smallness of (m /M). Because of the nu-
clear massiveness, collective motions are almost entirely
atomlike, and individual ones are electronlike. I consider
this a very important result, which can be seen as the
physical motivation for the molecular coupled cluster
method introduced in the next section. Therefore I will
review Essén’s analysis here, with emphasis on the key
ideas and steps. For details I refer to Ref. 6.

The starting point is the virial theorem, applicable for
bound states, with the form for Coulombic system

(K)=—H(V). (51)

This theorem shows that, at least for low-lying states, the
potential energy dominates in the sense that | W |2, with
¥ the molecular state, must be large in regions of
configuration space Sy where ¥ has large negative values.
Let us denote r; for the position of any particle in the
molecule (r, for electrons and r, for nuclei), then we can
write (in atomic units)

V= 2 Qin , (52)
i i
(i <
with the definitions
QE:-I’ Qn:Zn 5 (53)
riy=|ri—r;| . (54)

The charge neutrality of the molecule demands that

20Q:=0. (55)
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The dimensionality of Sy, is 3(N.+N,), with N, the
number of nuclei. We can thus state in addition that, due
to the virial theorem, the most important terms in V
should be those with maximum | Q;Q; | and Q;Q; <O.

For atoms this consideration immediately leads to
(atomic) shell formation and the separation of the center-
of-mass (c.m.) motion, the latter motion being nearly
equal to that of the nucleus. The mean-field methods of
Hartree and Hartree-Fock bear out the consequences of
the principle: the shells are quite well separated, and pro-
vide gradually a complete screening of the nuclear charge.

For molecules the only arrangement of the particles in
Sy that makes the potential energy strongly negative is
the one with Z, electrons ‘“‘around” each nucleus with
charge Z,. As a result, the picture of a molecule consist-
ing of (essentially) neutral subsystems (atoms), weakly in-
teracting (chemical bonds) in some spatial arrangement
(molecular structure) emerges. Electrons in the individual
subunits should behave similar to atoms, and these units
should behave as composite particles. Notice that thus far
no reference is made to electron or nuclear masses and
their dynamics. To show how and where these masses
play a role in “Essén’s molecule,” some formalism has to
be developed.

The coordinates of any particle in the molecule can be
written

r=R+rj,+1] . (56)

R is the molecular c.m. vector, and y(i)=a if particle i
belongs to the ath composite subsystem. Therefore rf is
the c.m. vector of the subsystem y relative to the molec-
ular c.m. and rf is the internal position of the particle i
relative to the c.m. of the subsystem to which it belongs.

The vectors in Eq. (56) are not all independent; we can

impose the constraints

> miri=0, a=1,2,... N (57)
yil=a
N
> M rS=0, (58)
a=1
where
Me= 3 m; . (59)
yih=a

N is the number of subsystems, and m; is the mass of
particle i. The following relationship exists:

N N
S My= 3 mi N=N+N, . (60

a=1 i=1

So far I made no use of the virial theorem. In particu-
lar, T left the value Q, of the subsystem’s charge
unspecified,

0= 3 0O . (61)

yi=a

I shall now assume the subsystems to be neutral, i.e.,
Q.,=0. The potential energy V is expressible as

V=Vi+Vc , (62)
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N N
Vi= 3 Vh, Vee= 3 VE, (63)
a=1 a,B
(a<pB)
N 0.
vi=3 %, y(i)=y(jl=a (64)
i,j ij
(i <j)
N O
vis= 3 %. (65)
yir=a i
y(H)=B

V! are the internal energies of the composite subsystems,
and Vgg are interaction energies between these systems.
A consequence of the “Essén principle” is that any rear-
rangement of the particles other than in neutral subsys-
tems would increase the potential energy, as it would
bring either electrons or nuclei closer together. In other
words, the subsystems are somehow disconnected. That
fact will make
Vee << Vi . (66)
Returning now to the dynamics of the Essén molecule,
the Hamiltonian for the internal motion can be written®

H=K+V, (67)
K=Kc+K;, (68)
N N (pC)Z
Kc= 3 KS= -, (69)
25= Z o,
N ; N N (p{)l
Ki= 3 Ko=3 3 Eymal (70)
a= a=1yli)=a 4

where pg and p{ are momenta related to r$ and rl, respec-
tively. Combining Egs. (62) and (67)-(70) we can now
express

H=7{+KC:H1+HC N (71)
where

H=H;+Vcc , (72)

H;=K;+V;, Hc=Kc+Vcc . (73)

Thus far our treatment has been classical. Let us now
consider the quantum mechanical implementation. If the
various coordinates on which the quantum-mechanical
operators depend were independent, we would have separ-
ability of the form

V=Xco;, (74)
with
H®,=E;®,;,
(75)
HcXc=EcXc,

where E; and E. would be individual and collective
eigenenergies. Moreover, according to Eq. (72), because
of the smallness of m /M, with m and M the electron
and a nuclear mass, respectively, # would be almost the
same as the clamped-nucleus Hamiltonian H, of Eq. (7);
the main difference is that H; contains nuclear kinetic
energies and V¢ depends on distances between centers
of mass, not between nuclei. [See Eq. (65).] In most
cases these differences are negligible, and we can retrieve
the BO-like separation. But we must recognize the ori-
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gin, namely the virial theorem and not the smallness of
(m /M), for the separation of individual and collective
motion.

