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We present a quantitative theory of the scaling properties of Julia sets, using them as a case model
for nontrivial fractal sets off the borderline of chaos. It is shown that generally the theory has a
"macroscopic" part which consists of the generalized dimensions of the set, or its spectrum of scaling
indexes, and a "microscopic" part which consists of scaling functions. These two facets are formally
and computationally equivalent to thermodynamics and statistical mechanics in the theory of many-

body systems. We construct scaling functions for the Julia sets and argue that basically there are two
di6'erent approaches to this construction, which we term the Feigenbaum approach and the Ruelle-
Bowen-Sinai approach. For the cases considered here the two approaches converge, meaning that we
can map the theory onto Ising models with finite-range interactions. The largest eigenvalue of the
appropriate transfer matrix furnishes the thermodynamic functions.

I. INTRODUCTION

The aim of a quantitative theory of nontrivial (i.e.,
non-self-similar) fractal sets is to provide tools for the pre-
dictions of the properties of the set based on some limited
amount of information. For strictly self-similar sets this
task is trivial; knowledge of a few steps of refinement of
the set is sufhcient for carrying on the refinement ad
infinitum Unf.ortunately (or fortunately?) fractal sets
that appear in nature are often nontrivial and have a spec-
trum of scaling indexes. Sets of this kind are called mul-
tifractals. ' These sets can be described in two funda-
mentally diferent ways. On the one hand, one can seek
global descriptions which enable one to predict the overall ~

properties of the multifractals. On the other hand, one
should seek a more detailed type of approach which en-
ables one to get a more detailed description of the local
properties of the fractal. This distinction is similar to the
distinction between thermodynamics and statistical
mechanics. Thermodynamics provides characterization of
macroscopic systems in terms of their intensive variables
(temperature, pressure, etc. ) and their thermodynamic
functions (free energy, entropy, etc.). Statistical mechan-
ics provides tools for the calculation of these functions
from the knowledge of the Hamiltonian.

There have been several apparently independent threads
of recent work in which statistical mechanics and thermo-
dynamics have been employed to describe fractal behav-
ior. Most explicitly, Ruelle, Bowen, ' and Sinai" have
developed a highly mathematical formalism, most particu-
larly for the fractals called Julia sets' ' (see below), in
which one-dimensional statistical mechanics and thermo-
dynamics play an essential role. Part of our work will fol-
low from this approach (see also Refs. 15 and 16). An al-
ternative approach is based on Feigenbaum's scaling func-
tions, o., ' which furnishes an alternative source of a ther-
modynamic formalism. ' ' %e shall make the connec-
tion between these two approaches in this paper.

Recently, a phenomenological approach to the charac-
terization of fractal sets which plays the role of thermo-

dynamics has been proposed and advanced. ' The
basic idea is to consider a continuous spectrum of general-
ized dimensions. These are defined as follows: ' Given a
partition of the set into "balls" of radius l;, one focuses on
a measurable quantity p and measures its value in the ith
ball, yielding a number p;. For concreteness we shall
focus here on one such measurable property, i.e., the
probability measure. Next one forms the partition func-
tion

1(q,r)= gp; /qI

Choosing a value of q, and seeking the supreme (infimum)
of I (q, r) for q & 1 (q & 1) over all partitions, one finds in
the limit maxi;~0 that I (q, r) goes to infinity for r & r(q)
and to zero for r & r(q) This defi.nes the quantity

r(q) =(q —1)Dq, (1.2)

p;=l '.
With the help of the pseudoprobability g;(q),

g;(q) =I (1.4)

it is easy to see that

t)[r(q)]/t)q = g g;(q)a; = (a ) (q) . (1.5)

In addition, iff (q) is defined by

f((a) {q))= g g;(q)logg;(q)/logl, (1.6)

where Dq is the generalized dimension. In particular,
Dq —0 is the HausdorA dimension. It will be argued below
that r(q) [or rather q(r)] assumes for the problems at
hand the role that the free energy has in thermodynam-
ics. ' ' The place of entropy and energy is taken by vari-
ables conjugate to r and q, denoted in Refs. 7 and 8 by f
and e. To see the meaning of these, consider a partition
into a uniform grid of boxes of size I, and define a; (Refs.
6 and 7) by
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then one has

f =q() [r(q) ] /Bq —r(q) . (1.7)

~q(~) y (( )
—~ (1.8)

In general N, grows exponentially, and we can write
N„=a'. This means that we can arrange the N„balls on
a tree (binary for a & 2, ternary for 2 & a & 3, etc. ), and
write the index i as a sequence of binary, ternary, etc. ,
numbers (Ei, . . . , E„). Equation (1.8) then reads

Equations (1.4) —(1.7) are the "canonical" counterparts of
the microcanonical definitions of Ref. 7. The analogy to
statistical mechanics is obvious.

