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Structure of parameter space for a prototype nonlinear oscillator
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A prototype driven nonlinear two-dimensional oscillator with a limit cycle is studied. Three pa-
rameters a, t3, and y characterize the dynamics: the amplitude a of the external force, the frequen-

cy ratio P between the drive and the natural period, and the relaxation rate y for perturbations off the
limit cycle. Several limiting cases can be investigated analytically. The claim that this model is
representative of a wide class of nonlinear oscillators is substantiated by showing that appropriate
two-dimensional cross sections of the parameter space are qualitatively similar to known special
cases.

Several models of nonlinear-driven oscillators have been
discussed in great detail. The forced Brusselator'

x = 3 —(B + 1)x +x y +a cos(cot),

y=Bx —x y,
is probably the most thoroughly studied model, investigat-
ed by use of various numerical methods. A typical result
is shown in Fig. 1, redrawn from Ref. 2. Another well-
studied system is an exactly solvable nonlinear oscillator,
subjected to periodic kicks, '

In the second model (2) with the values of the parameters
a, b, and coo used in Fig. 2, the relaxation is very fast (i.e.,
I/y=0), and the parameters a and P are simply V~ and
~~/7 p, respectively. It emerges that the published studies
for models (1) and (2) were done for different cross sec-
tions of the three-dimensional parameter space, viz. ,
parallel or perpendicular to the y axis, respectively.

In a recent study a prototype nonlinear-driven oscilla-
tor has been proposed. This model is described by the
following diA'erential equations:

x+x(4bx' —2a)+b x' 2abx'+(c—oo+a')
= V~ g 6(t —nrem), (2)

0.4

8 —3 —1
(3)

whose dynamics can be transformed into a discrete map-
ping of two variables. Results for this model, qualitative-
ly different from those for model (1), are shown in Fig. 2,
reproduced from Ref. 3. In both these two models the
free nonlinear oscillator has a limit cycle enclosing an un-
stable stationary point, while the external force is trying
to drive the system oA' the limit cycle. Further investiga-
tions of this class of nonlinear-driven oscillators is desir-
able, with the purpose of uncovering similarities in the
structure of parameter space.

In order to establish the connection between these
diff'erent structures we have to consider a more suitably
standardized parameter space. Three independent param-
eters in any driven nonlinear oscillator are important, i.e.,
the strength a of the external force, the ratio P between
the two frequencies of the free oscillator and of the exter-
nal force, and the relaxation rate y for perturbations off
the stable limit cycle. For example, for the Brusselator
model (1) one may show that in case of
1+ A (B&(1+2) the latter two parameters are given
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FIG. 1. Structure of parameter space of the forced Brussela-
tor with B =1.2 and a=0.05. The figure is redrawn from Ref.
2. The numbers in the figure indicate the periodicity which is
stable in the corresponding zone, while Q indicates quasiperiodi-
city and CH indicates chaotic regions with embedded periodici-
ties. A dashed line is a boundary between periodic and quasi-
periodic regions, while a dot-dashed line is a boundary of unclear
nature.
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d =1. This nontrivial situation can be exactly reduced to
a one-dimensional mapping. Detailed results for this case
have already been published. ' The parameter space,
now two dimensional, can be divided into three regions.
In the weak-force region a (—,', the system displays
mode-locking and quasiperiodic behavior. In the unimo-
dal region the iteration is confined to an interval where
the mapping is unimodal, and in the standard manner
period-doubling bifurcations and chaotic behavior are
found. In the intermediate region the transition between
the unimodal mapping and the mode-locking behavior
takes place. The last two regions are separated by a line
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Along this line the order of the period orbits is arranged
according to the U sequences.

(ii) y=O. In this case we have C =1, and the two-
dimensional return mapping (5) takes the following form:
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x„+) =x„cos(2~p) —y„sin(2mp) +2a,
y„+)=x„sin(2mp)+y„cos(2~p) .

(7)

FIG. 2. Structure of parameter space of model (2). The figure
is published in Ref. 3. Numbers inside circles indicate stable
periods. (a) Stability zones for period solutions in the plane
(~F. , VE) with a =1.57079, b =15.7079, and co=1.57079. (b)
Enlargement of the rectangle marked in (a).

The unique fixed point is then x *=a and y
' =a cot(n p).

Letting X„=x„—x* and Y„=y„—y', we get

X„+) =X„cos(2mP) —Y„sin(2rrP),

Y„+)=X„sin(2~P)+ Y„cos(2~P),

which is nothing but a one-dimensional circle map '

x =sx (1—x —y ) —y +2a g 6(t 2)rn p), —

y=x+sy(1 —x —y ),
(4)

with s &0, 0 &p& 1, and a & 0. The limit cycle is the cir-
cle x +y = l. If one focuses interest on the state (x„,y„)
of the system immediately after the nth kick, a two-
dimensional return map

x„+) =C [x„cos(2mp) —y„sin(2vrp) ]+2a,
y„+ )

——C [x„sin(2m p)+y„cos(2vrp) ],
results, where

C = [(x„+y„)+ ( 1 —x„—y„)exp( —4my ) ]

with y=sp. If the prototype oscillator (4) is representa-
tive of a wide class of driven nonlinear oscillators, one ex-
pects that it should be possible to show that appropriate
cross sections of the parameter space are qualitatively
equivalent to the results for models (1) and (2). In this
Brief Report, I will show just that. Let us start, however,
by considering several limiting cases which can be dis-
cussed analytically for the prototype model.

(i) yahoo. This is the fast-relaxation limit, and the re-
turn map exhibits a dimensional reduction from d =2 to

8„+) =8„+P (mod 1 ),
with tanO„= Y„/X„. The stable state of the system is a
periodic or quasiperiodic orbit according to whether the
value of p is rational or irrational (the center of rotation
remains, of course, a fixed point).

(iii) For very small y the fixed point moves to

2

1—, +O(y ),
sin (~p)

KlXx =e —y
sin (mp)

y'=a cot(mp)+O(y ) .

In the case of a &
~
sin(mp) ~, the fixed point is outside the

limit cycle x +y =1, and one can show that its neigh-
borhood is length contracting in any direction. The stable
state of the return map is then always a period-1 orbit.
By comparison with case (ii) it is evident that the system
for a &

~

sin(~P)
~

displays singular behavior when y~O.
(iv) For a »1 and y & 0, the fixed point is also outside

the limit cycle x +y = 1. The unique fixed point is
stable since its neighborhood is length contracting in any
direction.

(v) a=O. With no external force, the stroboscopic
period p has no physical relevance. The return map sim-

ply exhibits periodic or quasiperiodic behavior according
to whether p is rational or irrational.

Apart from the above limiting cases the two-
dimensional map must be analyzed numerically. Let us
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and others, in order to verify the similarity with the pro-
totype model (4) in the whole parameter space.
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