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Correspondence of unstable periodic orbits and quasi-Landau modulations
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We study the correlation between modulations in the photoabsorption cross sections of diamagnet-

ic Rydberg atoms and classical periodic orbits in a completely chaotic regime. Extensive quantum-

mechanical calculations of photoabsorption cross sections and classical calculations of periodic trajec-
tories are presented. In accordance with the scaling property of the classical Hamiltonian, the photo-
absorption cross sections are studied for fixed values of the scaled energy c=E/y ' (y is the mag-

netic field strength parameter) as a function of y
' . The modulations of the photoabsorption cross

sections appear as prominent peaks in the Fourier-transformed cross sections and can be related to
periodic classical orbits. The positions of the peaks are given quantitatively by the scaled action
along the periodic orbits and the relative strengths of the peaks can be understood qualitatively by
considering the geometry of the orbits and the transition involved and the stability of the classical or-

bits. The one-to-one correspondence between peaks in the Fourier-transformed cross sections and

classical periodic orbits applies not only to the traditional quasi-Landau modulation associated with

the classical orbit in the plane perpendicular to the field, but also to a large number of further modu-

lations corresponding to topologically different series of periodic orbits. In the completely irregular

region around the zero-field threshold, the unstable periodic classical orbits and the observable peaks
in the modulated cross sections cannot in general be related to individual eigenstates of the quantum

system.

I. INTRODUCTION

Since the postulation of the Bohr-Sommerfeld quantum
conditions in the early days of quantum mechanics,
periodic classical orbits have played an important role in
the theory of semiclassical quantization. ' The Bohr-
Sommerfeld conditions were generalized by Einstein, Bril-
louin, and Keller (EBK) to include nonseparable systems
in which classical dynamics were regular and orbits stable
in at least some fraction of phase space.

Little is known, however, about the physical
significance of unstable periodic orbits in a completely
chaotic region of classical phase space, where neighboring
trajectories diverge exponentially. A completely irregular
phase space may contain a large number and even a dense
set of such isolated periodic orbits, but their measure is
zero. Recently Heller showed for a free particle in a
two-dimensional stadium that the existence of isolated un-
stable periodic orbits can lead to "scars" in corresponding
quantum-mechanical wave functions, i.e., there is an accu-
mulation of density in coordinate space near the classical
trajectory.

It is becoming increasingly apparent that unstable
periodic orbits are important for the understanding of the
structure of diamagnetic Rydberg atoms. Many years ago
Garton and Tomkins discovered unexpected oscillatory
structure in the photoabsorption cross sections of Rydberg
atoms in a magnetic field. These "quasi-Landau" peaks
were widely interpreted " as resonant photoabsorption
into quantum states which were correlated to classical

periodic orbits in the plane perpendicular to the magnetic
field. However, in the heart of the quasi-Landau region
around the zero-field threshold the experimental data do
not necessarily imply an identification of the quasi-
Landau peaks as individual quantum states and it has re-
cently been shown' that such an interpretation is at least
grossly oversimplified. Nevertheless, the experimentally
observed quasi-Landau modulations of the photoabsorp-
tion cross sections can be related to periodic orbits in the
plane perpendicular to the field without invoking the ex-
istence of individual quasi-Landau quantum states, as
shown by Reinhardt. ' In the quasi-Landau region
around the zero-field threshold the classical dynamics are
known to be completely irregular' ' and the periodic
orbits perpendicular to the field are unstable. (This irre-
gularity in the classical dynamics has recently been shown
to be matched by quantum level statistics expected from
random matrix theories. ' '

) Thus the occurrence of
quasi-Landau modulations in photoabsorption cross sec-
tions is an observable manifestation of these unstable
periodic orbits.

Apart from the traditional quasi-Landau modulations,
which are characterized near threshold by an energy spac-
ing roughly 1.5 times the Landau spacing of free electrons
in a magnetic field, further modulations corresponding to
a closer spacing have recently been seen both experimen-
tally ' ' and theoretically' and have been related to (un-
stable) periodic orbits outside the plane perpendicular to
the field.

In this paper we present detailed classical and
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quantum-mechanical studies of a hydrogen atom in a uni-
form magnetic field with the aim of establishing quantita-
tively the correspondence of modulations in the photoab-
sorption cross sections and classical periodic orbits. The
magnetized hydrogen atom is an ideal physical system for
studying the classical and quantum dynamics of nonse-
parable Hamiltonian systems. It is a physically real sys-
tem which can be and has been prepared in the laborato-
ry, and the states observed experimentally correspond
quantitatively to those obtained by solving the
Schrodinger equation as shown recently in a state-for-state
comparison between calculation and experiment.
Despite its apparent simplicity it is complex enough to
display the essential features of a nonintegrable system,
including the transition from regularity to irregularity,
which is manifest both in the classica1 trajectories'
and in the corresponding quantum level distribu-
tions 1 7 1 97 23