A question that was clarified only recently' '' is "what
is the analog of the Hamiltonian, what is the microscopic
information?" An answer is obtained by considering par-
titions such that p, =const. If we have N, boxes in the
nth step of refinement of the set, then p; =N, '. Defining
r(q) by that value of r for which I (q, r) = 1, we get from
(1.1) a relation

~(En&En —li ~ ~ ~ ~ El ) O( En~ En —1 ~ ~ ~ (1.10a)

However, we shall also consider a formalism in which the
I's are chosen to make the function o depend most strong-
ly upon the first elements in the symbol sequence, and
very weakly upon the last. In this case we write, instead
of (1.10a),

0'(E„,E„ i, . . . , Ei) =(T(Ei,E2, E3, . . . ) (1.10b)

Since the sets are in general non-self-similar, the scaling
function o depends in principle on the entire history
(Ei, . . . , E.„+1). For such cases we are not in a position
to produce useful theories. If we find, however, a way
that generates a scaling function that depends most
strongly on the head (or the tail) of the symbol sequence,
and very weakly on the tail (or head) of the sequence, we
can proceed. By making the appropriate choice of the
quantities l(E„, . . . , E)) one can produce a scaling func-
tion which depends most strongly upon the high-order di-
gits of the symbol sequence. Hence in this case we can
write the large-n scaling function as

a "q' = g [l(E„, . . . , E)))

Performing two steps of refinement we get"

I
~(E. +1 El)

~

(1.9a)

~ ~

O (E„~), . . . , Ei)
~

l (E„, . . . , Ei )
~

for large n. For now, we do not have to specify which
case we are considering. Inserting (1.10) in (1.9) we get

q( ) l(E„, . . . , E, )
i

(1.9b) =a'" g ~

l(E„, . . . , Ei)
~

En

The microscopic information is carried now by the so-
called scaling function, ' '' 0 (E„+1, . . . , E(), which is the
daughter-to-mother ratio

l(E„+), . . . , E) )/l(E, , . . . , E) ) =O (E„+), . . . , E)) .

(1.10)

%'e find' ' that whenever the scaling function for large n

depends only on one end of its symbol sequence, then as
n~ oo, q„(r)~q(r). To see how this works note that Eq.
(1.11) can be brought to an eigenvalue equation by adding
summations and Kronecker 5 functions:

~It +1& ~1
I I

~n

5,O(E„~), . . . , E))
~

l(E„', . . . , E2, E))
~

=(2 " l(E„, . . . , E, )
i

(1.12)

Define now the transfer matrix T by

( I I

En + 1 E2
l

T En ' E2 El ~

=O(E„+1, . . . , Ei)6 6
~n ~n c2E2

(1.13)

For large n, Eq. (1.12) can be considered an eigenvalue
equation. If o. depends weakly upon either end of its
symbol sequence, one can truncate the transfer matrix by
simply neglecting the matrix indexes that do not appear in

q„(7 )o.. In the large-n limit a " becomes the largest eigenval-
ue of this truncated matrix.

aq"=k(~) . (1.14)

In particular k(~) is independent of n. But this kind of
formalism involving a transfer matrix and eigenvalues is
the usual way of expressing problems in one-dimensional
statistical mechanics. The mapping onto statistical

I

mechanics is then complete. We have mapped the process
of refinement of the set onto an Ising (or Potts) model
problem where the length of memory in cr is the range of
interaction and the number of values that E, takes on is
the number of spin states. The thermodynamic informa-
tion q (r) is then calculable from the largest eigenvalue of
the transfer matrix.

