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Period-doubling cascades and devil s staircases of the driven van der Pol oscillator
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Bifurcation diagrams of the driven van der Pol oscillator are given showing mode-locking and
period-doubling cascades. At low driving amplitudes locking regions occur following Farey se-

quences. At high driving amplitudes this relationship is destroyed due to the appearance of period-

doubling cascades and coexisting attractors. A generalization of the winding number is used to com-

pute devil's staircases and winding-number diagrams of period-doubling cascades. The winding

numbers at the period-doubling bifurcation points constitute an alternating sequence that converges

at the accumulation point of the cascade.

I. INTRODUCTION

The van der Pol oscillator

x+d(x —1)x+x =acos(cot)

or equivalently written

X) =X2

x2 ———d(x i
—1)x2 —xi+acos(2nx3),

NX3= 2'
is one of the most intensely studied systems in nonlinear
dynamics. ' ' It serves as a basic model of self-excited
oscillations in physics, electronics, biology, neurology, and
many other disciplines. Many extorts have been made to
approximate the solutions of (1) (Refs. 2 —9) or to con-
struct simple maps that qualitatively describe important
features of the dynamics. ' " Although some of these
maps possess strange attractors no investigation of the
original equation (1) concerning chaotic solutions is
known to the authors. In this paper we therefore want to
give examples of bifurcation diagrams of the driven van
der Pol oscillator (1) showing, besides other features, com-
plete period-doubling cascades. A new quantity called
(generalized) winding number that has been introduced re-
cently in connection with nonlinear resonances of driven
dissipative oscillators' is used to describe the topological
changes of the local flow around a period-doubling orbit.
Furthermore we present a devil's staircase based on this
(generalized) winding number and discuss its (fractal) di-
mension.

within the three-dimensional phase space.
Figure 2(a) shows the Poincare cross section of a typical

quasiperiodic attractor. The corresponding orbit
t (x i~~2& ),n CZI of the Poincare map is restricted to an
invariant circle and may therefore be described by a one-
dimensional circle map, called attractor map. The angles
e„of the orbit points (x i~,x 2~ )(n = 1,2,3, . . . ) with
respect to the origin within the invariant circle are used to
parametrize the attractor map 6„I 8„+~. The graph of
the map obtained in this way is shown in Fig. 2(b).

When the driving amplitude a is increased the periodic
windows become larger. Figure 3 shows a bifurcation di-
agram for a=2.5. Between the co intervals where mode
locking with (small) odd periods 1,3,5,7, . . . takes place
periodic orbits with large periods and quasiperiodic orbits
occur. A section of Fig. 3 showing details of the parame-
ter interval between the period-3 and the period-5 oscilla-
tions is given in Fig. 4. Numerical investigations of the
other intervals (e.g. , period-5 to period-7, period-7 to
period-9, etc.) have shown that all intervals evolve in the
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The following bifurcation diagrams show the strobed
amplitude of the oscillations (i.e., projections of the attrac-
tors in the Poincare cross section onto the coordinate Xj~
of the cross section) versus the excitation frequency co.
The damping parameter is held constant at d=5. Figure
1 shows a bifurcation diagram for a=1 and O~cu(1.5.
Quasiperiodic and periodic oscillations (mode-locked
states) occur. All trajectories lie on an invariant torus

FIG. 1. Bifurcation diagram for a=1 showing the first coor-
dinate Xl~ of the attractor in the Poincare cross section versus

the excitation frequency co that has been increased in small steps.
After each step the last solution has been used as new initial
value. All oscillations with even periods occur by pairs, where

only one of the coexisting attractors is plotted here and in the
following diagrams.
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FIG. 4. Bifurcation diagram for a=2.5, showing an enlarged
section of the bifurcation diagram given in Fig. 3. The parame-
ter interval between the period-3 and the period-5 oscillation
given here may be viewed as a prototype of all the large-period
intervals in Fig. 3 ~

1.0
(b)

0.5—~Ii+1

0.0
0.00

I

0.25 0.50

I

,/

I

0.75 1.00

FIG. 2. (a) Poincare cross section of an attractor lying on an
invariant torus in phase space. (b) Attractor map of the attractor
shown in Fig. 2(a) ~

same way, when the excitation amplitude a is varied.
This phenomenon is similar to the superstructure ob-
served in the bifurcation sets of the Duffing equation, ' '
the Toda oscillator, ' and the driven pendulum. ' The su-
perstructure of the bifurcation set of a driven nonlinear
oscillator arranges a specific fine structure of bifurcation
curves (surfaces) in the parameter space in a repetitive or-

der that is closely connected with the nonlinear reso-
nances of the system. The co interval shown in Fig. 4 may
be viewed as a prototype of all the other intervals between
the entrainment regions with (small) odd periods occur-
ring in Fig. 3.