Unfortunately the coordinates in the quantities of Egs.
(71)-(73) are not independent, due to conditions (57) and
(58). Therefore the kinetic energy operators K¢ and K
cannot be obtained by just replacing p$ and p! with gra-
dients. The correct treatment is given in an appendix of
Ref. 6. The separation as suggested by Egs. (74) and (75)
is shown by Essén to still exist approximately. The
derivation is involved, and the reader is referred to Sec. 5
of Essén’s paper® for details. A few observations are in
order. First, no attention is paid to (anti)symmetry re-
quirements for identical particles in the molecule leading
to exchange terms in W. These requirements would obvi-
ously clutter the picture, but it should not invalidate its
physical content, namely, the approximate separation of
individual and collective motions within a molecule. In
fact, inasmuch as the individual states ®; can be ex-
pressed as products of (strongly separated) subsystems, by
virtue of Egs. (63) and (70), (anti)symmetrization of V¥ will
lead to physically significant effects only for permutations
among particles within the subsystems. (See also Sec.
IVA)

Second, it might seem that Essén’s analysis holds only
for atoms weakly interacting through van der Waals’s
forces. It is, of course, true that in such systems the neu-
tral subunits are the nearly unaltered atoms, with interac-
tion energies very small compared to atomic energies, or
even their excitation energies. In covalent molecules the
interaction (or bond) energies are fractions of excitation
energies, and the atoms involved have largely lost their
physical identities, especially as far as low-lying excita-
tions are concerned. Yet, in many ways such molecules
retain a ‘‘sum-of-atoms” character, which is most vividly
displayed in their x ray determined charge density maps.
But covalent molecules do represent a tenuous example of
Essén’s view.

Finally, it should be pointed out that the subunits need
not be neutral. Because of the dynamic (rather than stat-
ic) character of a bound molecular state, electrostatic con-
siderations alone cannot explain the ionicity of bonds.
Details of the eigenvalues and eigenstates of the internal
(or individual) Hamiltonians H!, =K’ + V' will determine
the relative charges of the subsystems. It is easy to modi-
fy the above analysis for molecular ions; the same physi-
cal picture emerges as for neutral molecules.

Although the Essén molecule presents a compelling pic-
ture, it does not provide a workable formalism. The main
problem is the existence of the constraints (57) and (58).
In Sec. III I will show how the coupled-cluster method
can be implemented to treat the electrons and nuclei on
the same dynamical footing. The above problem is avoid-
ed, and a new physical picture appears reminiscent of (but
distinct from) Essén’s view.

III. THE MOLECULAR COUPLED-CLUSTER METHOD
A. Introductory remarks

The coupled-cluster method was formulated in 1958 by
Coester'* in response to the ongoing debate about the ex-

1 16,17

istence!® and proofs of the linked cluster theorem in
many-body perturbation theory. Instead of the order-by-
order inspection of Brueckner,!® or the time dependent
and diagrammatic formulations of Goldstone'® and Hub-
bard,'” Coester provided an extremely compact, complete,
and convincing proof by induction. No time dependence
or diagrams, with their subtle aspects such as the factori-
zation theorem for energy denominators, are needed. In
retrospect it is unfortunate (although understandable) that
this proof was largely ignored or overlooked.

In Coester’s theory the cluster operators figure central-
ly. If ® denotes some (anti)symmetrized product of N
one-particle states, then the CC representation of the ex-
act stationary state function W is given by'®

\[I:—.eTCD N (76)
where
N
T= 3 T . (77)

Ty are cluster operators of order k, which describe the
corrections beyond the independent-particle approxima-
tion to ¥ as provided by ®. The character of these
corrections can be appreciated by expanding the exponen-
tial in Eq. (76). Let us group terms in the following
manner:

V= 14T+ 4T3 4 =T+ - |04 %,  (78)

3!

where 7 represents the terms arising from operators T} in
Eq. (77) other than T,. If T, describes the correlation
correction involving all single pairs of particles in ®, then
T3, T3, etc., describe the corrections involving two, three,
etc., pairs of correlating particles. The factor (1/n!)
reflect the proper counting of distinct terms in Eq. (78).
The “‘remainder” contains, of course, all the terms that
involve cross products of T%’s, including the operators T,
with now obvious interpretations. The orbitals in ® can
be chosen self-consistently such that 7,=0. The opera-
tors T describe linked clusters of k particles in the sense
that none can be written as the product of lower-order
operators. This property carries the essence of the linked
cluster theorem of many-body perturbation theory. !*!’

The special magic of the CC method is its extremely
rapid convergence in cluster order k: practice has shown
that for widely different many-body systems, with pair in-
teractions only, about 99% of the correlation energy can
be obtained at the T"=T, level. The remaining 1% is al-
most entirely accounted for by T3. This has been found
particularly for closed-shell nuclei, ' atoms,?>?! and mole-
cules.?’ Even systems such as the electron gas model??
and the Lipkin model®® show the same trend, which are
very different systems not exactly of the closed-shell type.
First introduced to chemistry by Cizek®* in 1966, the CC
method has taken a strong hold of computational quan-
tum chemistry, as evidenced, for example, by a recent re-
view?’ (see also Ref. 21). I agree with a recent article that
the CC method should be regarded as the single most suc-
cessful and diverse many-body method known to date.?®

Apart from its numerical success, the CC method has
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also a computational advantage over many-body calcula-
tions with density matrices or Green’s functions. This ad-
vantage was pointed out in an excellent review article by
Negele.?” Not only is the CC approach superior in the
economy of the number of independent continuous vari-
ables to be solved for, the method suggests the natural
and systematic truncations for its practical implementa-
tion.

Last but not least, the physical content and properties
of the CC method are very appealing. It offers the natu-
ral conceptually accessible hierarchy of corrections
beyond the independent particle approximation ®. Just
as mean-field-like approximations can be characterized as
(nonlinear) coupled orbital theories, so can the CC
method be viewed as the coupled pairs plus triples plus,
etc., corrections to such theories.?” As I will show below,
the CC equations are also nonlinear (of a low degree) in
the cluster amplitudes. The coupling between the CC
equations is very weak,?! which reflects that T,, T}, etc.,
describe manifestly different physical effects. Since the
energy is only determined directly by ® and T, (assuming
T,=0), it is understandable that the effect of 73 on the
energy can be as small as 1%, regardless of the nature of
the microscopic pairwise interactions. For its use in
scattering and chemically dissociative processes it is im-
portant to note that the CC theory is size consistent,?” a
property shared only with perturbation theory.'>~!7 In
short, this property means that the CC wave function and
the associated energy separate correctly when two (or
more) noninteracting systems are described. This behav-
ior arises from the exponential form of the wave operator
connecting @ and W. It is also responsible for the ability
of the CC method to describe extensive properties such as
crystal cohesive energies.