The mathematical aspects of the thermodynamic for-
malisrn were worked out in the papers of Ruelle,
Bowen, ' and Sinai" (RBS). The most extensive calcula-
tions have been done for the strange sets that appear in
dynamical systems at the borderline of chaos. ' ' There
are a few features that make these sets particularly easy:
(i) They are embedded in one dimension, (ii) the
Lyapunov number is 1, so that length scales are neither
stretched nor contracted on the average, and (iii) they are
well ordered in the sense that the orbits come close to a
critical point of the mapping (where lengths contract
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sharply) ever so rarely (in period doubling every 2" itera-
tions, for golden-mean orbits every Fibonacci number of
iterations, etc.). The scaling functions could therefore be
arranged to have exponential decay in their dependence
on the symbol sequence.

In this paper we apply the scaling theory to strange sets
that do not belong to the borderline of chaos. We choose
to remain within dynamical systems because the theory of
those is so much advanced compared to other fields in
which strange, nontrivial sets appear. The examples that
we decided to focus on are the Julia sets of analytic (con-
formal) mappings of the plane onto itself. ' ' The Julia
set is a strange repeller. ' In the case considered here it is
an invariant set which divides the plane into two parts:
points that iterate to infinity and points that iterate to a
stable fixed point. It is also an example of a "basin
boundary. " The dynamics on the invariant set is chaot-
ic in the sense that the orbits of two nearby points diverge
exponentially. The advantage of this set compared to gen-
eric strange attractors is that we have adequate under-
standing of its symbolic dynamics, distribution of periodic
orbits, etc. We thus relax some of the conditions that
characterize systems at the borderline of chaos. The
Lyapunov number is not 1, and the sets are embedded in
two dimensions. However, they are quasi-one-
dimensional because the mapping is conformal, and they
are well ordered. It will be seen below how this facilitates
the construction of a theory. The sets and their symbolic
representations will be detailed in Sec. II.

In light of the Introduction above, it is clear that the
first aim of the theory is to achieve scaling functions
whose dependence on the symbol sequences converges fast
(if possible, exponentially). We shall see that there is no
unique way of obtaining such convergence. Basically
there are, however, two fundamentally different ap-
proaches. One yields scaling functions that depend most
strongly on the tail of the symbolic sequence. We call
this the Feigenbaum approach, since this is the property
of the Feigenbaum scaling functions for the period-
doubling problem, for example. ' The other approach re-
sults in scaling functions that depend most strongly on
the head of the symbol sequence. We call this the RBS
approach since it is intimately related to the thermo-
dynamic theory of dynamical systems. ' ' Although the
two approaches converge in the case studied here, and in
fact can be shown to be asymptotically equivalent, they
are not going to be equivalent in general. The two ap-
proaches, their results, and their comparison are explained
in Secs. III and IV.

The calculation of the thermodynamic quantities [i.e.,
q(r)) from the statistical mechanical counterpart is sum-
marized in Sec. V. Section VI offers conclusions and
comments on the road ahead.

oo, iz f)1
lim g "(z)= '0 (2.2)

The borderline is the invariant circle
~

z
~

=1. For C&0
the borderline is no longer smooth, but for c small enough
it remains connected, and in fact is a Jordan curve (i.e., a
curve that divides the plane into two parts —an inside and
an outside). '

All the results reported below hold equally well for c
real or complex. For the sake of exposition consider
here the case of real c. In the range ——,

' (c ~ —,
' the map

has two real fixed points, where the smaller one is stable
(and does not belong to the Julia set) and the large one is

I.O—
C = -0.15 (a)

0-

-1.0-

-I.O
1

0 I.O

I.O—

-I.O—
'~

where z =x +iy and c in general complex. The nature of
the Julia set' ' can be understood by taking the case
c =0. Then

II. THE JULIA SET

A. General remarks
I

-I.O

Consider the mapping

z'=g (z)=z'+c, (2.1)

FIG. 1. The Julia set with e = —0. 15. (a) All preimages up
to order 8, (b) all periodic points up to order 8. The axes in this
and the following figures are Imz and Rez.
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unstable (and belongs to the set). The larger fixed point
lies at the point z= —,'+( —,

' —c)' . Here and below the
sign of the square root is chosen with the convention
that all surds have a non-negative imaginary part. If the
imaginary part vanishes, the real part must be positive.
This convention will be used below to define the symbol
sequence. For small enough c including the range con-
sidered here, the Julia set is a Jordan curve. To get a
graphic representation of this invariant set we cannot
iterate the map forward, because the set is a repeller.
We shall focus on two ways of generating the set. One is
obtained from the preimages of the unstable fixed point,
z= —,'+( —,

