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Amplitude calculation near a period-doubling bifurcation: An example
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For the rf-driven Josephson junction, the dynamical behavior is studied near a period-doubling
transition. The center-manifold theorem simplifies the problem and enables us to study only a first-

order system, the parameters of which are expressed in terms of the Josephson-junction parameters.

I. INTRODUCTION

Recently there has been a lot of theoretical as well as
experimental interest in the behavior of physical systems
near a period-doubling instability. In this paper we dis-
cuss explicitly the Josephson junction, which is a well-
established nonlinear system accessible to experimental in-
vestigations.

There are three motives for the present study: The first
two are pedagogical, the third practical.

(i) Theoretically, period-doubling bifurcations are well
understood, proceeding from a bifurcation analysis of a
discrete Poincare map for the dynamics. As a practical
matter, however, there is a gap in this understanding be-
cause the return map typically must be determined nu-
merically from the underlying (differential) equations of
motion. Thus one usually asserts that there is "some
transformation" (whose explicit form is expected to be
quite complicated) connecting the experimentally accessi-
ble control parameters with the theoretically convenient
bifurcation parameters. The present work provides a rare
example where this transformation is written down explic-
itly. Our method uses an "indirect" technique that is
rather simple, and may be usefully applied to other prob-
lems.

(ii) An insufficiently appreciated fact is that there are
two kinds of period-doubling bifurcation, called supercriti-
cal and subcritical, respectively. The supercritical type is
by far the more familiar since it can be directly observed
in experiments and numerical simulations; in contrast, a
subcritical period doubling must be inferred from indirect
evidence. Besides the usual parameter that sweeps
through the period-doubling bifurcation point, the exarn-
ple that we study has a second parameter that continuous-
ly tunes the system between these two types (i.e., we study
a eodi mension-2 bifurcation).

(iii) Josephson-junction systems continue to play an im-
portant role in the study of nonlinear dynamics. For ex-
ample very recent work concerning the effects of swept pa-
rameters' and periodic and random perturbations in
the vicinity of period-doubling bifurcations are well suited
to testing by Josephson-junction circuits. In this paper we
consider a parameter regime directly accessible by real ex-
periments, so establishing the explicit connection between

experimentally accessible and theoretically convenient pa-
rameters is of some practical significance.

The paper is organized in the following way. Section II
contains a qualitative description of the bifurcation. Sec-
tion III gives analytical calculations for the Josephson
junction. In Sec. IV the two approaches are compared
and the bifurcation parameters are derived explicitly.

II. QUALITATIVE DESCRIPTION
OF THE BIFURCATION

x„+t——f (x„;A,) (2. 1)

which in principle can be derived from the starting

Near the onset of a dynamical instability, it is often
possible to drastically reduce the complexity of the
governing equations. That is, for all practical purposes it
is sufficient to consider a very simple equation rather than
the full set of ordinary differential equations (ODE's). In
this paper we focus on the case of period doubling; then
the essential dynamics is captured by a first order non--
linear differential equation, regardless of the complexity of
the original equations.

The origin of this simplification lies in the center-
manifold theorem from the geometric theory of
differential equations. ' ' The situation is illustrated in
Fig. 1, which depicts a stable periodic orbit X in an N-
dimensional phase space with a Poincare section P taken
transverse to X. Typically, any nearby orbit will succes-
sively intersect P in a haphazard way as it relaxes toward
X, and the dynamics is described by an (N —1)-
dimensional iterative map. The situation is quite different
near a bifurcation point: Near a period doubling succes-
sive iterates quickly relax to a one-dimensional curve (the
center manifold) and only slowly evolve along that curve.
It is the slow dynamics that captures the essential behav-
ior, and this depends on only a single coordinate, say x.
(The crucial role of the slow variables has been em-
phasized by Haken' in what he picturesquely calls the
"slaving principle;" the center-manifold theorem gives the
forrnal justification for this cornerstone of the adiabatic
elimination method. )