As the van der Pol oscillator is a symmetric system os-
cillations with even periods must occur as pairs of two
asymmetric coexisting solutions. ' In all bifurcation dia-
grams given here only one of these two partner orbits is
plotted. The coexistence of asymmetric attractors is a
feature of the van der Pol oscillator that differs from the
scenario of the ordinary sine circle map. Figure 5 shows
the largest Lyapunov exponent of the Poincare map
versus the driving frequency co. It is nonpositive in the
whole m interval, i.e., no chaotic states occur in this pa-
rameter range. A similar investigation of the larger co in-
terval shown in Fig. 3 led to the same result.

III. GENKRAI. IZED WINDING NUMBERS

Besides bifurcation diagrams plots showing the winding
number in dependence on the excitation frequency are
very useful to analyze the complicated parameter depen-
dence of mode-locked oscillations. In Ref. 5 we intro-
duced a definition of a winding number based on the tor-
sion of the local flow around a given orbit. In contrast to
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FIG. 3. Bifurcation diagram for a=2.5 (compare Fig. 1). Be-
tween the extended locking regions of period 1,3,5,7, . . . parame-
ter intervals with large-period oscillations occur each of them un-
dergoing the same bifurcation scenario when the excitation am-
plitude a is increased.

—0.6
2.040 2.112

I

2.184 2.256
I

2.328 2.40

FIG. 5. Largest Lyapunov exponent A. ,„versus driving fre-
quency co (compare Fig. 4 and Fig. 7).
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the ordinary definition of the winding number' ' this lo-
cal concept does not need an invariant torus in phase
space. In the following we briefly want to motivate the
definition of this new quantity. Let y be an orbit of the
van der Pol oscillator associated with the solution
x (r) =(x i(t),x z(t), x3(t)) of equation (1) and let y' be a
neighboring orbit of y given by the solution
z(t)=—x(t)+y(t) of (1). The perturbation y(t) is assumed
to be (infinitesimally) small. Then the local torsion of the
Bow is described by the rotations of the difference vector
y(t) about y (compare Fig. 6). The time evolution ofy(t)
is given by the variational equation (2) of (1)

yz = —(2dxix:+ 1)yi —d(x i
—1)yz, (2)

i = r
I [1—(2dx ix2 + 1)]sina cosa

—d(x
~

—1)sin~a
I

tz = —(2dxixz+ 1)costa —d(x i
—1)sina cosa

2—sin a .

(3)

The mean angular velocity 0 of the difference vector y (t)
is given by

1 t, a(t) —a(0)A(y)= lim — a dr'= lim
t 0 1' oo

(4)

We call A(y) the torsion frequency of the orbit y. From
(2) it is easy to see that A(y) is always negative. We use
the torsion frequency Q, ~ of the driving harmonic oscilla-
tor

To describe the torsion of the local (i.e. , linearized) fiow
only the first two equations of (2) are of importance (be-
cause y, =const). Using polar coordinates (y, ,y z )

= (r cosa, r sinter) we obtain the (reduced) variational
equations in polar coordinates (3)

to define the winding number w = w(y) as

w() )= fl( y')

Bg

The quantity m is ca/led winding number because it
equals the ordinary winding number as long as an invari-
ant torus exists (compare Fig. 6). Especially in those
cases where the (Poincare) cross section of the torus
differs strongly from the shape of a circle m is much easier
to compute than the ordinary winding number. Therefore
definition (6) may be useful for the investigation of conser-
vative systems, too. An alternative derivation of (4) using
the QR decomposition of the linearized flow map and fur-
ther details can be found in Ref. 15. In contrast to al-
ready existing concepts of winding or rotation numbers
our winding number w is also well defined for systems
that do not possess an invariant torus in phase space or
where the torus is broken. It enables the description of
physical systems with coexisting at tractors and the
definition of winding numbers of strange attractors. We
conjecture that in the case of chaos the limit (4) exists in
the same sense and under the same conditions as that of
the Lyapunov exponents. For periodic oscillations with
period (number) m we call

n =mul

the torsion number of the closed orbit y. The torsion
number is a suitable quantity to classify saddle node and
period-doubling bifurcation curves (surfaces) in the pa-
rameter space of one-dimensional driven dissipative oscil-
lators. Furthermore it may be used to give an exact
definition of resonance that does not depend on the ex-
istence of an invariant torus. ' We call a periodic oscilla-
tion resonant when it possesses an integer torsion num-
ber"