' —c)' . Since the map is 2 onto 1, each point
has two preimages. Thus at every level of the construc-
tion there are 2" points, and we denote the set obtained
at the nth step as P„. The other method of construction
is achieved by considering all the periodic points of
period n, i.e., z =g "(z). This set has 2"—1 points, and is
called below V„. As n ~ oo, the spatial distributions of
the elements of these difFerent sets approach one anoth-
er. The Julia set is essentially this infinite-n limit. More
technically, it is the closure of the union (over n) of ei-
ther 9'„or P„. In Fig. 1 we show the set with
c = —0. 15, where 1(a) was obtained from the preimages
up to order 8, whereas 1(b) shows all the periodic points
of order 8. We point out that although asymptotically
the sets are the same, the first method picks the points
that live on the most sharp "corners" of the figure,
whereas the second method precisely avoids these points
as much as possible. In Fig. 2 we show the set for
c =0.15, and the same feature appears.

We must stress already here that the examples shown,
i.e., c = —0. 15 and c =0. 15, are carefully chosen not to
be too close to the boundary values c =0.25 and
c= —0.75. In the vicinity of these points our scaling
functions do not converge well. We believe that we un-
derstand the reasons for this, but the phenomena in-
volved call for a separate study that is not undertaken
here.

B. Symbolic representation

O I

l.O—

0-

'T ~ »

t ~ ~ 1 M D J

0

I

(
f

(

(a)

I.O

z =U(r), (2.3a)
where U is continuous. A consequence of the closed na-
ture of the Jordan curve is that

U(r +1)= U(r), (2.3b)

when c =0, there is a very simple form of U(t), namely,
U(t) = exp(2nit). This choice makes the action of g upon
U have the form

g(U(t))=U(2r) . (2.3c)

One can prove that [see Ref. 14 (Peitgen-Richter), p. 57,
Eq. 4.5] for all values of c for which the Julia set is a Jor-
dan curve, there exist a U(t) with the properties (2.3b)
and (2.3c).

To proceed, we want to find a representation for every
point on the Julia set. For the case in which the set is a
closed curve this representation is particularly simple. All
points in the set may be represented by the complex func-
tion U of the real variable t as

FIG. 2. The Julia set with c=0.15. (a} All preimages up to
order 8. (b} All periodic points up to order 8.

To define the set P„we wish to have all values of z
such that g "(z)=z. These can be recursively constructed
as

Z (El»si». . . » En ) = +[z (E2» E2» .
» E»» ) —C)» (2.4)

where c1 ——0 when the positive branch is used and Ei ——1

for a negative branch. Thus in P„, for example, z is
denoted z(0000), and its preimage is z(1000). The set P4
is shown in Fig. 3(a) together with the symbol sequence of
every point. It is evident that the position of a point
mostly depends on ci and only weakly on E„. We also
notice that by interpreting c.1, . . . , E.„as the binary expan-
sion of a number

(2.5)
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0//0
0/0/

0/OO
(a)

00/0

quence (El, . . . , E„) and in general

X„=(E„,. . . , E ) .

Also we shall use

S(X1)=(Eq, . . . , E„), etc.

(2.7)

(2.8)
0///

/000

/00/

/0/0

-I.O—

-I.O

/0//
//00

t

0

//0/

OOO/

OOOO

///0

I

I.O

For the set 2„ the symbolic representation is also
straightforward. We first realize that there are exactly
2"—1 points in the set. A binary tree is again adequate.
Dividing the plane by a horizontal line through the fixed
point, we denote the upper half-plane by 0 and the lower
half-plane by 1. The symbolic representation is obtained
by defining the function p(z):

0 if z in upper half-plane

1 if z in lower half-plane,

and then assigning to each z in 2„ the itinerary

p(z), p(g(z)), . . . , p(g'" "(z)} .

l.o—
0/0/

OO/0

(b)
The elements of V„are again well ordered around the
Jordan curve; see Fig. 3(b}. The fixed point itself is either
0 or 1