The dynamics on the center manifold is given by an
iterative map
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FIG. 1. (a) Periodic orbit X forms a closed trajectory in phase
space, and is cut by a transverse section P. (b) Nearby trajec-
tories quickly relax toward a one-dimensional center manifold
(c.m. ) near the onset of a period-doubling bifurcation. On the
c.m. , the dynamics evolves relatively slowly.

xn +1 —~&n +An +1 xg +3 (2.2)

Near a period doubling, a= —1 —p/2, where p is a small
parameter (@=0at the bifurcation point). Looking at the
second iterate yields, up to third order, '

Xn +2 n —P&n &n +3 (2.3)

where a =2(P +y). There are two distinct kinds of
period-doubling bifurcations, depending on the sign of a.
If a ~0, we have the more familiar supercritical bifurca-
tion: As depicted in Fig. 2(a), a stable period-1 orbit goes
unstable at the bifurcation point giving birth to a stable
period-2 orbit. If a ~0 instead, the period doubling is
subcritical: At the bifurcation point a stable period-1 an-
nihilates an unstable period-2 orbit, leaving behind a sin-
gle unstable period-1 solution [Fig. 2(b)j. In the latter
case, higher-order terms must be included to determine
what attractors the system might evolve toward; for the
problem considered below, the quintic term is sufhcient

Xn +2 &n —p&n axn Xn +3 5 (2.4)

The absence of the quartic term can be explained as fol-

differential equations which depend on some set of param-
eters A, . In practice, however, this is an extremely difficult
task and so Eq. (2.1) is taken as a starting point of a
dynamical systems analysis.

Choosing x =0 to coincide with the point XAP [which
is a fixed point of Eq. (2.1)], we expand f(x„;A.) in a Tay-
lor series

FIG. 2. Bifurcation diagrams for period doubling in various
cases: (a) supercritical, (b) subcritical, (c) subcritical with stabil-
izing quintic term included. , stable period 1; ———,un-
stable period 1; ---, stable period 2;, unstable period 2.
The final case displays hysteresis as the control parameter p is
swept back and forth across the period-doubling bifurcation
point p =0.

lows. The proper scaling is given by the condition that all
terms retained on the right-hand side are of the same or-
der, so

p-O(x ), a —O(x ) .

This scaling leads to the vanishing of the quartic term in
Eq. (2.4). The coefficient of the quintic term has been tak-
en to be negative; the sign is crucial to stabilize the dy-
namics, while the magnitude can always be made unity by
a simple linear scaling. The quintic term leads to Fig. 2(c)
in the subcritical (a &0) case; from an experimental point
of view, this case is distinguished from the supercritical
case due to the presence of hysteresis as indicated by the
arrows in Fig. 2(c), and the associated "sudden appear-
ance" of a finite half-harmonic Fourier amplitude rather
than the more familiar square-root law found at the onset
of the supercritical period-doubling bifurcation.

To make an explicit connection between the original
ODE and Eq. (2.4) requires expressions for the parame-
ters p and a in terms of the original parameters A. . In
principle, there is a well-defined procedure for doing this
by directly calculating the equation for the center mani-
fold, but in practice this is a forbidding task. ' (The situa-
tion is somewhat easier' in the case of bifurcations of
fixed points rather than the present case of periodic or-
bits. )

The point of this paper is to demonstrate explicitly the
connection between the driven Josephson-junction equa-
tion and the normal form Eq. (2.4). Our strategy by-
passes any direct center-manifold reduction; rather, we
take a two-step approach. By using harmonic balance on
the ODE, we derive an expression for the half-harmonic
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Fourier amplitude. This quantity is proportional to x„at
the fixed point of Eq. (2.4), and we use this fact to derive
expressions for p and a in terms of the parameters appear-
ing in the ODE.