In Sec. II we discuss the classical and quantum-
mechanical equations of motion for a hydrogen atom in a
uniform magnetic field and, in particular, our method of
solving the Schrodinger equation (Sec. II B). Because of
the scaling properties of the classical Hamiltonian, the
classical dynamics depend not on the energy E and field
strength y independently, but only on the scaled energy
c =E/y / . Modulations of the photoabsorption cross
sections are best revealed by studying Fourier-transformed
cross sections at fixed 8 (Sec. II D). The results of our
calculations are presented in Sec. III. Photoabsorption
cross sections are calculated for various scaled energies
and for different subspaces of final states. Periodic classi-
cal orbits are found in a systematic way. In addition to
the set of periodic orbits found by Main et al. ' we find
further periodic orbits, some of which are important for
understanding the photoabsorption cross sections. The
modulations of the photoabsorption cross sections appear
as prominent peaks in the Fourier-transformed spectra
and the positions of these peaks can be related to a scaled
action of the classical periodic orbits. At the zero-field
threshold E=O, we give a complete account of all periodic
orbits passing through the origin with a scaled action less
than four. For all peaks observed in the Fourier-
transformed spectra, we can identify a classical periodic
orbit whose scaled action gives the position of the peak to
an accuracy better than 1%. The relative heights of the
peaks can be explained by qualitative arguments based on
the geometry of the transition and of the classical orbits,
and on the stability of the classical orbits. The calcula-
tions are all done for the simple hydrogen atom, but it is
obvious that a region of normal atomic dimensions is not
important because the spatial dimensions of the quantum
wave functions and classical trajectories we study are typi-
cally of the order of thousands of Bohr radii; hence the
essential features of the results, which are summarized
and discussed in Sec. IV, are applicable to diamagnetic
Rydberg atoms in general.

II. THEORY AND METHOD

A. Scaling property of the classical system

A hydrogen atom in a uniform magnetic field (parallel
to the z axis) is accurately described by a one-electron

Hamiltonian H, which, in the frame of reference rotating
with the Larmor frequency about the z axis, is Kin Ryd-
berg units)

—1/3 — —1/3

t =yt, l, =y'/3l, ,

and are governed by the scaled Hamiltonian

(2)

l,2II =p,'+p,'+
P

+ &

p
2 H/vy2/3

r
(3)

which no longer depends on the field strength. The scaled
angular momentum I, in (3) is negligibly small under lab-
oratory conditions.

The immediate consequence of the scaling property (2),
(3) is that all properties of the classical system do not de-
pend on the energy E and field strength y independently
but only on the scaled energy c=E /y

B. The Schrodinger equation

The quantum-mechanical one-electron Schrodinger
equation for the magnetized hydrogon atom is (again in
Rydberg units)

( —b, —2 jv + 4y p )P(r)=EQ(r) . (4)

It is of considerable practical advantage ' to intro-
duce semiparabolic coordinates (although the scaling
properties described below are quite general)

p, =(v +z)'", v=(v —z)'"
In the subspace of states with a given value m of the con-
served azimuthal quantum number, the Schrodinger equa-
tion now reads

[6„+6,+E (p'+ v') ,' y'(p'v'+ p—'v—')+4]q(p, v) =0,

where A„and 6 are the Laplacians for the radial parts p,
v of two two-dimensional coordinates at fixed azimuthal
quantum number m, e.g. ,

a
p

p Bp ibad p2

m

Apart from the azimuthal quantum number m, the only
good quantum number is the z parity ~, which manifests
itself in Eq. (6) by the invariance with respect to inter-
changing p and v. The Schrodinger equation is not separ-
able in any coordinate system, and Eq. (6) is one of many
equivalent formulations for this nonseparable problem in
two variables.

where y is the field strength measured in units of
Bo=2. 35 &( 10 T.

The classical equations of motion are invariant under
the following transformation:

2/3 — 2/3



36 CORRESPONDENCE OF UNSTABLE PERIODIC ORBITS AND. . . 133

Various methods of solving Eq. (6) reflecting various
scaling properties can be formulated transparently if we
take matrix elements in a basis of (parity-projected)
harmonic-oscillator states characterized by a given oscilla-
tor width b. Equation (6) thus becomes

T+Eb VHo ——'y b V~+4 /=0,
Q2 4 (Sa)

(1/b T+ ,'y b V—g 4/b )Q—=EVHof . (Sb)

For fixed values of the field strength y and the oscillator
width b, Eq. (Sb) represents a generalized eigenvalue prob-
lem and can be solved by standard procedures for di-
agonalizing matrices in a nonorthogonal representation.
Solving (Sb) yields the energy spectrum at fixed field
strength y. This method is exactly equivalent to the Stur-
mian approach used by other authors, the quantity
2,/b plays the role of the Sturmian parameter