All applications to date have been made on systems
with identical particles. (Because of the isospin symmetry
relation between neutrons and protons, this is also true
for nuclei.)!® There are physical reasons that the CC
method can be applied to systems of distinguishable parti-
cles, or sets of identical parl:icles.26 Indeed, encouraged
by Essén’s view of a molecule, and the success of the CC
method for very diverse systems with pairwise interactions
only, I propose to implement the method on molecules.
This proposal will be the subject of Secs. III B and III C.

B. CC method for stationary molecular states

I will present the molecular coupled cluster (MCC)
method for time-independent (or stationary) problems
with a minimum of formalism. In particular, I will leave
unspecified whether its implementation will be made in
“first-quantized” (integro-differential) form or ‘‘second-
quantized” (creation-annihilation) form.?! Moreover, I
will postpone all details about symmetry requirements; a
few comments on this question are included in Sec. I'V.

Central to a dynamic theory of a molecule is the proper
elimination of the center-of-mass motion. In Appendix A
I have shown how this can be achieved most conveniently
by reduction of the quantum N-body problem to a
(N —1)-body problem, with N =N, +N,. The potential-
energy operator V is invariant to a transformation from
laboratory-frame coordinates to a parallel system with ori-

gin at one of the particles. The kinetic energy operator K
assumes quite a different form in the new coordinate sys-
tem, giving rise to one- and two-body terms. However,
the c.m. motion separates, and the internal Hamiltonian

H can be expressed as?®?’
H=L+W, (79)
where
L=L,+L,, (80)
W=Wee+Weo+W,, . (81)

Furthermore, in Appendix C I have given the proof that
the internal angular momentum is invariant to the above
coordinate transformation. The significance of this re-
sult?® will be discussed below.

Let us now assume that the reference state is given by
an (anti)symmetrized product of one-electron functions ¢,
and one-nucleus functions ¢,. Just like the atomic shell
orbitals are centered on the atomic nucleus, so the func-
tions ¢, and @, can describe shells with the origin of the
particle chosen in the above transformation as centroid of
these shell orbitals. For example, the reference state for
the water molecule could consist of a (closed) shell struc-
ture for the ten electrons centered at the oxygen nucleus,
and two protons occupying two shell orbitals ¢,, also cen-
tered at this nucleus. In fact, as shown in Appendix A, it
is advantageous to choose the heaviest nucleus in any
molecule as the centroid of this ‘“molecular shell model.”
In view of Appendix C these shell orbitals can be assigned
definite angular momenta, like in the atomic shell model.
I will return to this point and show its numerical implica-
tions.

The cluster operators Ty are solutions to equations that
are obtained from the Schrodinger equation for the state
V¥ [Eq. (76)].

He™®=EeT® | (82)

while satisfying the strong orthogonality (SO) conditions.
These conditions can be stated most compactly after in-
troducing some auxiliary operators. The reference state
projector P is defined by

P=|®)P| . (83)
The SO projector
Q=1—P (84)
can be expanded like
N—1
o= kzl Ok , (85)

where Qy is the projector onto the subspace of the orthog-
onal complement to ® spanned by the complete set of k-
particle excitations.?! The SO conditions can now be ex-

pressed as
Ol =Tk =Ty , (86)
TP =Ty . (87)

Equation (87) reflects the fact that T, is defined with
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respect to @, and Eq. (86) expresses its k-particle correla-
tion character and projection onto the orthogonal comple-
ment of ®. These conditions are similar to the ortho-
gonality requirements for the successive terms in pertur-
bation theory. To apply the CC method to the above
molecular shell model, I now suppose the following trun-
cation scheme for the cluster operators:

T=T,+T;, (88)
TZ = Tee + Ten + Tnn ’ (89)
Te=Teen . (90)

The terms in Eqgs. (89) and (90) have obvious interpreta-
tions. T,, describes the electron-electron correlations as
in previous atomic and molecular applications. 7,, de-
scribes electron-nucleus correlations. This term is par-
ticularly important for the description of inner shells of
atomic nuclei occupying nuclear states ¢, in the molecu-
lar shell reference state ®. T,, describes the nucleus-
nucleus correlation among nuclear functions ¢,. This
term can be associated most closely with traditional
molecular structure. Consider two nuclear functions ¢,
and ¢,, describing, say, the two protons in the water
molecule. Because of the considerable localization of the
protons near a certain O-H distance, one expects ¢, and
¢,, to be quite “thin shell orbitals.” Similarly, T,, can
be expected to peak quite sharply near an H-H distance
corresponding to the equilibrium value, with O-H dis-
tances comparable to the ‘“‘classical” O-H bond length.
Therefore the combination {¢,,é,,T,, | describes a tri-
angular relationship among the three nuclei, with the ox-
ygen nucleus at the apex. In fact, one can imagine this
relationship becoming quite rigid for very large nuclear
masses, giving rise to the well-known semirigid (classical)
molecular structure. Of course, this picture of an em-
erging structure from the molecular shell model can be
extended to any number of nuclei. The above triads of
two ¢,’s and one T,,  will provide interlocking triangles
which, in accordance with a well-known engineering
principle, can give a perfectly rigid structure.

I believe that a T'3 operator of the T, type [Eq. (90)] is
necessary in the molecular shell model. This operator de-
scribes the correlation of two electrons in the vicinity of a
nucleus. In view of Essén’s molecule, this operator is im-
portant for describing the electron correlation within the
neutral subsystems which are of atomic character. It
should be viewed on the same footing as T,., which de-
scribes the electron pair correlation in the presence of the
nucleus at the origin of the shell structure described by ®.
Application of my model to the H, molecule would also
require a T,,, operator, if not only on symmetry grounds,
when using one proton as the shell structure centroid.
Indeed, the best H, calculations, although variational,
contain terms generated by such an operator. '

To obtain the equations for Ty we return to Eq. (82).
Following Coester,'* we first premultiply with exp(—T),

and obtain
e THeTO=ED . 91)

We observe
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e "He"=H +[H,T]+ [[H,T,T1+ - . (92)

Due to the SO conditions (86) and (87) and thanks to the
presence in H of one- and two-body terms only, this com-
mutator series truncates exactly after five terms. Since we
can write for Qy

QI :Qe +Qn ’
Q2:Qee +Qen +an ’

etc., with obvious meaning of the subscripts, the CC equa-
tions for the truncations (88)—(90) can be obtained by pro-
jection of Eq. (91).

