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First-passage times for non-Markovian processes: Multivalued noise
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A new method for the calculation of first-passage times for non-Markovian processes is presented.
In addition to the general formalism, some familiar examples are worked out in detail.

Recently Masoliver, Lindenberg, and West' have
developed a technique for the solution of the first-
passage-time problem related to stochastic differential
equations driven by dichotomous Markovian or non-
Markovian fluctuations. The method consists of an exact
enumeration of stochastic trajectories to calculate the
probability density function for the first-passage time out
of an interval on a line. Doering has generalized the
method to situations where the noise occurs multiplica-
tively and nonlinearly in the stochastic differential equa-
tion. While such an analysis can in principle be extended
to noise processes that are more complicated than the di-
chotomous fluctuations discussed in Refs. l and 2, the
analysis would be very involved because of the many pos-
sibilities that have to be taken into account. Hence it is
desirable to reformulate the theory in such a way as to
minimize the combinatorial difficulties that accompany
the exact enumeration of trajectories. This will allow us
to reduce the appropriate calculations to ones that can be
carried out numerically if need be, and exactly for a par-
ticular class of separable kernels to be described later on.
The techniques to be developed have been anticipated in
some work by Weiss and Szabo. The same techniques are
applicable to problems in higher dimensions but we antici-
pate that only a limited number of such first-passage-time
problems will be solvable in a useful way.

Let us first consider simple random motion in an inter-
val [O,L] in which the dynamics of the process is linear, in
the sense that

X(t) =F(t) .

We take the velocity F(t) to change randomly among the
members of a set of (n +m + 1) constant values:

F(t) =(vk, k = —m, —m +1, . . . , n ) .

The sign of Uk is determined by the sign of its index, and
vo ——0. Thus, for j &0, U~ represents motion in the posi-
tive x direction and v

~
in the negative x direction. There

are two further sources of randomness in our formulation
of the problem. The first is the fact that F(t) remains at a
constant value U& for a random length of time ~, the prob-
ability density for this time interval being denoted by
Pk(r). The second source of randomness is the process by
which switches are made among the vI, . Here a number
of possibilities suggest themselves. We make an assump-
tion that generalizes the models discussed by Masoliver
et al. '. The random process F(t) switches from the value
Uq to the value Ut with probability ptk, i.e., the switching
can be characterized as a Markov chain.

The origin of the random process X(t) will be denoted
by X(0)=xo, where 0&xo &L. Notice that even if
X(t) =0 [X(t)=L], the random process does not exit the
interval [O,L] at time t unless it is moving in the negative
(positive) direction. The fundamental functions in our
theory will be denoted by Sk (x, t)
(k = —m, —m +. 1, . . . , n) and are defined as follows:

Sk(x, t)dx dt =Probability that the random process X(t) has not exited [O,L] before time t,
and that a switch in velocities to Uk occurs during (t, t +dt)
at which time the process is in the interval (x,x +dx) .

The Sk (x, t) satisfy the set of integral equations

S,(x, t)=p„fi(x —x, )n(t)+ y p„ f'dy f 'drs, (y, r)5[» —y Ut(t r)]gt(t —r)— —
0 0

(4)
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for 0 & x & L (k = —m, —m + 1, . . . , n ), where Pk is the probability that the initial velocity of the system is uq. Here we
have assumed that a switch occurs with certainty at time t =0. Other initial conditions can also be considered. One of
the two integrations in Eq. (4) can be carried out directly using the 6 function in the integrand. We choose to do the
time integrations for l&0 and the spatial integration for the 1 =0 term. Equation (4) then reduces to the simpler form

Pkl LS„(x,t)=P, fi(x x—o)fi(t)+ y' f dy 8((x y)/—ui)Si(y, t —(x —y)/VI)PI((x —y)/vk)

+Pkpf drSp(x, r)gp(t —r),
0

where 8(x):—1 for x )0 and 8(x)=—0 for x &0, and where the prime on the summation denotes exclusion of the 1 =0
term. It is convenient to consider the time Laplace transforms

Si, (x,s)= f "dt e "Sk—(x, t) .
0

From Eq. (5) it directly follows that these transforms obey the integral equations

(6)

n

Sk(x,s) =Pko(x —xo)+ g f dy 8((x y)—luI )e 4i((x y)/u—i)Si(y, s)]v] o

Xp
+Pko So(x,s) .

g+ A,p

(7)

We next consider the quantity of physical interest that
motivates this development, i.e., the probability density
function f(t

~
xp) for the first-passage time out of the in-

terval [O,L]. To express this density in terms of the
Sk(x, t) we need to define the set of probabilities