Method 8 Mul.tiplying Eq. (Sa) by ( b) and p—utting
the constant term onto the right-hand side gives

(T Eb VHo+ ,'y—b Vg)$=—4b g . (Sc)

For a fixed value 5 of Eb and a fixed value A, of yb, Eq.
(8c) represents a standard eigenvalue problem for the os-
cillator widths b. Each eigenstate has its own oscillator
width b and corresponds to a solution of the Schrodinger
equation with energy E =6/b at the field strength
y=A, /b . This method generates spectra along lines of
constant E jy =5/A, and has been used in large-scale cal-
culations' ' ' to solve the Schrodinger equation over
large areas in the E —y plane. This method has also been
used as a starting point for the explicit construction of
an approximately separable representation of the
Schrodinger equation and for the definition of an approxi-
mately conserved separation index K for negative energies

Method C. Choosing b =y ' and putting the kinetic
energy matrix onto the right-hand side, Eq. (Sa) becomes

«y '"VHD VB+4W =y'"TW . (Sd)

For fixed values of Ey =s, Eq. (8d) represents a gen
equalized eigenvalue problem for the field strengths y
This method generates spectra along lines of constant
scaled energy c. which is precisely the quantity that con-
trols the classical dynamics governed by the scaled classi-
cal Hamiltonian (3). Thus Eq. (Sd) is the natural starting
point for a comparison between the classical and the
quantum-mechanical aspects of the magnetized hydrogen
atom.

There are still other possible methods of solving Eq.
(8a) and which generate spectra, e.g. , for constant energy

where T, VH~, and V~ are all sparse banded matrices of
the operators —5„—A~, p +v, and p v +p v, respec-
tively. The elements of these matrices are pure dimen-
sionless numbers independent of E, b, and y.

There are different meaningful ways of solving Eq. (Sa).
Method A. Dividing by —b and putting the term with

the oscillator potential matrix VHO onto the right-hand
side gives

or on lines of constant Ey . The results in this paper
have been obtained with methods B and C. If one is in-
terested in the field strength dependence of the spectrum,
method B provides the most efficient algorithm, mainly
because solving the eigenvalue problem for the oscillator
widths b ensures that eigenstates in each part of the spec-
trum are given in terms of an optimally adjusted basis. In
fact, method B is much more efficient than the Sturmian
method A, where the fixed oscillator width b in each diag-
onalization means that the basis states are only well ad-
justed to a small section of the spectrum. Nevertheless,
method A may be useful if one is interested in the spec-
trum for an isolated fixed field strength.

C. Correspondence between the classical
and quantum-mechanical systems

The classical dynamics governed by the Hamiltonian (3)
have been studied in detail in the literature. ' ' Below a
critical value c., of the scaled energy, the motion of the
electron is regular for all initial conditions and an approx-
imate third integral of motion has been used for semiclas-
sical quantization. ' ' For small values of the scaled an-
gular momentum, the critical scaled energy is c,, = —1.0.
For (scaled) energies above c„ the system becomes in-

creasingly chaotic until it behaves completely random
near and above the zero-field threshold E =v=0, where
regular parts of phase space have negligible measure.

Regularity and irregularity of the classical dynamics are
reflected in the energy-level spectra of the quantum sys-
tern. Well below threshold the Schrodinger equation is
approximately separable and this leads to approximate
level crossings first noticed by Zimmerman et al. Ap-
proximate separability breaks down near the zero-field
threshold and this is rejected in the nearest-neighbor
spacings of the levels which accurately follow' a Wigner
distribution as expected from random matrix theories. In
fact, the turnover in the quantum level statistics has re-
cently been shown to correspond quite closely to the rel-
atively sudden drop in the regular fraction of available
classical phase space which occurs around c= —0.7 for
small values of l, . For c. ~ —0.2 the system is completely
irregular, both classically and quantum mechanically.

D. Quasi-Landau modulations

Despite the irregularity of the quantum level spectra
around the zero-field threshold, ' experimentally observed
photoabsorption cross sections show remarkably regular
modulations, as first discovered in magnetized barium by
Garton and Tomkins and recently seen also in atomic
hydrogen by Holle et al. The original quasi-Landau
modulations are characterized at fixed field strength by an
energy spacing of roughly 1.5 times the Landau spacing of
free electrons in a magnetic field. These quasi-Landau
modulations have long been associated with the (periodic)
classical motion of the electron in the plane perpendicular
to the magnetic field, but it is now apparent that the sim-
ple interpretation of the quasi-Landau peaks as resonant
photoabsorption into individual quantum states is in-
correct, ' even though a semiclassical quantization of the
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classical periodic orbits mentioned above does give the
right energy spacings.