(93)
94)

E=(®|H+HT,|®), (95)
Qe THeT|®) =0, (96)
Qe THeT|®) =0, 97)
Qeene "THeT | ®)=0. (98)

Equation (95) reflects the property that the energy is only
determined by the orbitals ¢, and ¢,, and T,. Equation
(96) gives the mean-field-like equations for the orbitals ¢,
and ¢,.2" In fact, because of (93) it really consists of two
sets of equations. Similarly, Eq. (97) represents three sets
of equations. Equations (96)—-(98) provide a number of
equations equal to that of unknown quantities. Of course,
these equations hide a considerable proliferation of terms.
For example, the energy expression expands to

Ez(q)'L6+Wen+Wee+WenTen+WeeTeeI‘D)

D | L, + W+ Wy Ty | @) . (99)
Equation (96) expands to
Qi(H +[H,TL]1+[W, T3] | @) =0 . (100)
A further expansion occurs in view of Eq. (93):
QelLe+Wee+Wye +[Le, Tee 14+ [ L, Ty ]
HWee, Tee 14 [Wen; Teon 14+ [Wen, Teen 1) | €) =0,
(101)
On(Ly+Wn+Wen +[Ly, Ton 14+ [Le, Tep ]
HIWons Ton 14 [ Wens Ten 14+ [Weo, Teen 1) | @) =0 .
(102)

Equation (99) has been written in a form that displays the
separation in manifest electronic and nuclear terms, and
in an order of suspected decreasing magnitudes. Equa-
tions (101) and (102) are Brueckner-Hartree-Fock (BHF)
equations®® (reducing to Hartree-Fock equations when
T,=T;3;=0) which provide the equations for ¢, and ¢,.
Somewhat expanded forms for Egs. (97) and (98) are

Ox(H +[H, T, ]+ {[[W,T,], T2 ]+[W,T3]) | ®) =0,
(103)
Qeen([W7T2]+[H»T3]+%[[W,T2]’T2]

+[[W,T,)1,T3]) | ®)=0. (104)
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For the last term in Eq. (104) I have used the commuta-
tion of T, and T'; due to Eqgs. (86) and (87). The reader
can easily convince himself that Eqgs. (101) and (102) pro-
vide cubic equations in {¢,} and {¢, }, like HF equations,
whereas Egs. (103) and (104) are quadratic in 7, and
linear in T, respectively. It is quite probable that several
terms in these equations are negligible either on purely
numerical or on physical grounds; I defer an analysis of
this possibility to later publications. Finally, since only
T.n is kept, a considerable reduction of terms in Eq.
(104) occurs compared to the situation with 7, and/or
T,nn included.

C. CC method for time-dependent molecular states

In 1977 I formulated a CC approach to the calculation
of static and dynamic properties.’! Recent applications
have shown the efficacy of this formulation.’? Dynamic
properties require the CC solution to the time-dependent
Schrodinger equation due to the adiabatic turn-on of an
external electromagnetic field perturbation. This time-
dependent CC theory can, however, also be used for
bound nonstationary states as well as any continuum
states describable with the time evolution of a many-
particle wave packet, and with or without a time-
dependent Hamiltonian H. Negele?’ took this approach
for the microscopic underpinning (and improvement) of
the time-dependent Hartree-Fock (TDHF) method for nu-
clear scattering. I propose to do the same for molecular
states with nonseparable time dependence. I am confident
of its success for the same physical arguments as used by
Negele,?” as well as an additional one.

The starting point is the time-dependent Schrodinger
equation in CC form, expressible as [see Eq. (91)] (in
atomic units)

e THe T<1>=ie_T%eT<l> . (105)
We assume all quantities in Eq. (105) to be time depen-
dent, including the ¢, and ¢, making up ®. Writing

T=3T/dt , (106)

with T satisfying the SO conditions in time-dependent
form (P and Q are time-dependent projection operators
because of the time dependence of ¢, and ¢, ), we can ex-
pand* (note that [8/3¢, T]=T)

19 7_ 0 i ir
e ate _at+T+7[T,T].

Multiple commutations vanish because of the SO condi-
tions of Egs. (86) and (87); this can be easily proven by
recognizing the relations

i) .
E“i’e):% |¢e><¢el¢e> >

(107)

(108)

%I¢n>=24¢v><¢vlq§n>, (109)

where {¢.}] and {¢,} are the complete sets of electron and
nuclear states, including the occupied {¢.} and {¢, ] used
to define P and Q.
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We now make the important assumption that for time-
dependent cluster functions Ty (t) describing nonseparable
time-dependent molecular states, the truncations

T(t)~T,(t)+T5(2) , (110)
To(t)=Toe(t)+ Topn(t)+ Ty (1), (111)
T3(t):Teen(t) ’ (112)

are at least as appropriate as for the stationary states. 1
base this assumption on the facts that we have

(1) | ¥(1) < o (113)

and that “Essén’s view” of a molecule need not neces-
sarily be time independent. Because the virial theorem
need not hold anymore, one can expect any structural
content of W(z) expressed in CC form to be at least less
than that for stationary states. In fact, there exists the
obvious inequality

|
Mfz%’ (V) <0,

114
a0 (114

with expectation values taken with respect to W(z). This
inequality holds because for scattering states the internal
kinetic energy can exceed beyond any limits. This causes
the particles to become more randomly distributed and
thus remain, on the average, at ever larger distances from
each other, leading to a decrease in | {¥) |. If the kinet-
ic energy becomes comparable to the potential energy or
even exceeds it, the tendency towards ‘‘crystallization”
into an Essén-like structure diminishes and a mean-field-
like description of W(z) can suffice. The conclusion is
forced on us that 7, and T3 will be less important for a
more energetic molecular state, i.e., the larger (H ) (t) be-
comes. As a corollary, we can expect the CC expansion
for W(z) to converge even better than for stationary states,
a surprising possibility indeed.

