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Apparent randomness in quantum dynamics
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We show how bounded quantum systems in the presence of time-periodic fields can mimic random
behavior in spite of their almost periodic character. We calculate the distribution of values taken by
observables in the course of time, and demonstrate how they become asymptotically Gaussian in the
large-N limit but with constant variance and a posteriori, 6-correlated noise. Thus, unlike a priori
processes, the quantum dynamics of bounded systems remains nondiffusive while appearing to be
random.

I. INTRODUCTION

The statistical behavior of observables in quantum dy-
namics is of relevance to many problems in physics and
chemistry. ' In particular, the existence of classical sys-
tems which exhibit chaotic behavior poses interesting
questions about the dynamics of their quantum counter-
parts.

For systems with time-independent Hamiltonians, the
notion of nonintegrability in quantum dynamics is usually
associated with the statistical distribution of energy-level
spacings, which in the case of systems with classically
chaotic counterparts, exhibit level repulsion. These re-
sults, relying mostly on numerical calculations, show that
the distribution of energy levels agrees with the statistics
of Gaussian orthogonal ensembles (GOE) for time-
reversal —invariant systems, while displaying statistics of
Gaussian unitary ensembles (GUE) in problems without
time-reversal invariance.

The problems associated with the dynamics of quantum
systems whose Hamiltonians are time dependent are of a
different nature from those discussed above. In particu-
lar, the study of their energy spectra is not sufficient to
elucidate the nature of their dynamics. One of the early
criteria for the existence of quantum chaos in such sys-
tems, proposed by Casati et aI. , was borrowed from simi-
lar concepts in classical Hamiltonian dynamics. '

Specifically, the appearance of diffusive behavior in the
time evolution of observables such as the expectation
value of the energy was proposed as a test of the existence
of chaotic dynamics. This criterion, which was tentatively
identified in early numerical simulations of the quantum-
kicked rotor, was discarded when it was shown that the
very nature of quantum dynamics precludes such behav-
ior. Rather, for any periodically driven system with a
point-energy spectrum, both the wave function and the
observables behave in an almost periodic fashion, imply-
ing recurrent behavior which, although possibly ergodic,
is not mixing.

Regardless of the above limitations, an interesting ques-
tion concerns the statistical properties of the time evolu-

tion of observables in experiments probing the dynamics
of quantum systems in the presence of external periodic
fields. In other words, one may ask the following: How
does the data look? Regular or random in time? Such
questions can be illustrated with the example of Fig. 1(a),
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FICr. 1. (a) Expectation value of the energy E divided by R /I
as a function of the number of pulses applied to the quantum ro-
tor. The system was initially in the ground state and the param-
eter values were k=2. 871 and ~=2.532. A total of 201 states
were used in the computation. See Ref. 11. (b) Power spectrum
for the quantum system of Fig. 1(a). 8192 iterates were used and
the dc component removed. T is the time between pulses.

36 1382 1987 The American Physical Society



APPARENT RANDOMNESS IN QUANTUM DYNAMICS 1383

where the time evolution of the energy for the quantum-
kicked rotor is shown for the first 20.000 pulses. In spite
of its random appearance, it Fourier transform, shown in
Fig. 1(b), shows that it is a quasiperiodic function com-
posed of five frequencies. As we will show, in spite of
their recurrent behavior, the dynamics of observables can
pass many of the tests which are used to characterize ran-
dom signals. Thus, short of a Fourier analysis of the time
series, quantum systems in the presence of periodic fields
can mascarade as chaotic ones.

In what follows, we will consider the time evolution of
a bounded quantum system, subjected to a time-periodic
potential. It is well known that the behavior of the wave
function, as well as that of the energy, is an almost
periodic function. " Moreover, since the ratios between
the corresponding quasienergies are dense in the irration-
als, the observables return arbitrarily close to their initial
values infinitely often, regardless of the initial
configuration of the system. We will first consider a sys-
tem whose number of energy levels X is finite and study
the behavior of the time-dependent values of the energy as
X approaches infinity. We will then show that the distri-
bution becomes asymptotically Gaussian, with constant
variance and a posteriori, 6-correlated nonwhite noise.
This in turn implies that contrary to some conjectures, the
process remains nondiffusive although the observable may
appear to be random.

