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Observation of three-body collisional transfer between atomic levels

M. Harris, J. F. Kelly, * and A. Gallagher~
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Boulder, Colorado 80309-0440
(Received 27 April 1987)

Collisional J-mixing rates between the J=0, 1,2 states of the Sr(5 PJ) multiplet have been

measured in the presence of rare-gas perturbers. For Kr and Xe pressures above 100 Torr, the
rates are dominated by a component which is quadratic in pressure. We believe this very unusual

behavior is brought about by the simultaneous interaction of a Sr atom with two perturbers and

not by excimer formation.
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FIG. 1. Sr energy levels relevant to this experiment. The
laser at 689 nm excites to the Pl state, and the absorption lines
at 679 and 707 nm are used to probe the J 0 and 2 popula-
tions.

Three-body transition rates between the Sr(5 PJ)
fine-structure states due to collisions with rare gases have
been measured (see Fig. 1). Such processes have not fre-
quently been investigated. These J-mixing rates have
been obtained from the time dependence of the J=2, 1,
and 0 state populations (nj) following excitation of the

5 Pi state by a pulsed dye laser tuned to the intercom-
bination line at 689 nm. The time-dependent absorption
of the Sr 6 S|-5 P2 o lines (707, 679 nm) from a
hollow-cathode lamp is used to measure the evolution of
the metastable (J=0,2) state populations following the
laser pulse. The J 1 state population is obtained from its
time-dependent fiuorescence at 689 nm. Additional ex-
perimental details are given in Ref. l.

Two constraints define a rare-gas pressure range
(3x10' -6x10's cm ) in which useful information has
been obtained. The rare-gas density must be sufficient to
transfer enough Pi population to the J=O and 2 states
(before radiative decay) to give an adequate absorption
signal. The upper limit arises because the absorption
coe%cient is reduced as the absorption lines become
broadened, and the initial conditions (only J=l popu-
lated) are significantl altered by collision-induced
5 P~-6 5& absorption followed by radiative decay to the
other 5 PJ states.

The mixing rates RJ J. are obtained by least-squares
fitting solutions of the coupled linear equations for the
three nj(t) (detailed in Ref. 1). Here the six mixing rates
in Fig. 1 are reduced to three independent rates by apply-
ing detailed balancing to forward and backward rates.
The three independent mixing rates and the P j radiative
lifetime are determined by the fitting. This fit is relatively
insensitive to the Ro2 (and the related R2o) rate due to the
initial condition of starting in the J=1 state, and also the
fact (from the computed fits) that the Ro2 rate is much
less than Rio or Ri2. The latter two rates are very well
determined, within typically —5% statistical uncertainty
at each pressure, and the 5 Pj radiative lifetime value
(22.0 ps) obtained at all pressures agrees within —5%,
except at the highest temperatures and Sr densities when
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For the microsecond time scale and —10' cm rare-
gas densities of the present data, the densities
[XeSr*(yj)] (and [KrSr*l) of bound excimers in each
adiabatic state yj should be in equilibrium with [Xe]
[Sr (J)], where yj is a diatomic electronic state adiabati-
cally connected to atomic level J (see Fig. 3). This fol-
lows, for the expected shallow (& 10 kT, T—700 K)
binding of these diatomic states, from the fact that col-
lisional dissociation occurs on a much faster time scale
than J mixing or radiation, so that the equilibrium distri-
bution of bound excimers is maintained. Also, for this
relatively shallow binding and [Xe] range the equilibrium
balance highly favors the atomic form, and the (equilibri-
um) bound excimer density is proportional to [Xe]. Thus,
the reported [Xe] -dependent J transfer is not due to the
[Xe] dependence of a three-body association reaction to
yj [process (i) in Fig. 3] followed by vibrational (bound-

to-free) predissociation of XeSr*(yj) excimers to
Xe+Sr(J') [(ii) in Fig. 3], as this would be proportional
to [XeSr*(yj)] and thus to [Xe]. The J change must
occur when two Xe atoms are near the Sr*, and there is
then little diA'erence between the collision of a free Xe
with a bound XeSr (yJ) [(iii) in Fig. 31 or the collision of
two free Xe with Sr (J) [(iv) and (b) in Fig. 3]. (The
only diH'erence is in the distribution of relative velocities
and distances. ) In essence, a simultaneous perturbation
by two Xe atoms produces the observed fine-structure
transitions.
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