Projecting Eq. (105) against P and Qy, and using Eq.
(107) we obtain

Pe "Hel |®)=iP 56;+T+%[T,T] [®), (115
Qe ~THeT|®)=iQ) |-+ T+HT.T] || ®)
(116)
OreTHe | ®) =i, §;+T+g[T,T] o)
(117)
Qeene ~THT | ®) =iQun | o+ T+ H[T,T] || ®) .
(118)

As discussed in Ref. 27, Eq. (115) is devoid of any
physical content for time evolution; it is satisfied identical-
ly only when all clusters of Eq. (77) are included. Equa-
tion (116) provides the time-dependent equations for ¢.
and ¢,, similar to Eq. (96). When T,=T3;=0, these
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equations reduce to the TDHF equations.?’” This connec-
tion is very important for formal as well as computational
reasons.

The structure of the right-hand sides of Eqgs.
(116)-(118) is very attractive computationally.?’” The
solution of the equations will proceed numerically in time.
At any time ¢ the functions ¢, and ¢,, as well as their
time derivatives and T,(¢) and T3(¢) will be known.
Therefore, Eqgs. (117) and (118) provide first-order
differential equations in the cluster functions (or ampli-
tudes) associated with T, and T;. It is then straightfor-
ward, at least in principle, to obtain all the CC quantities
at time (¢ + At).

The choice of the initial conditions for my time-
dependent MCC model is nontrivial, and is similar to that
in the TDHF method.?” No universal prescription can be
given, as it crucially depends on the physics of the system
and the measurement process that one wishes to describe.
Discussion of this point will be covered in future publica-
tions.

IV. FUTURE PROGRAM

In this section I would like to bring together the most
important questions that need to be addressed before the
MCC method can be brought to full bloom. These ques-
tions are in order of priority as presently perceived.

A. Symmetry and conservation laws

For the time-independent MCC method I proposed
the use of shell orbitals with definite angular momenta.
This choice will be advantageous to obtain MCC states
of definite total angular momentum, similar to the situa-
tion in atoms; the result of Appendix C makes this possi-
ble. But this enables us to implement mixed analytic-
numerical techniques developed for atomic CC calcula-
tions as explained in Ref. 20. Of course, due to different
localization of ¢, and cluster functions involving nuclei,
a different numerical integration scheme will be needed.
However, the reduction to one- and two-dimensional
differential equations will still be possible.

It is important to recall that my proposal does not con-
tain a zeroth-order starting point; the orbitals ¢, and ¢,
are uniquely defined (up to unitary transformations) as
solutions to BHF-type equations.®® Therefore treatment
of open-shell systems (with respect to electrons, that is)
might present novel possibilities. In particular, the use of
multideterminantal (or multi-®) reference states might be
avoided.

Proper treatment of spin symmetry needs careful at-
tention. This symmetry is closely related with permuta-
tion symmetry among identical half-spin particles, pro-
vided H does not contain spin-dependent operators. We
showed the spin-free character of T, for closed-shell
electronic systems. 2!

This brings us directly to the question of the correct
recognition of the operators comprising the complete
group of the Hamiltonian H. A lucid discussion of this
question, and its significance to molecular spectroscopy,
particularly of nonrigid molecules, was given by Longuet-
Higgins. 3% (See also Ref. 9.) He introduced the concept
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of feasible versus unfeasible transformations induced by
elements of the above group. Feasible transformations
among identical nuclei are those that ‘““‘can be achieved
without passing over an insuperable energy barrier” (on a
ground PES).** Such transformations give rise to energy
splittings that are experimentally observable. A classic
example is the “inversion transformation” in the ammonia
molecule giving rise to its MASER action. Unfeasible
transformations, which lead to no observable splitting, re-
quire the “breaking and making of bonds.”®** The prac-
tical effect is that for spectroscopic purposes one can re-
strict consideration to the subgroup of the complete group
of H consisting of the feasible operations (permutations,
inversion, and their products) only.

The notion of feasibility of symmetry operations can be
extended to electrons. For example, permutations among
valence electrons are clearly feasible, as they give rise to
splittings and/or shifts in orbital energy levels in, say, HF
calculations. But similar operations among core orbitals
on different atoms must be considered unfeasible: such or-
bitals have negligible overlap. In quantum chemical terms
we state that such core states have negligible exchange in-
teraction, and we should be able to ignore such permuta-
tions from the totally symmetric group. It would be very
valuable to exploit the concept of unfeasible operations for
electrons as well as nuclei, since it can substantially reduce
the computational effort without impairing the physical
relevance of the calculations.

At present we do not know which symmetries of the
complete group of H will be consistent with the cluster
truncation scheme I propose. This is an important ques-
tion because the answer will determine which “‘theoretical
resolution” of stationary state quantum numbers will be
possible. This will determine the relevance of the MCC
method for high-resolution spectroscopies.

Negele?” showed the existence of conservation laws for
the TDHF method, such as those for energy, angular
momentum, and linear momentum. It is important to es-
tablish similar conservation laws for the time-dependent
MCC method.

B. Approximations, simplifications,
and computational considerations

I pointed out in Sec. IV A that the MCC equations
contain many terms; the slightly expanded forms
(101)-(114) are just a glimpse. Yet it is known from
practical experience that not all terms are of the same
magnitude?! and that partial cancellations occur.?
Similar findings can be expected in the MCC method.
The experiences with electron correlation calculations
will almost certainly carry over; there seems to be not
much change in the electronic wave function. This was
shown in Hartree-Fock-like calculations that include nu-
clear dynamics in intriguing work by Thomas.* To the
extent that the coupling between electron and nuclear
dynamics is weak, we can expect some terms that de-
scribe this effect to be relatively small, perhaps negligi-
ble. This could be particularly relevant in Egs. (103) and
(117). Both physical and numerical arguments will be
needed to identify reliable approximations.

Simplifications can occur once we have understood the
symmetry and other group theoretical properties of the
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MCC method. For example, we could find a way to elim-
inate spin from all or some of the cluster operators, as in
our earlier work on electron correlation.?! On the other
hand, we would be hampered in generality of our method
if too many symmetries are ‘“built into” our working
equations.

