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Noise-induced bistabilit3t at the T-I—T-II transition in superfluid He II
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We present preliminary experiments which indicate a dramatic effect of external noise on
superfluid turbulence in thermal counterflow. This turbulent system is in many ways ideal for the
study of noise-driven nonlinear dynamical systems. It contains a well-defined continuous transition
(the T-I-T-II transition), and noise can be easily imposed on the driving heat current. Previous
work has shown that the superfluid turbulence system is described by a single nonlinear amplitude
equation, and it can be expected to show some of the rich noise-induced behavior found in theoretical
treatments of such systems. We find that external noise dramatically modifies the T-I—T-II transi-
tion and induces bistability.

Several years ago Horsthemke and Lefever' made the
rather remarkable proposal that there exists a new set of
phenomena within the class of phase transitions. The
ideas of equilibrium phase transitions have been extended
over the last decade to include transition phenomena en-
countered in nonequilibrium systems. What Horsthemke
and Lefever suggested was that the concept of phase tran-
sition can be extended even further, to a fundamentally
new set of transition phenomena which occur only in
nonequilibrium systems coupled to a randomly fluctuating
environment. Not only are such transitions new and fas-
cinating objects of study, but they are surprisingly nonin-
tuitive. In a wide range of systems it is found that the
influence of environmental noise stabilizes the system, or
postpones the transition to a larger (average) value of the
control parameter. The noise can also generate bifurca-
tions not present in the deterministic environment.

While it may be argued on technical grounds that the
extension of phase-transition concepts to these noise-
driven transitions is unjustified, the significance of these
phenomena is not reduced. It is clear that the effects of
parametric modulation or noise on nonlinear dynamical
systems are dramatic, and the understanding of these
effects is an important fundamental problem. One might
expect that the effects of environmental noise would be
rather trivial: The system will simply "average out" the
fluctuations, and the output will simply be spread about
the deterministic state. Theoretical studies' of simple
nonlinear systems show that these intuitive expectations
are oversimplified and a much richer variety of behaviors
is induced by the noise than is possible under strictly
deterministic conditions. The interplay between the none-
quilibrium of the system and the randomness of the envi-
ronment leads to drastic changes in the macroscopic
states.

Noise-induced effects have been predicted for a wide
range of nonlinear dynamical systems. Generally these
are assumed to be spatially homogeneous or "zero dimen-
sional, " and described by a single intensive variable (such
as a mode amplitude). The coupling of the system to the
environment is described on this phenomenological level

by a control parameter A, . Several different theoretical ap-
proaches have been taken to determine the effect of noise
in the parameter k to the time-averaged behavior of the
system. ' ' Often the noise is assumed to be "white, "
linear, and Gaussian. The inAuence of finite correlation
time ("colored noise" ) and quadratic effects have been
studied in various theoretical models.

There are only a few physical systems in which noise-
induced phenomena have actually been observed.
Smythe, Moss, and McClintock' have pioneered the use
of analog simulators to explore the inAuence of noise on
particular differential equations. Robinson, Moss, and
McClintock" have recently applied these techniques to a
study of stochastic postponements in a bistable system,
and find good agreement with the predictions of Welland
and Moss' based upon the theoretical approach of
Horsthemke and Lefever. In the area of classical hydro-
dynamics, Donnelly, Reif, and Suhl, ' Ahlers, Hohenberg,
and Lucke, ' and Gollub and Benson' have explored the
effects of simple monochromatic modulation of the con-
trol parameter. Electrohydrodynamic instabilities in
liquid crystals have been an important experimental area
for noise-induced effects. Recently, Brand, Kai, and Wak-
abayashi' have demonstrated that not only can the tran-
sition to turbulence in these systems be postponed by
noise, but the bifurcation sequence can be altered as well.