III. THE JOSEPHSON CIRCUIT CALCULATION

We begin with the usual equation governing the dy-
namics of the driven Josephson junction' (Fig. 3)

Id, +Idcos(cot) =CV+ V/R +Ipsinp, (3.1)

V = (i)1/2e)&j, (3.2)

where fi is Planck's constant divided by 2~ and —e the
electron charge, Eq. (3.1) may be rewritten as

where Id, is the dc bias current, I,f is the current at fre-
quency co, Ip is the maximum supercurrent, R is the resis-
tance, C the capacitance, and (() and V are the phase
difference and voltage across the junction, respectively.
Introducing the Josephson relation

P = Pp+ P~cos(cot —6)+y cos(cot /2)

+x sin(cot /2) (3.1 1)

(3.12)

so that for Q »1 we may take 8=rr in Eq. (3.11).
Balancing terms proportional to cos(cot/2) and sin(cot/2),
respectively, yields after some algebraic manipulations the
following two equations

into Eq. (3.3), expanding sin(t in terms of the small quan-
tities (()~, x, and y. The order of the expansion which is
necessary may be judged as follows. An expansion to first
order gives the small signal plasma resonance, Eqs. (3.6)
and (3.7). An expansion to second order gives a subhar-
monic voltage component growing exponentially in time'
when the threshold condition Eq. (3.10) is satisfied. An
expansion to third order in P~, x, and y will give a satura-
tion of the half-harmonic voltage component, and hence
determines its amplitude to lowest approximation.

Inserting Eq. (3.9) into Eq. (3.7) we find

tanO = —(cp /cop ) /3Q,

P+ Plr+ cposinP = coo [pp+ p icos(cot )], (3.3) 0= —,'yco +x cp/2r+ —,'yP ~ cppsinPp+ycppcosgp

where s=RC, up =2eIp/PC, pp ——Id /Ip, and p~
——I,f/Ip.

In the following the junction is assumed to be dc biased
in the zero-voltage mode (Id, &Ip). For small rf levels

(pi «1) a linearization of Eq. (3.3) gives a solution for P
which is

——,cpocosPo[(t'ty + —,'(y +x y)],
0= —

—,
' x co —y cp /2r —,' xP ) c—opsinPp+ x copcosPp

—
—,'cppcosPp[(t ix +(x +y )/2] .

(3.13)

(3.14)

P =ctip+ cti) cos(cot —0)

where

sin(to ——Ig /Ip,
2 [( 2 2)2+( / )2]—1/2

(3.4)

(3.5)

(3.6) x =r cosP, y =r sing . (3.15)

The amplitudes x and y can be determined from Eqs.
(3.13) and (3.14). The trivial solutions x =y=0 corre-
sponds to the always present period-1 solution. A non-
trivial solution is most conveniently found by introducing

and

tanO=

(cuir�)(cop

—cp ) (3.7)

Inserting Eq. (3.15) into Eqs. (3.13) and (3.14) and elim-
inating f3, we find after some calculations that the ampli-
tude r of the subharrnonic oscillation is given by'

Here the plasma frequency co& is given by

2 2
cop —cppcos(kp . (3.8)

r = +(8/Q) [ [(t,tango/(2/Q)] —(cp/2cp~ ) )
'/

+8[1—(cp/2cop) ) . (3.16)

In order to study period-doubling bifurcations we put

co =2'& (3.9)

since this leads to a bifurcation at relatively low values of
p&. In Ref. 16 it was shown that if the frequency condi-
tion Eq. (3.9) is precisely satisfied, half-harmonic genera-
tion occurs if the threshold condition

P ) tan(t p & 2/Q (3.10)

is satisfied. Here Q =cp~r.
In order to compute period-doubled solutions we insert

& rr &dc C R
I = Iosin cl)

~d 2eV
dt

FICs. 3. Model circuit for the Josephson junction.