All the above considerations apply to the time-
dependent as well as time-independent MCC method.
This is evident from the equivalence of the left-hand sides
of Egs. (96)—(98) and (116)-(118), as well as the observa-
tions with regard to the convergence of the CC expansion
for W(1).

Computational questions need to be addressed. It
would be preferable to use a first-quantized basis-set in-
dependent representation which has proven so successful
in electron correlation calculations,?’3°~38 thanks to the
use of explicitly correlated Gaussian geminal expansions.
For stationary states the molecular shell structure can be
invoked which makes the use of centrosymmetry possi-
ble.?® For time-dependent calculations that possibility
will depend on the initial conditions and/or the nature of
the external perturbation, in which case either fully nu-
merical®® or Gaussian geminal approaches are needed.

C. Properties and excited states

My approach to the evaluation of static and dynamic
properties, formulated with only electrons in mind,"¥
can of course be used with the MCC model as the starting
point. Introducing an external perturbation to the molec-

ular Hamiltonian
H—->H(A)=H +AH', (119)

where H' represents a static or dynamic (i.e., time-
dependent) coupling to the external probe, order-by-order

calculation of properties proceeds as in Ref. 28. If the
cluster operators are expanded like
2
A (120)

T(x)=T+AT“’+7T‘2)+ e,

then the various orders of properties can be extracted
from the perturbative expansion of the energy (A):
2
E(A)ZE—}—}»E“){T“)}+%E(2){T(l),T(Z)}+ ..

(121)

The E” are dependent on T to T, and each T is
the solution to an inhomogeneous linear equation with the
inhomogeneous term depending on T,T'V, ..., T% -1,
This structure of the equations assures an accurate evalua-
tion of properties, provided that good basis sets are
chosen. The orbitals ¢, and ¢, as well as Ty are kept
fixed in the replacement (119). Therefore, with H' a one-
particle coupling operator (which is usually the case), we
expect (see also Ref. 40)

TY~TV+TY (122)
with obvious notation. If a first-quantized formulation of
the MCC method succeeds, then a similar truncation

should be used for T
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Excitation energies and transition probabilities can be
obtained with time-dependent H’; I refer to Dalgaard and
Monkhorst’! for a discussion of the relationship with
Green’s function-based dynamic response functions. The
same considerations with regard to structure of equations
and basis functions apply to these quantities as well.3>4°
If H'(¢) is also a one-particle operator, we expect a trunca-
tion such as Eq. (122) to be adequate.

With the introduction of the time-dependent MCC
method, which so far was formulated with a time-
independent internal Hamiltonian H, the exciting possibil-
ity arises to combine it with the presence of an external
time-dependent perturbation. Examples are laser pulse
probes and molecular passage through an intense elec-
tromagnetic field,*! both of which can be described with a
characteristic shape (in time) for H’. One can imagine the
molecule to be in a stationary state before H' is turned on
at t=0, which will define the initial state of W(z) (at t=0).
For ¢ > 0 the molecular Hamiltonian will be

H(t)=H +H'(1) (123)

for the duration 7 of the external probe, after which the
molecular Hamiltonian again becomes H. Continuation
of the time evolution numerically will reveal the conse-
quences of the probing: dissociation, ionization, excita-
tion, or creation of a mixture of stationary states. Re-
cent studies of “half collisions” also belong to this class
of phenomena. These consequences can be identified by
monitoring the time evolution of all CC quantities, i.e.,
de» 6., T, and T,,,. In any case, the time-dependent
MCC method could provide a powerful tool for under-
standing laser chemistry, and picosecond and fem-
tosecond spectroscopy.

D. Relationship to potential-energy surfaces

As pointed out, the concept of a PES is intimately con-
nected with the BO approximation; it arises as a purely
electronic eigenvalue by suppressing the nuclear kinetic
energy operator H| [see Egs. (19) and (28)]. In the MCC
method the electronic and nuclear kinetic energy opera-
tors are treated at the same footing. In fact, as evidenced
in Egs. (101) and (102), the electronic and nuclear orbital
equations contain both these operators [the two- and
three-body equations (103) and (104) contain electron-
nucleus mass polarization terms as well, which provide
additional dynamic coupling]. Therefore a PES does not
emerge naturally in the MCC method.

If one still wishes to extract a PES, an ambiguity of its
definition has to be admitted. On the one hand, the MCC
method is not variational, and therefore an expectation
value-like expression such as

(W|Ho | W),
NA
EXMRI= =g gy,

with ¥ the MCC wave function and integration over elec-
tronic coordinates » only, is not very consistent with the
theory. This form of a nonadiabatic (NA) PES was advo-
cated by Wilson.*> On the other hand, its outstanding
virtue is that this definition coincides with the BO form if
¥ is a BO wave function.** It should also be pointed out

(124)
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that the variational and MCC forms of the energy coin-
cide for untruncated cluster expansions in Eq. (77).*>%
This fact makes Eq. (124) even more plausible.

The dependence of ENA(R) on R is difficult to see.
Since the integration is over r only, this quantity is not
obviously representable as a sum of linked terms.** Yet it
seems that a PES can be represented as a sum of linked
terms depending on one, two, three, etc., nuclear coordi-
nates in a nonseparable manner.? With ¥ in the BO ap-
proximation and W, expressed in coupled-cluster form, it
is easy to show that E,(R) consists of linked diagrams
only.*>* A proof that this is also the case with ¥ in
MCC form would be desirable.

However, it is evident from Eq. (124) that ENAR) will
contain high-order cluster terms when expanded in inter-
nuclear coordinates. This is due to the exponential form
of the operator connecting ® to V¥, even with our trunca-
tion after T3. The same holds at the BO approximation
level.** We may therefore expect that EN” is also a func-
tion of R expressible as a linked cluster expansion through
N, th order with N, the number of nuclei.

V. SUMMARY AND CONCLUSION

I have revisited the Born-Oppenheimer approximation
and the Born-Huang expansion for the description of
molecular eigenstates. Due to the violation of several re-
quirements for the applicability of the BO-like separation
of electronic and nuclear coordinates, serious and per-
sistent errors can be expected in many applications. The
most significant requirement is the existence of a nuclear
localization around an equilibrium configuration Ry, i.e.,
a deep minimum in the PES. Notable applications of BO
which ignore this condition are nonrigid molecule dynam-
ics and chemical dynamics. Since the BO analysis breaks
down in these cases after zeroth order in the BO mass pa-
rameter, errors in the order of 10% should be no surprise.
The BH expansion provides no solace, since I showed it
to converge poorly when BO fails.