To distinguish the symbolic sequence of 9'„ from that
of P„we shall denote it as

0///

-/000

OOOO
////

n-"1=(P1 P
and we associate to it the binary fraction

r= g pk2" "/(2" —1) .
k=1

(2.9)

(2.10)

The dynamics in this case is a permutation. Defining the
operator

/0/0
//OO ~=1==2=(P2i ~Pn~Pl) i

~r n r
1 r+ 1 (Pr+1& ' ' ' Pn &Pl& Pr ) |

we see that

(2.11a)

(2.11b)

FIG. 3. (a) The points in P4 and the symbol sequence of
every point. (b) The points in P4 and the symbol sequence of
every point.

i.e., z(E1, . . . , E„)=U(t), the points of P„are well or-
dered on the Jordan curve around the origin. Since the
map is expansive the iteration has the effect of dropping
one symbol from the sequence (i.e., it is a shift). Defining
the operator S by

S(E1, . . . , E„)=(E2, . . . , E„),
S (El, . . . ,E„)=(Er, . . . , E„)

we see that for r ~ n

g Z(Ei». . . , En )=Z(Er+11 . . i En )

=z(S "(El, . . . , E„)}. (2.6)

For brevity of notation we shall denote by X~ the se-

g'z(=1) =z(-","+1) (2.12)
As in the case of P„, the position of the points on the Jor-
dan curve is mostly determined by the head (p 1,p2, . . . )
of the symbolic representation. The final property that we
shall make use of in the sequel is that U(t) is continuous
so that as n ~ oo the elements of 2„and P„cover the en-
tire Julia set.

III. SCALING FUNCTIONS: PHENOMENOLOGY

A. The Feigenbaum approach

j'( )(g )
2n

—z(t) (3.1)

In this subsection we describe the construction of a
scaling function that depends mostly on the tail of the
symbol sequence. The theoretical proof of this feature is
deferred to Sec. IV. Here we simply show how the data
are used and display the resulting scaling functions.

Consider the set P„. We define the distances l'"'(Xl)
by
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where t is the binary fraction (2.5). The distances defined
in (3.1) are the nearest-neighbor distances in P„. Next we
define the local mothers of these distances, denoted by
1(" ')(XI ), to be simply the nearest-neighbor distances of
the previous generation

I(n —))(yn) I(n —1)(yn —1) (3.2)

In Fig. 4(a) we show l(") and I'" " for P4. Next we
define the daughter-to-mother ratio, or the scaling func-
tion, by

/
( )n( y n

) /$ ( n—I )
( y n

) ( y n
) (3.3)

Figures 5(a) —5(c) show o.(X"I) as a function of the
binary fraction (2.4) for P3 P5, c =——0. 15; clearly the
scaling functions are not nicely convergent. The reason
is that this scaling function depends mostly on the tail of

2k/2n + 1

k =1
(3.4)

Figure 6 shows o (X) ) for n =4, 9 as a function of the
binary fraction t'. Evidently we get now a nice conver-
gence. This convergence is displayed quantitatively in
Table I. As a function of n of P„, we display the average
difference between cr(X) ) and o.(X) ') as well as the larg-
est deviation. The exponential convergence is evident.
The analogous scaling functions for c =0.15 are shown in
Fig. 7.

B. The RBS approach

In this section we construct scaling functions that de-
pend mostly on the head of the symbol sequence. Again
the theoretical proof is given in Sec. IV.

Consider the set 7„. We define the smallest distances
similarly to Eq. (3.1):

the symbolic sequence. To show this we reorder the
numbers (3.3) by reading the binary number backwards
according to

o) &"'(:-I)=~z(t+1/(2" —1))—z(t) ~, (3.5)

I. e"/(o (ooo/)

")tooo

where t is given by Eq. (2.10). The mothers, however, are
not local now. Equation (3.2) is replaced by

(0///)

0 I-

' (:-q ) =
~

z (2t +2/( 2"—1 ) ) z(2t ) ~—(3.6)

e"///ooo/ y e-"'//oo& t'////)
q

— e (/oo// // g( )(///o)

e //o// e ///o/
e/'///o/o/ ~ ~~+/4////o//

&"i««/ = e"'//oo/
g(n)( —n)

1
( —1) —1(:-p)

&"(p), . . . , p. )

v' v))
(3.7)

Notice that these mothers are precisely the map iterates of
the daughters, and that we work within the V„set. Fig-
ure 4(b) shows b. '"' and b, " '' for 74.