IV. A DEVIL'S STAIRCASE

Figure 7 shows a winding-number diagram correspond-
ing to the bifurcation diagram in Fig. 4. Every "step" on
the "devil's staircase" is associated with a rational value
of m. The numerator of this rational number m is the tor-
sion number n of the orbit and the denominator its period
m. A diagram showing the inverse period 1/rn versus the
excitation frequency is given in Fig. 8 to elucidate the

0.34
d= 50 a = 2.5

0.31—

0.28—

0.25—

3
11

1
4

FIG. 6. A trajectory y and its neighboring orbit y'. The tor-
sion frequency measures the mean rotation frequency of the
difference vector y with respect to y. If the attractor lies on an
invariant torus the generalized winding number (6) equals the or-
dinary winding number because the number of "windings" of the
trajectory y equals the number of rotations of the difference vec-
tor y.
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FICx. 7. Winding-number diagram for a =2.5 corresponding
to Fig. 4 showing a devil's staircase.
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self-similarity of the staircase. As can be seen from the
diagrams in Fig. 7 and Fig. 8 the winding number in the
locking region follows Farey sequences up to high order.
Bak, Bohr, and Jensen showed numerically that in the
case of the one-dimensional sine circle map the comple-
ment of the locked states may become a fractal set with
dimension D =0.868. . . . In this case the staircase is
called a complete devil's staircase. Meanwhile the value
D=0.868. . . for the dimension of the complete devil' s
staircase has also been found in a hydrodynamical experi-
ment and other systems. A renormalization approach
has confirmed the conjecture that this value of D is
universal for a certain class of one-dimensional maps.
Unfortunately it is not easy to compare these results of
the circle map theory with the corresponding scaling be-
havior of general systems such as the van der Pol oscilla-
tor. In the case of the circle map the critical curve in pa-
rameter space where the staircase becomes complete is a
well-known straight line. In general, however, almost
nothing is known about this curve. Even theorems con-
cerning its smoothness features or algorithms to trace it
do not seem to exist. Only some methods to locate it ap-
proximately in the parameter space are mentioned in the
literature (e.g. , Refs. 20 and 22). When we apply the
technique described in Ref. 23 to the devil's staircase in
Fig. 7 we obtain approximants D" of the fractal dimen-
sion that range between 0.7 and 0.9. These results may
be interpreted in a way that is compatible with the conjec-
ture that 0.868. . . is a universal dimension of complete
devil's staircases of continuous systems, too. Details of
this investigation will be given elsewhere.

chaotic orbit [Fig., 9(d)]. The Poincare cross section of
this chaotic attractor consists of four very thin islands.
Figure 10 shows the Poincare cross section of the chaotic
attractor at co=2.466 (compare Figs. 11 and 12). A part
of the attractor is blown up to emphasize its very thin
structure. The Lyapunov dimension has been determined
to DL ——1.014. Figure 11 shows a bifurcation diagram of
this period-doubling cascade into chaos. In Fig. 12 an en-
largement of the period-doubling cascade and diagrams of
the corresponding Lyapunov exponents and winding
numbers are given. In the period-doubling cascade the
winding number is constant near bifurcation points. '

a=5

V. PERIOD-DOUBLING CASCADES

When the excitation amplitude a is increased further
the locking intervals in the diagram become wider and in-
tervals with smaller periods compress or remove those
with larger periods. Then the invariant torus is destroyed
and symmetry breaking and (first finite) period-doubling
cascades occur. Figure 9 shows a sequence of trajectories
in the projection onto the (x~,xq) plane of the lR XS'
phase space. In Fig. 9(a) a symmetry-broken trajectory of
(basic) period 4 is given. It successively period doubles to
period 4X2 [Fig. 9(b)], period 4X2 [Fig. 9(c)], and to a
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FIG. 8. Period diagram for a=2.5 showing the inverse 1/m
of the period m of the oscillation vs the excitation frequency co.
(Compare Figs. 4, 5, and 7.)