Inspired by an alternative view of a molecule due to
Essén, I proposed the implementation of the coupled-
cluster method for both the electrons and nuclei of the
molecule. This led logically to a formulation of the
molecular coupled-cluster methed, both in time-
independent and time-dependent forms. The first version
is appropriate for calculating stationary states, whereas
the second one is applicable for any time-dependent
square-integrable many-particle wave-packet state for
which initial conditions can be specified. Much work is
needed to implement the MCC method, but the quantum
physics seems to be well understood.

The range of applicability is only bounded by practical
limitations; I believe the CC truncation scheme to be valid
for any size molecule. But, of course, computations will
become quickly prohibitive for larger molecules. I imag-
ine the MCC method to find its first serious applications
in high-resolution spectroscopies and chemical dynamics
involving no more than five- to ten-atom molecules, if that
large. Therefore I do not foresee the quick demise of the
BO approximation, if not only because old ideas die hard.
But doubts and debates about its legitimacy continue as

evidenced by recent publications by Grelland and Wool-
ley.*
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APPENDIX A: THE INTERNAL MOLECULAR
HAMILTONIAN

The elimination of the center-of-mass motion from the
molecular Hamiltonian is necessary because of the interest
for the dynamics of the internal degrees of freedom, rath-
er than that of the system in motion, which has a continu-
ous spectrum of eigenenergies. Since the potential energy
for a molecule V is a function of interparticle distances
only (at least in the absence of external fields, which
might cause anisotropies), it is invariant to any coordinate
transformation. Therefore, we need only consider the
molecular kinetic energy operator K, when introducing
some transformation to affect the c.m. separation.

Several possibilities exist to achieve this separation. All
of them at least use the c.m. vector R defined as

1 N
R:Higl m;q; , (Al)
with
N
M=3m, (A2)

i=1

the total mass of the molecule, and q; the position vectors
of the particles as measured in the laboratory frame (LF)
considered as an inertial frame. Other coordinates some-
times chosen are hyperspherical coordinates or coordi-
nates relative to the c.m.,

p,:ql-—R (I:l,,N—'I), (A3)

N-—-1

2 m;p; .

i=1

1
PN = my (A4)
A disadvantage of this coordinate system is the linear
dependence of (py, . . .,pn), because of (A4). This causes
problems similar to those discussed by Essén® in his ap-
pendix. Another choice is the set of coordinates relative
to the center-of-mass for the nuclei.*® But now linear
dependence occurs among nuclear coordinates, leading to
an awkward dependence of V on these coordinates. (Dia-
tomic molecules are an exception.) We can only avoid
these problems by introducing the independent set of
coordinates®®%°

ri=q,—qy (=1,...,N—1), (AS)
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and the c.m. vector R. Since we can write

Ky——2S 25 % (3/3q,7 (A6)
M= T 2m; - T 2m; U
and
N-1 Jr,; 3R
3/3q; = 13/3r;+—3/3R , (A7)
2 3, Y% 3,
we quickly obtain the results
a/aq,:a/ar,»+%a/an, i <N (A8)
N-1 my
3/3qn=— 3, a/ar,-+78/aR, i=N. (A9)

j=1
Substituting (A8) and (A9) in (A6) we get

N1 N-1
Ku=Kcm+ 3 Ki+ X K, (A10)
i=1
(il<jj)
#? )
Kcm:—m(a/aR) 5 (All)
ST @/ (A12)
Ki:‘— T; ’
,~§1 2u; '
h2
Krj:’“—__(a/arl)(a/ar]) ) (A13)
my
where
uitl=m emy (A14)
We can now write the internal Hamiltonian H as
H=L+W, (A15)
with
N1
L= 3L, (A16)
i=1
Li=K;+Vi, (A17)
N1
w='S W, , (A18)
<i1'<jj)
Wi=V;+K; . (A19)

The transformation (AS5) is to a noninertial frame of refer-
ence, centered at qy; the “velocity-dependent” potentials
K;; are a consequence of such frame. In order to mini-
mize the effect of these potentials we should choose qy as
the coordinates of the heaviest nucleus, since on the aver-
age, the c.m. will be closest to that point.

It is important to observe that for neutral molecules

N -1
> Qi=—0n, (A20)

i=1

with Q; defined by Eq. (53). This will cause each shell or-
bital to be determined by attractive potentials, at least for
asymptotically large distances from qy.

APPENDIX B: SOLUBILITY CONDITIONS
IN THE BO ANALYSIS

The solution of perturbation equations always proceeds
hierarchically: higher-order equations can only be solved
after lower-order solutions have been obtained. Usually
the zeroth-order equation is homogeneous in the zeroth-
order wave function, whereas all other equations can be
cast in the form of linear inhomogeneous equations. Im-
position of proper physical boundary conditions will lead
to unique solutions to the zeroth-order equation only if no
degeneracy occurs. The other inhomogeneous equations
have solutions only if the inhomogeneous part is orthogo-
nal to the homogeneous solution with respect to the prop-
er variable. This requirement leads to so-called solubility
conditions.

The BO analysis gives rise to a similar situation, but
with two unique twists: the molecular Hamiltonian is
also expanded in an infinite series, and we encounter two
sequences of perturbation equations. These sequences are
connected with the solution of the clamped-nucleus elec-
tronic Schrodinger. The former sequence is solved in-
dependently, whereas the latter one can only be solved
with the solutions of the former.