0'k (t) =—f "dr pk (r) .
t

%z(t) thus is the probability that the velocity uk is re-
tained for a time interval longer than t. Then since ran-
dom processes with positive velocities can only be ab-
sorbed at x =I, and those with negative velocities can
only be absorbed at x =0, it follows that

nf (t
~

xp)= g f dx Si(x, t —(L —x)/vi)%i((L —x)lvI )
1=1 0

—1

f dx Si(x, t —x/
i

vi
i
)+i(xl

i
vi

i
),

I= —m 0

(9)

which furnishes a formal solution to our problem once the
SI(x, t) are known. Here it is understood that Si(x, t)=0—
for negative times. The first set of terms on the right-
hand side of this equation arise from a process moving to
the right. If such a process with velocity v1 &0 is at x a
given time, then it must move towards x =L for a time
that is at least equal to (L —x)/ui. Similarly, a process
with velocity U1 &0 which finds itself at x must continue
moving towards x =0 for at least a time x/

~
u&

~

in order

to exit the interval. This situation is embodied in the
second set of terms in (9). The Laplace transform of
f(t

~

xp) is found directly from (9):

n

f(s
~

xo)= g f dx SI(x,s)e '+i((L x)/ul)—
1=1 0

f dx S((x,s)e ' 4((x/
i

uI
i

) .
I= —m 0

(10)

Pk(t)= . A.kexp( —A.kt), t )0

0, t~0.
With these densities we then rewrite (7) as

Equations (5) and (9) [equivalently, Eqs. (7) and (10)]
complete our solution to the problem of calculating the
probability density function of the first-passage time out of
the interval. In the most general case in which no further
simplifications can be made, Eq. (5) [Eq. (7)] is a con-
venient starting point for the calculation of numerical
solutions for the Sk(x, t) followed by substitutions of the
results in Eq. (9) to find f (t

~
xp).

Let us consider possible simplifications of the formal-
ism. The simplest physical problems for which useful re-
sults can be obtained in closed form are those which lead
to separable kernels in the integral equation (7). To ob-
tain a separable kernel consider the case of exponentially
distributed persistence times for each velocity Uk, i.e.,

Sk(x,s)=Pk5(x —xp) —g f dy SI(y, s)e ' '+ f dy Si(y, s)e ' '+ Sp(x, s) .
U1 0 s +kp

(12)
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U&(p, s)
(14}

Let Uk(p, s) denote the Laplace transform of Sk(x, s)
with respect to x:

Uk(p, s)= f "dx e ]'"S],(x,s) . (13)
0

Although the definition (4) is valid and physically sensible
only for 0(x &L, we can analytically extend Sk(x,s) to
larger values of x for use in Eq. (13). The Laplace trans-
form of Eq. (12) then yields

[ U] (p, s) —C] (s) ]
Ug(p, s) =p/&e + g Pkl~l p]+ + ]

sider three examples that have been discussed in the
literature. One is the Giddings-Eyring model for Aow in
a chromatographic column. This model can be described
by the formalism outlined above with one stationary state
and one mobile state (up ——0, u ] = u ~ 0, Pp =P= 1 —P],
f3Q] —p]Q —1 ). The probability densities for sojourn times
are those appropriate to first-order kinetics for transitions
between mobile and stationary states as originally dis-
cussed by Giddings and Eyring, and have the negative
exponential form given in Eq. (11). Since the process can
only move in the positive x direction, absorption can only
occur at x =L, and xp can be taken as zero. The system
of equations (14) in this case reduces to

where Up(p, s) =p+ Ui (p,s),
PU +s +A. ]

(16a)

C](s):—f dy $](y,s)e (15)
0

Equation (14) represents a set of linear coupled algebraic
equations whose solution is readily obtained.

To carry this illustration of the method further, we con-

XQ
Ui(p, s)=(1—P)+ U (p, s) .

s +kp (16b)

By inverse Laplace transforming with respect to p, these
forms lead directly to the expressions

ApSi(x,s) = (1 —P)+P
$ +Ap

k]A,Q'5lx)+ exp
u (s +Ap)

xs s+kp+
U S+Ap

(17a)

AQ
Sp(x, s) =PS(x)+ (1—P)+P exp

v s+XQ
xs s+ ~Q+ k

U S+Ap (17b)

AQ
(1—P)+P s+ A,Q

X exp
s+ XQ+ k)

U S+Ap
(18)

The solution (17) can now be used to evaluate the time
Laplace transform of the first-passage-time density,

f(s
~

0)=f dx Si(x,s)e

Our second example corresponds to that analyzed by
Masoliver et al. ' and by others using different
methods: We suppose that F(t) is a dichotomous process
that takes on one positive (u] ——u) and one negative
(u ] = —u) value. The transition probabilities have the
value P] ] =P ] ] =1 and the initial velocity is u and —u

with probability P and (1 —P), respectively. This case
differs from the previous example in that the process can
now leave the interval [O,L] through either end. For this
example, the system of equations (14) reduces to

In particular, the mean first-passage time Ti to x =L
is obtained from (18) via the relation' T, (xp)

df(s
~
xp)IBs ~, —

U ](p,s) =(1—P)e '+ U](p, s),
(pu +s+A. )

U](p, s) =Pe ' — [U ](p,s) —C(s)],
(pu —s —A, )

(20a)

T](0)= + 1+P ~] L
kp Ap U

(19)

where we have set A, i ——A, ] =A, and

(20b)

The first term in (19} is the contribution that arises from
an initially stationary phase, while the second is a simple
weighted average of subsequent mobile and stationary in-
tervals. Because the motion is strictly unidirectional, Ti
is linear in the length of the column.