In this paper we give the results of a preliminary study
of the effects of noise on superfluid turbulence (SFT).'
Moss and Welland' first suggested the use of the SFT
system to study noise-driven phenomena and applied the
methods of Horsthemke and Lefever' to the dynamical
equation proposed by Vinen. ' Although this equation is
now believed to be an oversimplified description of the
SFT system, the results of the present experiments largely
vindicate the basic ideas proposed by Moss and Welland.
On the microscopic level SFT is understood as a tangle of
quantized vortex lines, ' and the macroscopic properties
of the homogeneous SFT state have been reproduced in
computer simulations of the vortex tangle. At the mac-
roscopic level, the transition to the homogeneous state
(the T-I—T-II transition in liquid He II) has been success-
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hp = (18p„lr/3p)LO V, (2)

where p„ is the normal fiuid density, p the total density, K

fully described by a phenomenological amplitude equa-
tion ' and appears to be characterized by a single ampli-
tude, the vortex line density L. From an experimental
viewpoint the SFT system is also an excellent candidate
for the study of noise-induced effects since the noise is
easily added to the drive parameter, the fluctuating output
can be detected, and the time constants of the system are
well understood.

We produce and detect the superfluid turbulence using
a thermal counterflow apparatus. This SFT is a special
case of that produced in more general flows with both
heat and mass transport. Thermal counterflow has the
advantage of being experimentally easy to produce and
extensively studied. The apparatus is shown schematical-
ly in Fig. 1, and described in detail previously. The
glass liow tude is 1 cm long (I) and 132 pm in diameter
(d). It connects a small cell containing a heater with a
large reservoir of helium maintained at a temperature of
1.75 K. A heat current Q in the tube of cross-sectional
area A generates a counterflow of the superfluid and nor-
mal fluid components at a relative speed V where

V=Q/AppST .

Here p, is the superfluid density and S the entropy densi-
ty of the helium at temperature T. If V is sufficiently
large, a superfluid turbulent state is present in the flow
tube and is characterized by a steady-state vortex line
density (length of line per unit volume) Lo. The "fric-
tion" between the vortex lines and the normal fluid flow is
the source of a chemical potential difference Ap between
the cell and the reservoir. If the SFT is homogeneous,
then it can be shown that Ap ir related to Lo as

the quantum of circulation, and B a parameter represent-
ing the strength of the normal fluid-vortex line interac-
tion. In our apparatus, the chemical potential difference
Ap is transduced into a pressure di6'erence and detected
with a capacitive pressure transducer as discussed previ-
ously. Figure 2 shows the output of the capacitance
bridge as a function of the heat current Q. The kink in
these data near 120 pW signals a transition in the SFT
from a state T-I to state T-II. ' Figure 3 shows the
characteristic "phase diagram" for this transition, ob-
tained from the data in Fig. 2 using Eq. (2) to calculate
the vortex line density Lo. The right-hand scale gives the
vortex line density in a convenient dimensionless form.
The solid line in Fig. 2 is the result of the computer simu-
lation of Schwarz for homogeneous SFT.

The underlying physics of the T-I—T-II transition
remains obscure, as does the nature of the T-I state itself.
A phenomenological description of the transition has re-
cently been given by Horsthemke and Schumaker. ' They
have been able to identify the form of the underlying bi-
furication from an analysis of the intrinsic noise observed
at the transition. ' Assuming that the SFT can be de-
scribed by a single amplitude, they show that the normal
form of the imperfect pitchfork bifurcation, with noise,
provides a very satisfactory model in the neighborhood of
the T-I—T-II transition. The imperfect pitchfork bifurca-
tion that Horsthemke and Schumaker identify with the
T-I—T-II transition is an example of the lowest codimen-
sion bifurcation that can mediate continuous transitions
between steady states. Their model gives a unified
description of the steady-state line density (Fig. 3), the re-
laxation time, and the intrinsic noise, in agreement with
experimental observations. One of the parameters that
must be chosen to fit the data is the "paracritical point, "
Q, =121 pW. In Fig. 2 we have plotted the reduced heat
current
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FICx. 1. Schematic diagram of the apparatus used to produce
and detect the superAuid turbulence.

FIG. 2. Output of the capacitance bridge as a function of the
heat current Q. The capacitance is proportional to the chemical
difference produced by the superfluid turbulence. The reduced
chemical-potential difference bp [Eq. (4)] is shown on the right-
hand scale and the reduced heat current g [Eq. (3)] is shown on
the upper scale. The kink in the data near 120 pW signals the
T-I—T-II transition.
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FIG. 3. Square root of the steady-state vortex line density Lo
as a function of the heat current Q. The line density is obtained
from the chemical-potential difference using Eq. (2). The upper
scale gives the relative velocity of the superfluid and normal fluid

[Eq. (1)]. The right-hand scale gives the line density in ditnen-
sionless form. The states T-I and T-II are labeled. The sohd
line is the result of a computer simulation of the vortex line den-
sity in homogeneous superfluid turbulence (Ref. 20).
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FICx. 4. Schematic diagram of the apparatus used to add
noise to the heat current and detect the fluctuating chemical-
potential difference.