We found [see Eqgs. (19)—(24) and (29)] that the Hamil-
tonian H can be expanded like

H:H&O)—FKHB”+K2(H£)2)+H(12))
+iHY +HP )+ - (B1)

The operators HY’ are homogeneous functions of the nu-
clear displacement coordinate U [see Egs. (29)-(31)]; they
arise in the order-by-order solution of the clamped-
nucleus electronic Schrodinger problem

[Hy—E.(R)]¥,.(r,R)=0, (B2)
with expansions

Hy=HY +kH +K*HP +3H + -+, (B3)

E.(Ro+kU)=E +kEV+KPE* + -, (B4)

Y, (r,Ro+kU) =V 4@V 4 2924 ... (B5)

E!” and W\ are homogeneous in U of the rth degree.
Equating coefficients of different powers of « to zero gives
the first sequence of perturbation equations:

(H(OO)—E;O))‘PLO)zo , (86)
(HE)O)"ELSO))WLI):—(HB])—Eg(“)\P(eO] , (B7)
(H{)O)—ELSO))\P(QZ)

:—(Hz)])—Ee(l))\ll(e”—(Hz)Z)—‘Eéz))\y'e()) , (B8)

etc. We consider this sequence to be solved.
The second sequence of perturbation equations arises
from the full molecular Schrodinger equations

(H —E)¥(r,R)=0. (B9)

H is expanded according to Eq. (B1) and E and V¥ are ex-
panded like

E=E(0)+KE(1)+K2E(2)+ e (BIO)
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V=94V PP (B11)

Notice that E” are constants. The order-by-order equa-
tions are

(HQ —EO)Ww©O_g (B12)
(HY —EOW D — (g _EO)g© (B13)
(HSJ) _E(O))\P(Z)= —(H(()” _E(l))\y(l)

—( 62)+H(12)_E(2))\I/(0) R (B14)

etc. Comparing Egs. (B6) and (B12) we conclude that
E9=E® (B15)

and that W is a solution of (B12). Since HY' and ¥
are independent of U, ¥'* has the form

YO ) =X , (B16)

where X'? will be determined by higher-order equations.
Next, consider the first-order equations (B13). Its solu-
bility condition is

(W(O) | (HBI)—E(I))\I/(O)>,
=X | X [(HP —EDNW), =0,
(B17)

where { ), denotes integration with respect to ». Howev-
er, it follows from Eq. (B7)

<\I/(EO) | (Hé)l)—Ee(“) I l‘I/(eO))r

=—(VO HY —EL|wl), =0, (B18)

with the last equality following from the hermiticity of
H{. Equations (B17) and (B18) give the condition

ED=flD (B19)

E is a constant (by definition), whereas E!! is linear

and homogeneous in U (by construction). Thus Eq. (B19)
can only be satisfied if E{" vanishes identically:

N,

E{"= 3 [3E.(R)/d/1,]x —r,"Un=0, (B20)

with U,, an arbitrary displacement of the nth nucleus, and
the sum is taken over all nuclei. We conclude that Ry
must be an equilibrium configuration, i.e.,

[0E.(R)/0r, 1R —r,=0 . (B21)

Setting E‘V'=E!"=0 in Egs. (B7), (B8), etc., and Egs.
(B13), (B14), etc., allows us to proceed with solving for
W @) etc. The details become increasingly involved
and are irrelevant for our discussion. It suffices to say
that solubility conditions for higher-order equations pro-
vide equations for X'°(U) to X‘?(U) (needed for W'
and ¥?)), and that ¥'®’ and high-order terms cannot be
expressed in separable form. The single most outstand-
ing result of the BO analysis is the condition (B21);
without its fulfillment the treatment fails.

APPENDIX C: INVARIANCE OF INTERNAL
ANGULAR MOMENTUM

In this appendix I will provide the proof of the invari-
ance of the internal angular momentum under the trans-
formation to coordinates r; according to (AS).

First I will prove that the total angular momentum
operator defined as

N _ N
JM=l_ﬁ2q]XVJ, i=—Vv—1
i=1

(cn

with V; the gradient operator associated with LF coordi-
nates q;, is invariant to any nonsingular coordinate trans-
formation defined by

N
Q= 3 Dygq; .
j=1

(C2)

The matrix must be nonsingular, i.e., | D | 0. We then
have the inverse transformation

N
q= 3 Dj'q;, (C3)
j=1

with obvious notation. V; can be written as

yoogqi_, X ,
V=3 70 Vi=3 DV, . (C4)

j=1 j=1

Therefore, J transforms as follows:

_ N N _ N
Ju=ii3 3 Dj'Dyq;xVi=i# 3 q;x V).
i=1jk=1 j=1

(C5)

The last equality follows directly upon interchange of the
(j,k) and i summations, and use of the definition of the
inverse matrix. We find that J is invariant if D ~! exists.

Secondly, I will prove that the transformation to coor-
dinates {R,r,...,ry_;} as defined by Egs. (Al) and
(A5) is a nonsingular transformation. Inspection of these
equations shows that the transformation matrix has the
structure

ap  a as aN_1 Oan
1 0 0 0 —1
D=y { o - o _1l> (C6)

with a; =m; /M. Expansion of |D | with respect to ele-
ments of the first column immediately shows an inductive
route to proving

N
|ID|=(—1D""'3 a;. (C7
i=1
Since a; are all positive definite, we conclude that D is
nonsingular.
Because of the proven invariance expressed by (C5),
with qy =R, the obvious separation of J,, in c.m. and
internal components occurs:

JMZJc.m.+J ’ (C8)
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with
J.m =iARXVy , (C9)
_ N-1
IJ=i#i 3 1; XV, . (C10)

i=1

Since the internal Hamiltonian 1is invariant to
infinitesimal rotations about any axis in the noninertial
frame of reference (due to the scalar character of K; and

K;;) it follows immediately that
[H,J]=0, (C11)

i.e., the internal angular momentum is a conserved quan-
tity. Furthermore, due to the homogeneity and isotropy
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of space, inversion iy through the position qy of the ori-
gin of the noninertial frame should commute with H:

[H,iy]=0, (C12)
Egs. (C11) and (C12) show that eigenfunctions ¥ of H
can be characterized by J., where J=S,P,D, ..., as
usual, and the subscript refers to (anti) symmetry to inver-
sion iy. Other quantum numbers will arise from permu-
tations among sets of identical particles (electrons, pro-
tons, carbons, etc.) that make up the molecule and time-
reversal symmetry. The existence of all these quantum
numbers strongly supports the use of shells centered at qy
in my molecular shell model.
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