A different interpretation of the quasi-Landau modula-
tions has been given by Reinhardt, ' who argues that the
recurrence of a wave packet moving along a classical tra-
jectory induces oscillatory structure in the Fourier trans-
form of the dipole autocorrelation function and hence in
the photoabsorption cross sections. (See also Heller. )

Recently, further modulations corresponding to a closer
spacing of peaks in the E-y plane have been observed both
experimentally ' ' and theoretically, ' and have been re-
lated to classical periodic orbits outside the plane perpen-
dicular to the field. These classical periodic orbits are un-
stable and isolated in a classically chaotic regime. There
exists a semiclassical theory, formulated by Gutzwiller,
Balian and Bloch, and Berry which connects the actions
of these orbits with oscillating contributions to the semi-
classical level density this theory has recently been
verified for the diamagnetic Rydberg problem. The
modulations can be interpreted as a result of the construc-
tive interference that occurs when the electron returns to
its starting point in phase and this leads to the "resonance
condition"

pdr=n .
h

(9)

peaks becomes constant. The Fourier-transformed spectra
are now not in the time domain but are functions of a
variable conjugate to y '; we call this variable y+'~ for
simplicity.

III. RESULTS

In this section we present the results of elaborate
quantum-mechanical calculations obtained with the
methods described in Sec. II and relate the modulations
of photoabsorption cross sections to periodic orbits ob-
tained by numerical integration of the classical equations
of motion.

An example of photoabsorption cross sections is shown
in Fig. 1 where we plot the renormalized oscillator
strengths fv for Balmer transitions into the m = —1

and m "=—2+ subspaces at the zero-field threshold
E =m=0. The effective quantum number v is defined rel-
ative to the real ionization threshold which lies
(

l

nI
l
+1)y Ry above E =0. Eigenvalues and eigenvec-

tors were calculated by diagonalizing banded matrices
with dimensions up to 3I36 using method B described in
Sec. IIB. The abscissa is linear in y ', because the
quasi-Landau modulations are uniform on this scale, as

Note that the interpretation of Eq. (9) as a quantization
condition is only justified for isolated stable periodic or-
bits. ' The more general resonance condition (9) will be
applied in particular to unstable periodic orbits and will in
general not define individual eigenstates of the quantum
system, but a clustering of levels on a scale larger than the
mean level spacing. ' Equation (9) can be expressed in
terms of the scaled coordinates and momenta (2)

5-

(a)

y
' S(E)=n, (10)

where

S(E)=—f pdr1

h
(1 1)

is the scaled action along the closed trajectory and de-
pends only on the scaled energy E=Ey and not on E
and y separately.

Equation (10) can be rewritten as
-rr)+= 2+z=0

10 12

(b)

En =(ny' ) S '(ny' }, (12)

where S ' is the inverse function of the scaled action.
Equation (12) states that Zn is purely a function of yn
a result assumed by Feneuille for the traditional quasi-
Landau peaks. We now see that such a scaling property
holds for the modulation peaks related to any periodic or-
bit. It is also clear that the modulation peaks are, for any
fixed value of the scaled energy c, equidistant on a scale
proportional to y

' . Hence, instead of studying the
photoabsorption cross sections as a function of energy (at
fixed y) and the Fourier-transformed spectra in the time
domain, it is most appropriate to investigate the modula-
tions by studying the photoabsorption cross sections at
fixed scaled energy c as functions of y

' . In this repre-
sentation the classical dynamics are independent of the
variable and the spacing of the (expected) modulation

—S/3
8 10 12

FICr. 1. Photoabsorption spectra at the zero-Geld threshold
for hm =0 Balmer transitions into the m = —1 subspace (a),
and for Am = —1 Balmer transitions into the m = —2+ sub-
space (b). The solid curves show the cross sections obtained by
gaussian smearing of the oscillator strengths.
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determines the initial angle O=lim, o arctan[p(t)/z (t)] of
the trajectory in the p-z plane. By systematically varying
the initial value of p/v between zero and unity we obtain
all periodic orbits which pass through the origin.

At the zero-field threshold we calculated all periodic
orbits passing through the origin with a scaled action
S(E=O) less than four. Our calculations show several
sets of topologically different orbits and are illustrated in
Figs. 3—6. Since we are neglecting the (cylindrical) centri-
fugal potential, the orbits all lie in a plane through the z
axis. Figure 3 shows the first members of a series of
Lissajous-type periodic orbits recently studied by Main
et al. ' In this series, which we call series I, the orbits
are characterized by the number n = 1,2, 3, . . . where
n —1 is the number of times the orbit crosses the z axis
between its start at and first recurrence to the origin. At

their maximum z-value, orbits with odd n are rejected at
the sides of the potential valley and retrace their path in
coordinate space, while orbits with even n cross the z axis
at right angles. The first orbit I~ in this series is the orbit
in the plane perpendicular to the field and has long been
associated with the traditional quasi-Landau modulations.