&p =&p(Q)/&p(Q, ) (4) Vp, = Vp+6V,

on the right-hand scale. These reduced variables will be
useful for discussing the influence of external noise on the
T-I-T-II transition.

Consider a nonlinear dynamical system, described by
the single amplitude x, and satisfying the equation

x=f(x, A),

where k is the control parameter. The stationary states of
this system are given by the function xo(A. ) which is a
solution to the equation f (x, A, ) =0. If the control param-
eter consists of a steady part A.o and a noisy part 6A, , then
the amplitude x is noisy, and the steady state of the sys-
tem is described by the stationary probability p (x).
Horsthemke and Lefever' have shown that macroscopic
steady states are associated with the extrema of p(x).
Those values x for which p(x) is a maximum give the
"most probable states" and can be associated with the
"phases" of the system. In general the stochastic steady
state x (X) is different from the deterministic steady state
xp(A, ).

In order to add noise to the drive parameter of the SFT
system, it is only necessary to add noise to the heat
current Q. Figure 4 shows a schematic drawing of the ap-
paratus used. The output of a white-noise source is
sent through a Butterworth filter to one input of a sum-
ming amplifier. An example of the Gaussian distribution
of this signal is given in Fig. 5. The dc component of the
noise source is zeroed and the output Vo from a dc power
supply is added to the noise in the summing amplifier and
sent to the cell heater of resistance R. The voltage across

where 5V is Gaussian noise of zero mean, and variance
o, The heat current driving the SFT can then be written
as

Qi =Q+&Q, (7)

where 5Q is now non-Gaussian noise (it is sharper than
Gaussian) of rms amplitude o. =o~/R, and the steady
heat current is
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FICx. 5. Output of the noise source.

Q = ( Vo + cr, ) /R .

A careful calibration of the steady heating produced by
the noise source was carried out at 4.2 K (where the
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liquid helium is "normal" ) to ensure that there were no
contributions other than (o, /R) such as eddy current
heating.

Because of the rather long thermal relaxation time of
the system, any high-frequency noise components will be
attenuated and will not contribute to uniform fluctuations
of the drive parameter. Therefore the noise generator out-
put is sent through a low pass filter (Fig. 4) set at 5.0 Hz,
making the noisy heat current 6Q "colored. "

When the external noise is imposed on the heat current,
the chemical potential difference across the flow tube (Fig.
2) fluctuates about some mean value. We analyze these
fluctuations by producing a probability density p (bp. ).
Time-series data from the capacitance bridge circuit are
processed by dividing equally the range of allowed output
voltages into 100 bins. A voltage falling in the range of a
given bin increments a counter associated with that bin.
The probability density can then be obtained as a plot of
the number of counts in a bin as a function of bin num-
ber. Such a plot represents about 50000 data points.
Converting voltages to equivalent capacitances, or relative
chemical-potential differences (see Fig. 2), the bins can be
labeled with hp.

Our experimental procedure is to fix the noise ampli-
tude o and obtain probability densities p (bj, ) for
different values of the steady heat current Q. From the
maxima in each probability density we determine Ap
and use Eq. (2) to compute the corresponding vortex line
density L . As discussed above, L is the most probable
state of the SFT and equivalent to the state Lo in the
deterministic steady state. Using the values of L ob-
tained in this manner, we can produce the phase diagram
for the noise-driven SFT system analogous to Fig. 3 for
the deterministic case.