FIG. 9. Period-doubling sequence of a (basic) period-4 attrac-
tor. The damping parameter d and the driving amplitude a
equal 5. (Compare Figs. 11 and 12). (a) Period-4 attractor. The
orbit repeats after 4 periods of the driving as indicated by the
crosses. (b) Period-4)& 2' attractor. (c) Period-4)& 2 attractor.
(d) Period-4 chaos.
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The height of these steps in the winding-number diagram
is given by a simple formula similar to the result for the
torsion number in a period doubling cascade. ' ' At the
kth period-doubling bifurcation point of the cascade
shown in Fig. 11 the winding number w takes the value

1.92— d = 5.0

0.60—

a=50
C

j

l)k
wg =w~ +

3mp2

where w is the winding number at the accumulation
point of the period-doubling cascade. w is given by the
(basic) winding number wo and the (basic) period mp of
the locking region (Arnold tongue) where the period-
doubling cascade takes place,

d= 5 a= 5.0 co= 2.466
~1 = 0.249 + 0.0013
X2 ———17.420 + 0.0755.0—
DL = 1.014
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FIG. 11. Bifurcation diagram of the period-3 to period-5 in-
terval for a=5 showing complete period-doubling cascades into
chaos. Owing to the symmetry of the system for each period-
doubling cascade a counterpart exists (which is reached from
other intial conditions) that is not plotted here.
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The period doublings shown in Figs. 9 and 12 occur in
the locking region with wp ———,

' and mp ——4. Therefore
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' and the winding numbers are w
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. (see Fig. 12). This parameter

dependence of the winding number in a period-doubling
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FIG. 10. Cross section of the strange attractor at x3 ——0 for
d=5, a=5, and co=2.466 (compare Figs. 11 and 12). Inserted
in the plot of the whole attractor (a) are the Lyapunov ex-
ponents A.

&
and A, ~ of the Poincare map and the Lyapunov di-

mension DL which equals almost one. This very small value of
DL is consistent with the very thin structure of the attractor
shown in the enlargements (b) and (c).

0.10
2.457 2.460

1

2.463 2.466

FIG. 12. Enlargement of the bifurcation diagram shown in
Fig. 8 and the corresponding evolution of the largest Lyapunov
exponent k and the winding number w.
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cascade describes the evolution of the invariant mani-
folds of the attractor. ' ' Some period-doubling cas-
cades of the van der Pol oscillator (e.g. , the period-
13)&2" cascade between co=2.4711 and 2.4765 in Fig. 11
with wo ———,', , to~ ——2'6, to2 ———,', , . . .) do not obey the law

(8) but instead the very similar formula,

1.08

Xyp

0.06—

—0.45—

d = 5.0 a = 4o.o

1)k
wk =w

o2

1
w~ =wo+

3mo

(10)
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The two (empirical) recursion schemes (8) and (10) apply
to the period-doubling cascades of many other nonlinear
oscillators, too. ' ' That two kinds of winding-number
sequences occur may be understood by looking at the
logistic map. There the winding number is simply given
as the relative number of R's in the R —L string of the
symbolic description of the dynamics, and the formulas
(8) and (10) are immediate consequences of the construc-
tion law for the symbolic strings upon period doubling.
Beyond the accumulation point of the period-doubling
cascade the winding number describes the geometry of the
strange attractor. Details will be given in a forthcoming
paper.

At even higher excitation amplitudes the bifurcation di-
agram becomes very complicated due to a multitude of
coexisting attractors and period doubling cascades. As an
example, Fig. 13 shows a bifurcation diagram for a=40.
At ~=5.06. . . the period-1 attractor undergoes a Hopf
bifurcation and an invariant torus in phase space is creat-
ed. In those parts of the diagram where period-doubling
cascades occur the torus is destroyed again or the period-
doubling attractors coexist with the torus. A detailed in-
vestigation of this part of the parameter space will prob-
ably yield further interesting results.

VI. CONCLUSION

Mode-locking phenomena and period-doubling cascades
of the driven van der Pol oscillator have been investigated.
In both cases a new quantity called (generalized) winding

FIG. 13. Bifurcation diagram for a=40. A Hopf bifurcation
and period-doubling cascades occur.

number was used to describe the dynamical behavior of
the system and its parameter dependence. As long as all
attractors lie on an invariant torus the winding-number
diagrams show the well-known devil's staircase scenario.
For large driving amplitudes, however, the invariant torus
may be destroyed and period-doubling cascades into
chaos occur. The winding number wk at the period-
doubling points constitute an alternating sequence con-
verging at the accumulation point of the period-doubling
cascade. This sequence describes the folding and unfold-
ing process of the invariant manifolds. ' ' For large driv-
ing amplitudes the Farey ordering is destroyed and many
periodic, quasiperiodic, and chaotic at tractors coexist.
Details of this part of the parameter space will be pub-
lished elsewhere.
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