Figure 4 shows all members of a topologically different
set of periodic orbits which always meet the z axis and the
walls of the potential valley at skew angles. We call this
series IIa. Figure 5 shows all members of a further series
(series IIb) of orbits, which, except for the first member
IIbo, are topologically very similar to the orbits in series
IIa. Finally, Fig. 6 shows other periodic orbits which be-
long to different series topologically, but which we shall
group together as series III.

Table I lists all the periodic orbits shown in Figs. 3—6

11a,

II bp

II b )

11o2

ll b 2

ll a&

II bI

FICz. 4. All members of the series EIa of periodic orbits at
c.=O. The scale is shown in the first diagram and is the same
throughout the figure.

FIG. 5. All members of the series IIb of periodic orbits at
c=O. The scale is shown in the first diagram and is the same
throughout the figure.
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TABLE I. Table of periodic orbits (PO) shown in Figs. 3—6. 0 is the initial angle in degrees, t„, the recurrence time in units of the
cyclotron time for m=0, S the values of integral defined by Eq. (11). For a&0 only the larger initial angle is given. The Coulomb orbit
noted in the last line corresponds to the motion parallel to the field.

PO

I2
I3
I4
Ig

IIbo
I6
I7

IIa 1

IIa 2

tree

0.67
1.57
2.58
3.59
4.60
2.15
5.61
6.61

2.36

3.04

3.46

90.0
53 ~ 8

42.8
37.3
33.8
63.7
31.4
29.5
81.7
51.7,
67.5
46.7

79. 1

41.5

1.16
1.72
2.05
2.29
2.49
2.51
2.66
2.81

2.85

2.91

3.16

90.0
51.0
39.2
33.2
29.2
62.2
26.3
24. 1

78.9

67.0

74.7

c, = —0. 1

1.13
1.64
1.92
2.11
2.26
2.41
2.38
2.48

2.74

2.76

2.99

90.0
47.8
35.0
28. 1

23.3
60.7
19.7
16.5

74.2

67.7

c= —0.2

1.09
1 ~ 56
1.79
1.93
2.03
2.31
2.10
2.15

2.61

2.62

90.0
39.9
23.1

10.5

58.4

E= —0.4

1.03
1.41
1.54
1.58

2.12

IIb2

IIII
IIa 3

IIb3

IIa 4

IIb4

III3

III4

III5

III6
III7
IIIS

III9
Coulomb

3.99

2.89

4.55

4.93

5.63

5.86

3.87

2.87

3.59

4.16

4.86

3.19
3.54

3.05

69.5
39.6
60.3
77.5
36.3
71.0
35.4
76. 1

33.0
72.4
32.6
59.2
45.2

83.8
64.2
66.2
54. 5
42.6
58.7
38.7
81.2
61.3
87.8
51.6

0

3.19

3.24

3.40

3.40

3.59

3.59

3.61

3.66

3.75

3.77

3.87

3.98
3.99

4.01

70.5
58.0

56.8

81.9
65.1

51.8

56.1

78.0
59.4

86.3

2.99
3.10

3.42

3.52

3.57

3.56

3.63

3.82
3.81

3.86

3.16

55.5

53.9

79.2
64.3

48.9

53.1

57.2

2.96

3.23

3.38

3.41

3.35

3.40

3.64

2.24

49.4

46.5

66.2
42.9

44.2

52.7

2.69

2.87

3.11

2.9@

2.94

3 ~ 33

1 ~ 58

together with the initial angles 0 in the p-z plane and the
recurrence times t„,. Note that, in numerical applica-
tions, the initial conditions generally have to be defined
much more accurately than the values of 0 given in the
table in order to ensure recurrence to the origin. This is
characteristic of a classically chaotic regime where small
errors propagate exponentially.

If we study the photoabsorption cross sections at fixed
field strength y, then the modulations which appear as
peaks in the Fourier-transformed spectra are correlated to
the recurrence times of the periodic orbits'

' —1

bE =h [y 'i $(s)] =h (T, /y) '=hit„, ,

(13)

where t, is the period of the orbit in cyclotron units.

Since we are, as explained in Sec. IId, studying the pho-
toabsorption cross sections as functions of y

' at fixed
scaled energies c., we expect correlations between the
peaks y,' in the Fourier-transformed spectra and the
values of the scaled action S; of the periodic orbits.

We now study in detail the Fourier spectra of Fig. 2 in
connection with the periodic orbits tabulated in Table I.
We first take the Fourier spectra for m = —2+ and @=0
[Fig. 2(b)]. Table II lists the positions y,'. of the Fourier
peaks together with the corresponding periodic arbits
from Table I which we believe to be responsible for the
Fourier peak. The positions of the first two peaks at 1.15
and 1.70 can be unambiguously connected with the first
two members of series I. However, the amplitude of the
second peak is only small and, moreover, the third
member of the series, for which we would expect a peak
near y' =2.05, is completely absent. This can be under-
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TABLE II. Observed positions y,'
' of the calculated peaks in the Fourier spectra of Figs. 2(a) and

2(b) for c.=0, together with the associated periodic orbit and the corresponding value S. Parentheses in-
dicate poorly resolved peaks (columns 1,2) or (columns 3,4) further orbits which may be correlated with
the observed peaks.