The scaling function cr(:-I) is defined now by

-!.0
I

0

g")(oo//)

I

I.O

It is easy to get figures that are as ugly as those in Fig. 5
if we plot (3.7) as a function of the number t' that worked
so well for cr(X) ) Here t. he dependence is strongest on
p(, p, 2, . . . and we plot (3.7) as a function of t As can be.
judged from Figs. 8 and 9, the convergence is rapid.
Table II displays the convergence of these scaling func-
tions in a similar way to Table I.

IV. SCALING FUNCTIONS: THEORY

0 8 /U///)

z (io

(oooo)I In this section we analyze the scaling functions ob-
tained via the two approaches presented in Sec. III, and
derive their main property, i.e., the dependence on the
head or tail of the symbol sequence. In addition, we re-
late the largest eigenvalue of the transfer matrix to the
thermodynamics. In all that follows we shall assume that
the derivative of the map is bounded from below, i.e., that
there exists a number 2 such that

-1.0—
~

dg(X))) A (4.1)

I

—I.O 0
FICr. 4. (a) The distances I' ' and l( ' for P4. (b) The distances

6' ' and 6' ' for V4. The point 0000 can equally well be labeled
1111.

for any X &. This is equivalent to stating that z =0 does
not belong to the set. We also shall make use of the (trivi-
al) fact that d g is bounded from above (but d g =2).

Most straightforward is the analysis of o. of the 7, set.
Since 5' " is simply the map image of 5'"', we have for
large n (i.e., b." small)
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Q6 I (o)

0.5,
0.5

04 I

0

0.5—

0.4
0

FIG. 5. The scaling function o. plotted vs t with c= —0. 15. Note that the function does not converge. Parts (a), (b), and (c)
represent, respectively, orders 3„4, and 5.

0.56 TABLE I. Convergence with Feigenbaum approach.

0.50—

=-O. l5 Order

4
5
6
7
8

9
10

Average error

c = ——0. 15
0.049 34
0.016957
0.011 441
0.005 201 5

0.003 015 1

0.001 490 8
0.000 81908

Maximum error

0.079 81
0.054 227
0.027 111
0.019651
0.011 253
0.005 980 2
0.003 801 7

0
I

0.5 1.0

FIG. 6. Scaling functions with c = —0. 15 for Feigenbaum ap-
proach. Shown are orders 4 and 9.

4
5

6
7
8
9
10

c =0.15
0.041 56
0,019 566
0.012 048
0.066 001 8

0.003 354 9
0.001 711 7
0.000 920 77

0.055 816
0.056 374
0.041 097
0.027 248
0.017 384
0.010 89
0.006 757 4
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0.60 TABLE II. Convergence with the RBS approach.

Average error

c = —0. 15
0.022 95
0.007 61
0.003 79
0.002 29
0.001 24
0.000 67

Maximum error

0.037 76
0.012 44
0.008 86
0.004 90
0.003 55
0.001 94

0.5 1.0

FIG. 7. Scaling functions with c=0.15 for RBS approach.
Shown are orders 4 and 9.

c =0.15
0.046 49
0.014 93
0.006 67
0.003 21
0.001 66
0.000 87

0.085 20
0.042 82
0.024 32
0.014 52
0.008 80
0.005 37

"(&(:-)) ) =
1
dg (:- I )

1

&"(:-I), (4.2)

where dg(:"I ) is the derivative of the map at z(:-o).
Equivalently,

(4.3)

Since the derivative is simply 2Z(p&, . . . , p„~, we see why

the scaling function cr(pI, . . . , p„) depends most strongly
on the head (pl, p2, . . . ) of the symbol sequence.

Note now that Eq. (4.2) can be iterated to yield

&' '=1dg(:"i)dg(&(:-~)) . dg(I'" '(:-~))1&"'(:-~),

(4.4)

where b, ' ' is of 0(1). We thus have an estimate of b, '"'
that can be used in Eq. (1.9) to yield

(b)

0.5-

0.4 1

(d)

0.5 0.5

FIG. 8. Scaling functions with c = —0. 15 for RBS approach. Shown are orders 4, 5, 7, and 9.
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0.6 (b}

05- 0.5

0.4
0 0.4

0

0.6
{c)

0.5
0.5

0.4
0 O.4 }

0

FIG. 9. Scaling functions with c =0.15 for RBS approach. Shown are orders 4, 5, 7, and 9.