II. STATISTICAL PROPERTIES
OF OBSKRVABLES

When the quasienergy spectrum is pure point and finite,
although large, and the ratio between the quasienergies is
irrational, the wave function is almost periodic. "' In or-
der to elucidate the behavior of the system with an infinite
spectrum, we calculate the probability distribution of an
observable around a mean value. Although we focus our
attention on the energy, our results apply to any observ-
able of the system. The general form of the energy for an
N-level system can be written as

N

Ey(t) = g C„cosH„,
n ==1

O„=co„t +i'„(mod 2ir),

where co=e„/A'. The quantities E„, C„, and P„can be
calculated using the method of Cerdeira et a/. ' Further-
more, since the c, are all real, the C„'s are time indepen-
dent. Notice that when the time dependence of the Ham-
iltonian is such that one cannot perform a canonical
transformation to make it time independent, the C„'s can
become, in principle, functions of time and therefore
could give rise to diffusive behavior. In that case, the E.„'s
and the C, 's can be calculated using a method developed
by Otero et al. '

Let us define a characteristic function of the distribu-
tion of the random variable

i'm, , ' ixC„Fie„i don
2'

where

A. The distribution function

Although the time dependence of the Harniltonian is
not necessary for what follows, we will consider the case
when it is periodic in time and bounded, with a pure point
spectrum. ' Let

F(0„)= cos(co„ t + it „),
with Lebesgue measure. ' ' ' The characteristic function
can be written as

N

f~(x)= Q Jo(C x)

with

H(r+r)=H(t) . (2)

where Jii(x) is a Bessel function. The probability density
distribution is defined as the Fourier transform of f~(x)
in the limit N~ ~, i.e.,

Using Floquet's theorem, it can be shown that the solu-
tion of the Schrodinger equation can be written as'

g{r) = g it „(r)e
k

where

P(E)= lim Py(E)
N-~ oo

and such that

P~(E) = f e '" f~(x)dx2' oo

k(t) =yk(r+&) (4) or

ek is the quasienergy, and Pk(t) the quasiperiodic state,
which obeys the equation

N

Px(E)= Q f dx e '" J (C„x) .2' oo
(12)

[H(t) —ei, ]itii, (t) =i A
Bt

In this case, if the quasienergies form a discrete set and
the potential is bounded, it is well known that, away from
resonances, the system behaves in a recurrent, almost
periodic fashion. " Numerical experiments also indicate
that the existence of these resonances will not prevent the
system from reassembling itself.

This in turn, can be expressed as

Pg(E)= f dx e
1

2 7T oo

x
X exp — g —lnJO(C„x)

n =1
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Since for large values of the argument [ lnJO(C„x ) & 1 j the
integral converges, we can use the method of steepest des-
cents in the large-N limit. The condition for the existence
of an extremum is given by

Ji(C„x)

B. Corrections to the Gaussian distribution

Let us now estimate the corrections to the Gaussian
distribution due to finite N. Expanding the 1nJo(C„x)
around the saddle point we can write Eq. (13) as

Since the sum is not zero at any point other than x =0,
we can take this as the only significant minimum. To
lowest order in x we find

PN(E) = f dx e '" exp
277 QO

&N, 6X
6

4

(17)

PN(E) = — exp( EN l—2o N ),
&2vro N

(14) where

where

and

n=1
C2

N C4
&N, 4 —

8
n =1

N C6
N, 6 —

4
n =1

(18a)

(18b)

P (E)= —exp( E /2—o). .
&2m-o

(16)
and in general

From Eq. (16) it follows that cr is the variance, which is
time independent. However, the quantity P (E) is a
Gaussian distribution centered at E =0. We therefore no-
tice that since Eq. (16) is the limit of the distribution as
N~oo, the recurrence of E will only be determined by
the convergence of O.N to a finite value.

aN =const. X g C„
n=1

Expanding Eq. (17) to order x and completing the
square,

—EN /20. N
2 2

PN(E) = e oo

dye
' [1—aN4(y tEN/trN) ——aN6(y ~EN/aN—)

'—
] .