I /3
pl

m "=2+

1.15
1.70

2.31
2.51

2.84

3.18

3.48

3.62
4.00

m =I

1.71
2.04
2.29

2.50
(2.63)

2.91
3.19

3.42

S;

1.16
1.72
2.05
2.29
2~1.16
2.49,2. 51
2.66
2.85
2.91
3.16,3. 19

2~ 1.72
3.40

3.61,(3.59, 3.59, 3.66)
3.99,3.99,4.01

Periodic orbit

Il
I2

I3
Ig

I]
I5,IIbp
I6
IIa l

IIb l

IIa 2,IIb 2

Ip

IIb 3,IIa 3

III~,(IIa~,IIb 4,III3 )

III7,IIIg, III9

stood by the geometry of the transition: the calculated os-
cillator strengths are proportional to the squared dipole
matrix elements with a

~
2p, m = —1) initial state. Due

to the dipole selection rules, the Am = —1 transition ma-
trix elements are then sensitive to the (I =2, m = —2)
contributions of the final state wave functions only. How-
ever, the associated Legendre polynomial Pz is propor-
tional to sin 0 and we expect that peaks in the Fourier
spectra are largely suppressed if the initial angles 0; of the
periodic orbits become small. Conversely, periodic orbits
with large initial angles (near 90') should appear as en-
larged peaks in the Fourier spectra. Only the initial angle
is of interest, because the hydrogen 2p states as initial
states in the transition matrix elements are localized
within a few Bohr radii of the origin, whereas the periodic
orbits shown in Figs. 3—6 may reach some thousands
Bohr radii. The absence of the peak at y' =2.05 is a
special property of the transition involved and does not
mean that the modulation of the level density caused by
the corresponding closed orbit is absent.

The next peak occurs at y' =2.31. Although it could
be related to the orbit I4 with S =2.29, we will rule out
this possibility because of the argument above. Moreover,
we will rule out any orbit of I„with n & 3. It is more
likely that the peak at 2.31 is an artifact of the Fourier
procedure and is caused by the dominant modulation I&

via period doubling. Such peaks with multiple values of
lower Fourier peaks can occur whenever the modulations
in the original spectra deviate from a sinelike modulation,
which is obviously the case as can be seen in Fig. 1(b).
The period-doubled peak can be viewed as generated by a
repeated traversal of the periodic orbit. ' The
identification of the next two peaks at y' =2.51 and
2.84 with the periodic orbits IIbo and IIa& is unambigu-
ous. Note that the orbit IIa, has a large initial angle
0=81.7' and the amplitude of the corresponding peak is
rather large.

Further peaks at y,' =3.18, 3.48, 3.62, and 4.00 may
be related to other orbits listed in Table I, but the assign-
ment is not unique. It also may be that two or more
periodic orbits with very similar values of S contribute to
an unresolved single peak in the Fourier spectrum. How-
ever, we point out that no peak is observed which cannot
be connected with a periodic orbit taken from Table I; the
S values listed in Table I are not so dense that this is a
trivial observation.

We now turn to the Fourier spectrum of the Am =0
Balmer transition into the m = —1 subspace of states
shown in Fig. 2(a). The peak positions y

~ are also listed
in Table I. The situation is somewhat different because
the dipole matrix elements are now sensitive to the (I =2,
m = —1) contribution in the final-state wave functions
only. The associated Legendre polynomial P2 is propor-
tional to sinOcos6 and from the discussion above we now
expect that Fourier peaks associated with periodic orbits
with initial angles around 45 are enlarged, while peaks
associated with orbits with large or small initial angles are
suppressed. This explains why the peak belonging to the
orbit I, with 0=90 is absent in Fig. 2(a) [Note: not only
does the (l =2, m = —1) contribution in the final wave
functions vanish for 0=90', but the whole wave functions
vanish identically at 0=90 because of the negative z pari-
ty of these states). Note that the extent to which re-
currence of a classical trajectory induces oscillations in
the photoabsorption cross section depends also on the
Liapunov exponent which determines the rate of ex-
ponential divergence of neighboring trajectories. Thus a
quantitative account of the relative heights of the peaks in
the Fourier-transformed spectra requires an additional
analysis of the degree of instability of the various periodic
orbits.

The first Fourier peaks arise at y,' =1.71, 2.04, 2.29,
and 2.50 and are in excellent agreement with the members
from series I with S;=1.72, 2.05, 2.29, and 2.49. The or-
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bit IIbo with 5 =2.51 may however also contribute to the
peak at 2.50. Another peak seems to lie near y' =2.63
but it is not fully resolved so that it may really lie near a
larger value of y' in agreement with S =2.66 for I6.
The next peak at y' =2.91 can safely be connected with
the IIb& orbit.