(4.5)

This equation can be written as a matrix product using
the matrix M where

(4.6)

the largest eigenvalue A,(r) is dominating and we recover
Eq. (1.13)

(4.10)

Equation (4.5) becomes then

(2"—1)q"= $ (:-
~

M"(7)
~

I' ( ))
:-E2„

(4.7)

Next we turn to the scaling function o(X) ) of the P„
set. As before, we estimate the lengths I'"'(e), . . . , e„)
and I'" "(e), . . . , E„) using the derivative of the map

but since P"(:-)=:- we find

(2"—l)q"=trM"(q. ) .

&'"'(&")=
~

d (~(&"))
~

'I'" "(X" ')

(4 g) and from Eq. (3.2)

(4.1 la)

Since M depends only weakly on the tail of the symbolic
sequence, Eq. (4.8) can be interpreted as a statement on a
finite-size matrix, or

~(n —1)(yn) (n I—1)(yn —1)

=
~
dg(z(X) '))

~

'/'n '(/2n ) (4.11b)

(4.9)
We now find two estimates of

(2n 1)q(r) yMn (&)
1(n)(yn)

~(&))=
((n —l)(yn)where M are the eigenvalues of M. In the limit n~00
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By using both (4.11a) and (4. lib), we find

o (X()=o (X2)

1.0 (

since the dg factors are approximately equal. Hence
o(X() depends only very weakly upon the leading digits
of Xi. For this reason, we can write

0.6

o(Xi)=&(E„,E„(,E„2, . . . ) .

But, from (4.11a) alone, we find

(4.12)

0.2

(yn) [I(n —1)(yn —1)]—)
1

d ( (yn) )
—1 1(n —1)(yn)

(4.13)

(x
1

E
1

x') = o(x)1 '6lx', s(x)), (4.14)

where S(s„, . . . , E()=(E„(,. . . , E, ). But in light of Eq.
(4.13) we have

Repeating the steps (4.3)—(4.7) we find a transfer matrix
K,

0.9

a
FIG. 10. c = —0. 15. The solid curve is the f(a) spectrum

obtained from direct calculations. The circles show results ob-
tained from a four-scale approximation to the Feigenbaum scal-
ing function. The triangles show results obtained from an eight-
scale approximation to the RBS scaling function [shown in Fig.
g(b)].

(2 K
i

X')= il(X)
i

'(2 iM 2') il(X') i'. (4.15)

V. CALCULATING THERMODYNAMICS
FROM LOW-ORDER DATA

Since the scaling functions converge rapidly, we ought
to be able to estimate q (r) or f (a) from low-order scaling
functions. In this section we present results of such cal-
culations and compare them to direct evaluations based
on the highest-order P„and V„at our disposal. The
direct data is taken from

2q(7. )

1l" )(x)
1

XEP]2

~

l(ll)(yi)
1

(5.1)

Thus K" and M' are similar, having the same eigenval-
ues. The thermodynamic information is equally extract-
able from either.

The values of the scales, which we use, are basically ob-
tained from averaging the limiting scaling function in each
of eight equal intervals on the x axis. We obtain the num-
bers o.ooo

——0.44, o.
pp&

——0.48 op]p=0. 53 O.o]]=0.565 in
the case c = —0. 15 and the numbers o.

opo ———0.605,
Oppi =0.545 ~p]p=0 475 Opi] =0 4 in the case c —0. 15.
We found q(r) from Eq. (4.10) and, by employing Eqs.
(1.5)—(1.7), calculated the f(a) function. The results are
shown as the circles in Figs. 10 and 11. Clearly, this ap-
proach accomplishes prediction of the f(a) function to
within 2—3 % over the whole q range for both c values.

The calculation via the RBS approach proceeds slightly
differently. Starting from o(Eo, e),ez), we construct the
matrix M =o(:-)5(:-,P(:")):

q (7.)
210

2' —1

=E &]o
1

g(lo)( —
)

—r

(5.2)

1.0

Not surprisingly, (5.1) and (5.2) give essentially the same
q(r) and the same f (a) curves. The f(a) curves are
shown in Figs. 10 and 11.

