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General diffusion equation for light-induced drift
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We derive a general diffusion equation for the density of an atomic vapor immersed in a buffer gas
and irradiated by nearly resonant light. The combination of velocity-selective excitation with state-

dependent rates of velocity-changing collisions then gives rise to a drift term, and at the same time

the diffusion tensor becomes anisotropic and intensity dependent. Both the effect of light-induced

drift and diffusive pulling of atoms by the light are described by this diffusion equation in a consistent
and correlated fashion.

I. LIGHT-INDUCED DRIFT

with the flux of active atoms j (r, t) given by '

j(r, t) = DV n (r, t) +u(r, t—)n (r, t) . (1.2)

Here D is the diffusion constant of ground-state atoms in
the buffer gas and u is the drift velocity. The first term
on the right-hand side of (1.2) gives the ordinary diffusion
equation for the atomic density n, and the second term
represents light-induced drift. The drift velocity u(r, t) is
determined by the intensity I(r, t) of the radiation at the
same position and time, and it is just the average velocity
of the active atoms. Equations (1.1) and (1.2) can be ob-

Light-induced drift (LID) may occur in an atomic va-

por immersed in a buffer gas and illuminated by nearly
resonant light, provided that two conditions are fulfilled.
Firstly, the radiative excitation must be velocity selective,
so that the ground-state atoms and the excited atoms have
opposite flows. Secondly, the cross sections for velocity-
changing collisions with the buffer-gas particles must be
different for atoms in the two states. Then the two oppo-
site flows will suffer different diffusive frictions, and a net
flux of active atoms may arise. This LID effect was pre-
dicted by Gel'mukhanov and Shalagin, ' and a first ex-
perimental observation was reported by Antsigin et al.
In an optically thick system, this drift effect may act as a
semipermeable piston, which pushes the active atoms
away and causes large inhomogeneities in the density of
active atoms. This effect of the optical piston has been
demonstrated experimentally by Werij et al. '

The theoretical description of LID is based upon the
evolution equation for the density matrix of the active
atoms, as a function of their position and velocity. This
evolution equation is a combination of the optical Bloch
equations describing the coupling with the radiative field
and the Boltzmann equation for velocity-changing col-
lisions. The central result of the theoretical derivation is
a diffusion equation for the density n of active atoms.
This equation can be expressed in the form of a continuity
equation

tained from the evolution equation for the atomic density
matrix p(r, v, t), by treating the free-flow term —v Vp and
the difference of the collisional cross sections for excited
atoms and ground-state atoms as a perturbation. It is
this perturbation that causes the rate of change of the
atomic density n on a slow time scale. Elimination of the
rapid variations then leads to Eq. (1.2), with an expression
for the drift velocity u that is valid to first order in the
difference in cross section.

For an optically thick system, the intensity I as a func-
tion of the position r at any instant for time t depends
upon the density n at the same instant and at all positions
between the entrance window and the position r. Gen-
erally, the functional dependence of I on n is determined
by an absorption equation of the form

k VI(r, t) = —n (r, t)a(I(r, t)), (1.3)

where k =k/
~

k
~

denotes the propagation direction of the
radiation, and a determines the saturated absorption rate,
which depends in turn on the velocity distributions for
both atomic states. In the absence of saturation, a(I)
would be given by qI with q the absorption cross section.
The set of equations (1.1)—(1.3) governs the combined
evolution of the density and the intensity. This set pro-
vides the basic equations for light-induced drift in general,
and for the action of the optical piston in particular.

In the present paper we give a generalization of this
result. The main modification is that we treat exclusive-
ly the free-flow term —v. V as a perturbation, while we
formally account for velocity-changing collisions to all
orders. This conceptually simple generalization leads to
an important change of the result for the particle flux j,
as given in Eq. (1.2). Firstly, the diffusion constant D
must now be replaced by a second-rank tensor, with the
propagation direction of the light as a symmetry axis.
The strength of this diffusion tensor depends on the light
intensity, thereby reflecting the fact that ground-state
atoms and excited atoms have different diffusion
coe%cients. Secondly, the drift velocity u is supplement-
ed by a term proportional to the intensity gradient. This
term basically arises from the variations of the popula-
tions of the two atomic states with intensity, and thereby
with position. This term gives rise to the effect of
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We describe the distribution of the active atoms over
their internal states and over the velocity v by the density
matrix p(r, v, t) which is normalized to the atomic density
n according to the equality

j dv Trp(r, v, t) =n (r, t) . (2.1)