Note the very nice agreement between the 2.84,2.91
peaks in the m =2+, 1 subspace and the periodic orbits
with scaled actions 2.85,2.91 and initial angles of
81.7,46.7. A further strong peak occurs at y' =3.19
and we believe that both the IIbz and IIaz orbits contrib-
ute to this peak. Before we discuss the dependence of the
Fourier spectra and the classical trajectories on c., we will
turn to a short discussion of the experimental data avail-
able to date zo, 2

For the m = —2+ subspace there is only one Fourier
spectrum, taken at a fixed field strength, available fsee
Fig. 2(c) of Holle et al. ]. The leading modulation
y' =1.16 is present in the experimental data as indicat-
ed by the peak at t„,=0.67 cyclotron units, which corre-
sponds to the traditional quasi-Landau spacing in energy.
However, the resolution of the spectrum is too poor to
unambiguously identify any other structure. The addi-
tional structure marked by an asterisk may be the period-
doubled peak of the leading modulation, which is also
present in our data as discussed above.

For I"=1,however, more and better resolved spec-
tra have been published, also measured by the Bielefeld
group [see Fig. 2(b) of Main et al. ']. The periodic orbits
I2, I3, and I6 have been clearly identified. Surprisingly,
the orbits I4 and I5, present in our Fourier spectra, are ab-
sent. The orbit IIb~, which leads to a strong peak at
y' =2.91 in our data, should produce a peak at
t, =3.04 in the experimental data, which is also absent.
The orbits IIb2 and IIa2, responsible for the large ob-
served peak at y' =3.19 in our data, should produce
peaks at t,~=3.99 and 3.46, respectively. These peaks
seem to be present as noted by an asterisk near t„,=4
and also a peak near t, =3.5, not commented on by the
authors. Further experimental investigations to clarify

TABLE IV. Same as Table II, but c= —0.2, Figs. 2(e) and 2(f).

2.18
(2.33)
2.61

(3.27)
3.37

1.56
(1.80)
1.94

2.30
2.61

3.39

S;

1.09
1.56
1.79
1.93
2x 1.09
2.31
2.61,2.62
3 X1.09
3.35,3.38,3.40

Periodic orbit

Ii
I2

I3
I4
Ii
IIbo
IIa i,IIb i

Ii
IIIs III3 III

these points are desirable.
We now turn to the c, dependence of the spectra.

Quantum calculations have been performed with method
C of Sec. II B. Because the generalized eigenvalue prob-
lem requires more memory, only matrices up to dimen-
sion 1296 have been diagonalized. The calculated Fourier
spectra are shown in Figs. 2(c)—2(h) and are tabulated in
Tables III—V. The c. dependence of the classical trajec-
tories is smooth and is tabulated in columns 5—10 of
Table I. Note that some periodic orbits no longer exist
below a cutoff' value c.;. Since for y=0 all periodic orbits
passing through the origin are straight lines, the only
periodic orbits passing through the origin which exist for
all values of the magnetic field are the motions perpendic-
ular and parallel (E &0 only) to the field.

We wi11 not discuss the case c= —0. 1 and —0.2 in de-
tail since these cases are very similar to v=0 (see Tables
III and IV). However, we like to remark that all peaks
appearing in the Fourier spectra can be connected to
periodic orbits listed in Table I. In particular the peaks at
y

' =2.61 and 2.30 for c.= —0.2 can be connected
wlthoUt any ambiguity to peliodlc orbits, which are also
present in the data for c. ~ —0.02.

We shall discuss the case c.= —0.4 in more detail. The
system now has an interesting feature, namely that parts
of the phase space are no longer chaotic but regular. '

TABLE III. Same as Table II, but c= —0. 1, Figs. 2(c) and
2(d).

1/3

TABLE V. Same as Table II, but c= —0.4, Figs. 2(g) and
2(11).

m =2

1.12
1.63

2.25
2.40
2.73

(2.97)
(3.10)
3 ~ 37
3.51
3.80

1.64
1.90
2.11

(2.25)
2.39

2.75
(2.96)
(3.12)

(3.79)

S;

1.13
1.64
1.92
2.11
2X 1.12,(2-26)
2.41
2.74
2.76
2.99
3.10
3X1.12
3.52
3.81,3.82

Periodic orbit

Ii
Ip

I3
I4
Ii,(Is)
IIbo
IIa i

IIb i

IEa, ,IIb,
IIIi
Ii
III3
III8,III7

1.03

2.06

3.10

4.13

y
I /3

1.03
1.41

2.11
2.69
2.80
2.87
3.10

(3.30)
3.52
4.12

1.03
1.41
2 X 1.03
2.12
2.69
2X 1.41
2.87
3 X1.03,3. 11
3.33
3.52,3.53
4.10,4. 13
4X 1.03,4. 13

Periodic orbit

Ii
I2

Ii
IIbo
IIIi
Ip

III2
I i,III4
IIIB
IVI,IV2
IV3,IV4
I i,IV4
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plained by periodic orbits from Table I. However, there
are further periodic orbits illustrated in Fig. 8 with values
S (e= —0.4) near 3.52 and 4.12. These orbits correspond
to S values greater than 4 at v=0.