—a&y /2 2 4 2 6

277

After some manipulation, Pv(E) reduces to

—EN /2uN2 2

PN(E) =
2770 N

4

1—&N4 &2
V'7r O-N

ENf dt it+
oo 2oN

4
—t 2

e

6
&2+

i/17 AN

EN
dt it+

OO 2aN

6
—t 2

e (20)

This equation can be written in terms of the Hermite po-
lynomial k=1

C 2'

fl —2 (22)
—EN /2o N

2 2

PN(E) =
&2~o-N

r

&N, 4 E
1 — '

H4 k =1
Ck

EN+ '
H6

(&2aN)'

which, except for the constant factor in front of o.N 2„, are
the coeScients of Hq„(x) and depend only on n Consid-.
ering first the simplest case, Ck =C, for all k's, Eq. (22)
then becomes

(21)
NC2n 1

(NC&)&
(23)

In order to study the convergence of PN (E) as N ~ oo, we
need to determine the behavior of expressions like

Since the argument of the Hermite polynomials also van-
ishes with a constant variance, Eq. (21) converges to a
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Since the statistical characteristics of the process are in-
variant under time shifts, the process is stationary, which
implies that C~(~) is determined by'

Ctv(~)= lim —f Eg(t)E~(t+r)dt1 T

T~ oo T 0
(24)

This integral can be easily calculated to give

N (2
C~(r)= g cos(co„r),

n =1 2
(25)

which is again an almost periodic function of v.. If we
now calculate the dimensionless, normalized correlation
coefficient R(r) defined as'

1, &=0
C4

R(r)=
( C~(0) )

n =1

n =1

v&0,

8
as iV~ oo (26)X

2

we can use it to determine the conditional variance of an
a posteriori random process and which is given by
o. [I—R (~)], where a. is the constant variance as defined
above. The a posteriori processes are nonstationary, 6
correlated, becoming equal to "a priori" ones in the limit
7~00-

III. CONCLUSION

In this paper we have studied the time evolution of ob-
servables for bounded quantum systems subjected to
time-periodic fields. We have shown that in spite of their
recurrent, almost periodic behavior, the distribution of

Gaussian for N~ oo. It is therefore clear that in the case
when all Ck's are different, all terms in Eq. (21) will con-
verge faster than the criteria given by Eq. (23).

The next task consists in finding the second-order
correlation function, or covariance, of the random variable
E~(t), as X~ oo. It is defined as

CN(tT) (ENEn ) ((EN ) )

(EE )

values produced by the evolution of the observables be-
comes Gaussian in the large-X limit. This implies that
any statistical probes short of a Fourier transform would
indicate that the system appears to behave in random
fashion. Notice, however, that since the variance does not
grow in time, neither will the energy, thus preventing the
dynamics to become chaotic in the sense of classical
mechanics. This observation applies to a number of quan-
tum dynamics problems, including the quantum-kicked

10, 11,18, 19

Besides their obvious application to bounded systems
subjected to time-periodic fields, these results are also
relevant to the statistical distribution of energy-level spac-
ings in time-independent Hamiltonian systems; a problem
which is closely related to the integrability of their classi-
cal counterparts. This can be seen by noticing that the
spectral distribution of GOE or GUE systems can only
represent a pure point spectrum, for otherwise it would
imply the existence of degeneracies. Furthermore, since
the theory of random matrices applicable to these prob-
lems describes a posteriori, 6-correlated nonwhite-noise
processes, it implies that in systems with discrete, nonde-
generate spectra, one will also observe a nondi6'usive
Gaussian distribution of the random variables.

Last but not least, these results apply to a number of
other problems characterized by almost periodicity.
These include both classical dynamics and some other
quantum systems which have been the focus of recent ac-
tivity. .Among the more prominent ones, we mention the
problem of electron behavior in quasiperiodic potentials
produced by either the static atomic configuration of a
quasicrystal, or by the frozen configuration of phonons
which a swift electron would sample in a perfect solid. In
all these cases, the quasiperiodic behavior of the potential
can always mimic a random process which is nevertheless
nondiffusive.
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