In order to test the above analysis we first carried out
the experimental procedure outlined above for a very low
level of external noise. In this case we do not expect very
profound noise-induced effects. The results shown in
Figs. 6 and 7 are typical of many such data obtained us-
ing a noise amplitude o of about 0.4 pW. Defining a
relative amplitude as

cr =o'/Q, ,

these results correspond to o. =0.33%%uo. Figure 6 shows
nearly Gaussian and very narrow probability densities as
would be expected from such weak noise. It should be
noted that the intrinsic noise from the SFT is very large
near Q = l, and accounts for some of the width in the dis-
tributions shown in Fig. 6. Using the maxima in the
probability densities to define Ap and L as described
above gives the phase diagram of Fig. 7. The dimension-
less vortex line density Lo d is shown as a function of
the reduced heat current Q. The data from the noise-
driven SFT are in excellent agreement with the deter-
ministic vortex line density (Fig. 3) shown by, the solid
line. We conclude that the effect of low external noise is
simply to cause the SFT system to fluctuate about its
deterministic steady state.

The situation is quite different when large noise levels
are used to drive the SFT. Figure 8 shows several exam-
ples of the probability densities obtained with cr =49%
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FIG. 7. The phase diagram for the superAuid turbulence with
low-level noise. The open circles represent the vortex line densi-
ties L computed from the maxima in the probability densities
(Fig. 6) using Eq. (2). The results agree well with the determinis-
tic steady state (Fig. 3) shown by the dashed line.

FIG. 6. Probability densities obtained with low-level noise
(cr =0.33%) at several different heat currents. Note that the
zero on the b,p axis is suppressed in order to display the narrow
peaks at different values of Ap, .
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FIG. 8. Probability densities obtained with high-level noise
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sities become bimodal, although the lower narrow peak is not
resolved at this resolution.
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ple of a probability distribution when this peak is
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values of the vortex line density shown in Fig. 10. Clear-
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FIG. 11. Probability densities obtained with an intermediate-
level noise (cr =15%) at several different heat currents near the

deterministic paracritical point. At the largest value of Q there
is no longer any evidence of the lower narrow peak.
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ly over the range of Q from 1.23 to 1.39 the stochastic
phase diagram has become bistable. To emphasize this
point we have also plotted the line densities corresponding
to the minima in the probability densities (as closed cir-
cles) and have drawn the unstable branch of the phase di-
agram through the points. Such a construction is only
justified if the SFT continues to be described by a single
amplitude, but we have no evidence to the contrary.

The dramatic effect on the SFT phase diagram revealed
in Fig. 10 is somewhat weakened when the noise ampli-
tude is reduced. Figure 11 shows several examples of the
probability densities obtained with o. =15%%uo, and Fig. 12
shows the corresponding phase diagram. The region of
bistability is now much smaller than at o. =49%, and
the probability densities at large Q are now monomodal.
The probability density at Q=1.02 clearly shows the bi-
modal distribution for the bistable phase diagram.

It is interesting to note that the noise-induced bistability
we have observed in SFT seems to be associated with a
suppression of the T-I state. The T-II state is only slight-
ly changed even with relatively large amounts of noise,
while the T-I state is gradually "squeezed out. " lt is also
significant that the T-I and T-II states can coexist, at least
in a statistical sense, in the presence of noise. In this re-
gard we also note that the time-series data for Ap, and the
associated power spectra upper qualitatively the same
both in and outside of the region of bistability.

Our experiments have revealed that SFT is an excellent
system for the experimental study of noise-driven non-
linear dynamical systems as originally proposed by Moss
and Welland. The deterministic states of the system are
well characterized both in terms of phase diagram and
time constants, and much of the microscopic physics is
understood. Noise is easily applied to the drive parameter
and the noise-induced effects are dramatic. We believe
this is the first experimental demonstration of noise-
induced bistability. Unfortunately, it is not a simple
matter to compare these noise-induced effects with the
phenomenological model of Schumaker and
Horsthemke. ' The noise is quadratic, colored, and large
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FIG. 12. The phase diagram for the superfluid turbulence
with intermediate-level noise. The symbols are the same as in

Fig. 10. The noise-induced bistability is much less pronounced
compared with the high-level-noise results in Fig. 10.
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amplitude, all of which conspire to make the calculation
difficult. Nevertheless, work is in progress, and results
can be anticipated in the near future.

The experiments also give some clues to the nature of
the SFT states T-I and I-II. The homogeneous T-II state
is extremely robust, and virtually unaffected by relatively
large amounts of noise. On the contrary, the T-I state is
drastically suppressed by external noise. Perhaps most
puzzling of all is that the T-I and T-II states can coexist
in the presence of noise. These observations should prove
useful in determining the microscopic structure of the T-I
state.
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