Finally, we turn to a discussion of quantum-mechanical
wave functions. From the discussion in this section one
expects that a wave function in some sense feels the pres-
ence of periodic orbits if the resonance condition (10) is
approximately fulfilled. Figure 9 shows the wave function
of the quantum state in the m =1+ subspace at E =0
and y=5. 0412&&10 . A comparison with the periodic
orbit I2 in Fig. 3 shows a large probability

~ P ~

in the vi-
cinity of the classical trajectory; the maximum range in z
of the classical orbit is roughly 76 Bohr radii and is
marked by the arrow in Fig. 9. The action (10) is
y

' S = 10.03 which is close to an integer. Thus the

IV)

3

FIG. 9. Wave function p ~ g ~

of the eigenstate at F. =0 and
y=5.0412&(10 ' in the m"= —1+ subspace. The arrow marks
the maximum range in z (76ao) of the unstable periodic orbit I~
at the same energy and field strength.

jV2

tV3

wave function in Fig. 9 does appear scarred by the pres-
ence of the periodic classical orbit.

Note, however, that in the classically chaotic regime,
isolated unstable periodic orbits and individual photoab-
sorption peaks cannot generally be associated with indivi-
dual eigenstates of the quantum Hamiltonian, as may be
done when the system is regular. ' The individual peaks
in Fig. 8(b), at E= —0.4, are clearly associated with indi-
vidual quantum K =0 states related to stable periodic or-
bits in the residual regular part of classical phase space.
However, such an identification breaks down at E=O [Fig.
1(b)], where the photoabsorption peaks are not individual
states or resonances but merely a result of modulations of
the cross sections.

IV. SUMMARY AND DISCUSSION

IV),

FIG. 8. Further periodic orbits at E= —0.4. The scale is
shown in the first diagram and is the same throughout the figure.

We have studied the problem of a Rydberg atom in a
magnetic field classically and quantum mechanically and
have investigated the correspondence between modula-
tions in observable photoabsorption cross sections and
periodic orbits in classical phase space.

Because of the scaling property of the Hamiltonian,
such modulations are best studied by investigating the
cross sections at fixed values of the scaled energy
c=y F. as functions of y

' . The modulations of the
cross sections appear as prominent peaks in their Fourier
transforms which correspond quantitatively to periodic
classical orbits passing through the origin. The positions
of the peaks are accurately given by the values of y' cor-
responding to the scaled classical action (10), which is ob-
tained by integrating along the closed path from the origin
to the first recurrence. The heights of the peaks can be
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understood at least qualitatively by studying the compati-
bility of the geometries of the periodic classical orbits and
the observed transition. A quantitative description must
also include a stability analysis of the orbits. Note that
most of the modulations found in this paper are predic-
tions and await experimental verification.

The peak positions and scaled actions depend smoothly
on the scaled energy c. Many periodic orbits cease to ex-
ist below a certain cutoff energy e;; at @=0 (e= —co ) the
only periodic orbits passing through the origin are straight
lines. In the irregular quasi-Landau region there are
several topologically different series of unstable periodic
orbits. At the zero-field threshold we have found all
periodic orbits passing through the origin with a scaled
action S (e =0) less than four.

At small values of c where classical phase space is at
least partly regular, there may be a one-to-one correspon-
dence between (stable) periodic orbits and individual
quantum states dominating individual photoabsorption
peaks. In this case, Eq. (9) tnay be interpreted as a quant-
ization condition in the spirit of Einstein, Brillouin, and
Keller. ' However, around the zero-field threshold c=O
the dynamics are completely irregular and the periodic or-
bits are isolated and unstable. In this case Eq. (9) is

merely a resonance condition from which we can derive
how a recurrence of a classical orbit leads to oscillations
in the level density and hence in the cross sections. Note
that the modulations corresponding to the leading peaks
in the Fourier-transformed spectra contain no detailed in-
formation about the individual state-for-state structure of
the quantum spectrum which is completely different in
different I subspaces of final states.

The study of Rydberg atoms in an external static mag-
netic field is a very promising area for gaining further in-
sights into the intriguing field of irregular dynamics.
There is no need to restrict the study to atomic hydrogen,
so precision measurements on other atoms ' which are
easier to handle in the laboratory would be useful. Since
the scaled energy c=E/y is the quantity controlling
the classical dynamics, measurements done by tuning the
field strength y at a fixed value of c, e.g. , at the zero-field
threshold c=O, would be more meaningful than spectra
taken at fixed field strength.
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