C ](s)=C(s)=f dyS ](y,s)e ' +'~ '
0

(21)

The solution of the set of simultaneous linear equations
and their Laplace inversion with respect to p is straight-
forward and yields

2
S](x,s)=p 5(x —xp) — e(x xp)(e p e &

) + C(s)[(~ +~)epx+( ) px]2qv 2qv

A.(1—]t3) e(x —xp)[(q+&)e ~ +(~ ~)e-"-"]
q [& —&0) —q(x —xo)

2vq (22a)
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2
( )S i(x,s)=(1—P) 5(x —x())— 6(x —xp)(e ' —e '

) + C(s)(e~"—e q )
2qv 2qU

+(1—)(3) 6(x —x())[(q+a)e ' +(q —a)e ' ],
2qU

(22b)

where

and

a:—(k+s)/v,
q(2/2/ 2)l/2

(23)

(24)

C(s)=[(q+a)e~ +(q —a)e ~ ] '{(1—P)[(q+ )
' +(q )

' ""]+—p(
V

(25)

Substitution of (22)—(25) into (10) finally yields the Laplace transformed first-passage-time distribution obtained previous-
ly. ' The mean first-passage time out of the interval [O,L] starting from xp is'

(1 P) —PTi(xp) = (L —xp)xp+ xp+ (L —xp) —.
V U U

(26)

The first (quadratic) term in (26) is typical of diffusive motion while the remaining (linear) terms arise from the ballistic
motion between velocity changes.

The third example that we consider is one in which the velocity is randomized at each s~itch independently of its pre-
vious value, i.e. , the transition probability )(3)d

——)(3k is independent of 1. The switching process is then no longer a Markov
chain, but rather an independent process in the velocities. This model is similar in spirit to that of Gordon in his study
of rotational relaxation in fluids, wherein the angular momentum is randomized at each collision. In this model it is no
more dificult to deal with a continuum of velocities than with a discrete set. We define the function

( Ld g ( )
—(k, +~)(» —y)/~, I »d + ( )

—(2, +~)(» y)/~, —
y I y, s e + y I yse

I = — Vl I lvl 0

and note that (12) can be reexpressed entirely in terms of this density:

S +kp
D(x, s) = g(x —xp, s)6(x —xp)+g(xp —x s)6(xp —x)s+(1—Pp)A, p

+ f dy g(x y, s)D(y, s)+ f d—y g(y x,s)D(y, s)—
0 X

(28)

where
=c independent of k (31)

(, )— k —(s + A, ~ )~ /U&
g X,S

k)p Vk
(29)

X[fi(x —xp)+D(x, s)l .

In writing (28) we have taken the velocity distribution to
be symmetric, i.e., m =n, P ), =/3k,

The transformed mean first-passage-time den-
sity (10) then is

y(
~

) ~ Pk s+ P) f L —(s+lp)(L —»)/ui

&ps+(1Pp)happ

and

k)0
1k=
2 (32a)

the problem becomes tractable. With this choice the pro-
cess retains lower velocities for longer times. Since for ex-
ponentially distributed switching times only the distance
traversed in a given times is of importance in calculating
the first-passage time, the choice (31) together with f3p=O
reduces this problem to the second example above. In
particular, with the relations

k
(32b)

The integral equation (28) is in general difficult to solve
analytically for arbitrary transition probabilities Pk, veloc-
ities vk, and persistence times kk '. However, if one
chooses

and the identification )(3= —,', I3/v=@, and A, =c/2y in
(26), the latter result is the mean first-passage time out of
(O, L) in the current example.

We have developed a new approach to the problem of
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calculating erst-passage times for processes driven by
colored noise. The method is particularly suited to nu-
merical solution. Herein we have presented simple exam-
ples that lend themselves to analytic solution. We wish to
point out some generalizations that can easily be incor-
porated into this technique.

Although we have concentrated on linear processes
[viz. , Eq. (1)], one can easily consider more general
dynamical processes of the form

(33)

with the random function F(t) defined as in (2), as was

done in earlier work. ' A second generalization that is
conceptually straightforward is to a continuum of possible
velocities instead of the discrete set used in this paper.
Formally, this is accomplished by the replacement
gk~ fdu p(U) where p(U) is the distribution of velocities.

Finally, one can handle forms of the switching time distri-
butions g(t) other than the exponentials considered in the
above examples. '
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