„ tan ((io

(&/Qj

FIG. 4. Square of the half-harmonic amplitude r as a function
of the parameter /~tango/(2/Q). Calculated from Eq. (3.1) with

Q =8.
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x„+2—x„=px„—ax„—x„+O(x„) . (4.1)

Recall that x„measures the displacement along the center
manifold, where x„=0corresponds to the place where the
period-1 orbit intersects the Poincare section. More im-

portantly for our purposes, x„ is proportional to the half-
harmonic Fourier amplitude r Equa. tion (4.1) encom-
passes both the supercritical case [a ~ 0, Fig. 2(a)] and the
subcritical case [a &0, Fig. 2(c)].

We are interested in period-2 solutions of Eq. (4.1), ob-
tained by setting x„+2 equal to x„. There immediately
follows

x„=—a/2+[(a/2) +p]'
This should be compared with Eq. (3.16). These expres-
sions are identical if we make the identifications

This is the desired result, giving the amplitude of the
half-harmonic Fourier amplitude in terms of the parame-
ters of the governing ODE Eq. (3.3). Figure 4 shows r
plotted as a function of PttanPo/(2/Q) with (co/2co~ ) as a
parameter, as calculated from Eq. (3.16). For ro=2roz we
see that the amplitude of subharmonic oscillations be-
comes nonzero when /~tango/(2/Q) = 1, in agreement
with Eq. (3.10). This condition separates the supercritical
period-doubling case from the subcritical case, as can be
seen by comparing Figs. 2 and 4.

IV. COMPARISON WITH NORMAL FORM

Armed with an expression for r, we return to the re-
duced dynamical picture. In the vicinity of a period-
doubling bifurcation, the center-manifold dynamics obeys

identification of the parameters) is not restricted to these
special solutions. In fact, this equation should give good
results for the relaxation to the asymptotic states, the
effects of external noise, ' ' ' and also for phenomena as-
sociated with quasistatic variation of parameters, '
Moreover, a straightforward extension of the calculation
presented here will recover the relevant equation for
near-resonantly perturbed period-doubling bifurcations
which have now been seen in a variety of experi-
ments, ' ' including those on the Josephson-junction
circuit.

Second, recall that the sign of a determines whether the
bifurcation is supercritical or subcritical. Thus, we see
from Eq. (4.3) that if (co/2co~ ) & 1 the bifurcation is super-
critical, and if (co/2co~) & 1 it is subcritical. [The cross-
over point (ro/2co~)=1 determines a codimension 2bi-fur
cation ]This. behavior was already seen in Fig. 4; it is
gratifying —but by no means to be expected generally—
that the simple condition from the reduced equation
remains a simple condition in terms of the original control
parameters.

Finally, although Eq. (4.4) is a complicated function-
in fact, this expression does not really do justice to the
complexity, since it uses the quantities Po and P&, which
must in turn be evaluated via Eq. (3.6) and the transcen-
dental Eq. (3.5)—the expected behavior as a single con-
trol parameter is varied is qualitatively the same as if p it-
self is varied. The reason is that (barring exceptional
choices of parameters) a small change from criticality of
any parameter, say cuo, amounts to a similarly small
change in p, i.e.,

x„=r /8,
a = —2[1—(co/2co~) ],

(4.2)

(4.3)

p =F(r, coo, po, pi )

implies that

b,p = (5F/otoo)b coo

1JJ=
QP

P)tango

(2/Q)

2

26)p

2

2Q)p

t 2 2

(4.4)

where the partial derivative is evaluated at the bifurca-
tion point. Thus, any bifurcation diagram is likely to
look just like the ones generated in Fig. 2; this has al-
ready been demonstrated in Fig. 4.

Equations (4.3) and (4.4) are the main results of this pa-
per, giving explicit expressions for the center-manifold pa-
rameters a and p in terms of the original control parame-
ters of the ODE Eq. (3.3).

We close with three remarks. First, although our cal-
culations only made use of "static" solutions of the itera-
tive mapping, the validity of the map (and the specific
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