Consider first the Feigenbaum approach. We have used
for both c =0. 15 and c = —0. 15 the function o(e3 E3, E))
which contains in fact four independent scale factors, be-
cause o has a twofold symmetry around x =0.5 (see Figs.
6 and 7). The matrix whose eigenvalue is calculated is

00 01 10 11

0.6

0.2

IQ 1.2 1.4

~ooo ~ooi 0

ao(o ao((

~o&i ~o&o

11 0 0 o.oo] ~ooo

(5.3)

FIG. 11. c =0.15. The solid curve is the f(a) spectrum ob-
tained from direct calculations. The circles show results ob-
tained from a four-scale approximation to the Feigenbaum scal-
ing function. The triangles show results obtained from an eight-
scale approximation to the RBS scaling function [shown in Fig.
9(b)].
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000 001 010 011 100 101

000 hippo 0 0 0 00

110 111

0 0

001 0 o oo& 0 0 0 0 0

010 0 0 0 0 o 001 0 0 0

011 0 0 0 0 0 0 o opo 0

100 0 0 0 0 0 0 0

101 0 0 0

110 0 0 0 0

0 0 0 0

o oo&

111 0 0 0 0 0 0 0 o ooo

31q 'I =A.Ms(r),

where A.Mg is the largest eigenvalue of M . The results of
the calculation for f (a) as shown as the triangles in Figs.
10 and 11 are comparable to the results of the Feigen-
baum approach. In both approaches increasing the order
of the matrices employed leads to a rapid convergence of
the predicted thermodynamic functions.

(5.4)

Here we have used the fourfold symmetry of the RBS
scaling functions (see Figs. 8 and 9) such that (5.4) only
has two independent scales. For our calculations we how-
ever used o.(Eo, E~, eq, E3, Eq) which are shown in Figs. 8(b)
and 9(b). This function has eight independent scales and
has already converged quite well. The resulting matrix
has the size 32)& 32, but has a structure "similar" to (5.4).
In the case c = —0. 15 we use o.oo poo

——0.451,
~oooo& =0.466~ o oporto=0 4868~ o oooi i =0.500» o oo ioo
=0.5 163, (7pp &o&

=0.568, o pp & &o =0.5293, o op i ] i

=0.5154. In the case c =0.15 we use o.oooop =0.6,
~opooi =0 502 oooo&o=0-513 oooo'& =0 5» o op ioo
=0.488, o op &pi =0.455, o pp ](o=0.479, o op i]]=0.495.
These values are taken directly from the scaling functions
[Figs. 8(b) and 9(b)] except for the values of the extremas
which are taken from the limiting scaling functions. Cal-
culating now M we use Eqs. (4.9) and (4.10) in the form
(n =5):

VI. DISCUSSION

The main conclusion of this paper is that it is possible
to develop a set of calculational tools that will help to
determine the properties of multifractals; with a limited
amount of information one can predict properties whose
direct calculation calls for very detailed knowledge of the
sets. The step performed here is a cautious one: We con-
sidered repellers —the simplest chaotic sets that exist off
the borderline of chaos —and made heavy use of their
"good" symbolic dynamics and their quasi-one-
dimensionality.

For more general sets we expect that modifications of
the formalism presented above would be needed. Firstly,
we would lose the ability to work with scalar distances be-
tween data points. In general we shall need vector dis-
placements b, (eo, . . . , e„). The scaling function will be-
come then a matrix or, more generally, a tensor state-
ment. Preliminary work in this direction indicates that
this difficulty is surmountable and we hope to present re-
sults in the near future.

Another difficulty which is expected is the loss of ade-
quate knowledge of the distribution of periodic orbits.
Not only that we believe that the periodic orbits organize
the motion, but for the general set we see no other obvi-
ous scheme for representing symbolically the members of
the set. At any rate it appears that the difficulty of under-
standing the scaling structure of strange sets in dynamical
systems is translatable to the concrete question of the dis-
tribution of periodic orbits.

As far as strange sets outside dynamical systems are
concerned, we believe that the language developed above
might find application there as well. The task of formu-
lating specific applications remains, however, a future en-
deavor for the time being.
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