The atoms are driven by a classical radiation field with
frequency co and wave vector k. Then the coupling of the
atoms to the radiation field is described by Bloch equa-
tions, and the effect of collisions can be expressed by col-
lision kernels, both for excited atoms and ground-state
atoms. For two-state atoms in a monochromatic field,
suffering only elastic velocity-changing collisions, the evo-
lution equations take the form

a—pii(v) = —v Vpii(v) —yi(v)p&i(v)
at

+ dvp)) v K) v ~v

+ A p22(v )+ —,
'

~ Q[p2)(v) —p)2(v) ], (2.2)

a—p22( v) = —v. Vp22( v) —y 2( v)p22( v)
Bt

+ d v'ppp v' Kp v'~ v

—A p22(v) + —,
'

~ Q[p (2(v) —p2) (v) ], (2.3)

a
1

at
—p~2(v)= —v Vp~2(v) —[—A +y+i(h —k v)]p~2(v)2

diffusive pulling, ' ' which effectively pulls the atoms to-
wards the regions of high intensity. This effect can be
qualitatively understood by noting that the higher mobil-
ity of ground-state atoms induces a diffusive flux of
ground-state atoms towards high-intensity regions that
more than counterbalances the opposite diffusive flux of
excited atoms. It is important that the two effects of
light-induced drift and diffusive pulling are described in
a single unified theory, which clearly reveals their inter-
dependence.

II. GENERAL EVOLUTION EQUATION

equations is of little concern. We simply summarize the
total evolution of p in the formal evolution equation

Bp
dt

=(L o+L) )p,

where

(2.6j

L ip= —v. Vp (2.7)

gives the free-flow term, and L p describes the evolution
due to radiative transitions and velocity-changing col-
lisions with buffer-gas particles. We shall make use of the
fact that Lp is a linear operator that may depend parame-
trically on the position r, due to the variation of the inten-
sity (and therefore the Rabi frequency) with r, but it con-
tains no derivative with respect to r. Hence we may in-
troduce the steady-state solution p(v) of the approximate
evolution equation

dp
dt

=Lpp,

by solving the equation

Lop(v) =0 .

(2.8)

(2.9)

This steady-state density matrix with respect to Lp de-
pends parametrically on r, and we can normalize it for
each value of r by imposing the condition

Tr f dvP(v)=1 . (2.10)

Now collisions and radiative transitions modify the
state of the atoms on a rapid time scale of the order of a
few radiative lifetimes, whereas the free-flow term L ~

gives rise to slow diffusive flows between macroscopically
separated positions. Hence it is reasonable to assume that
the collisions and radiative transitions, as described by L p,
drive the density matrix at any position to its steady state
p, before the diffusive flow, as expressed by L &, has had a
chance to produce appreciable changes of the local densi-
ty. On the other hand, it is just the evolution of the den-
sity n that we are interested in. Therefore we wish to
eliminate the rapid variations due to Lp. This can be
done by standard techniques, which we briefly indicate in
Sec. III.

+ —,i I~[p22( v) —p11(v )], (2.4) III. ELIMINATION OF RAPID EVOLUTION

a
1

at
—p2~(v)= —v. Vp2~(v) —[—A +y —i(b, —k v)]p2~(v)2

+ —,'if' [p ) )(v) —p22(v)], (2.5)

with A the spontaneous decay rate, y the collisional
homogeneous linewidth, Q the Rabi frequency, and
A=co —cop the detuning from resonance. The elastic col-
lisions are described by the collision rates y„and the col-
lision kernels K, . These expressions can be generalized
for the case of a transition between two degenerate states
with angular momenta J~ and J2.' Formal expressions
for the effect of velocity-changing collisions on degenerate
atomic levels can be found in the literature. "

In the present paper the detailed form of the evolution

On the rapid time scale determined by the rate of col-
lisional thermalization and radiative transitions, the densi-
ty matrix p at each position r is expected to approach the
steady state, which is proportional to p. On this rapid
time scale the density n is not affected. However, on the
slower time scale as determined by the free-flow term L ~,
the atoms can drift away over macroscopic distances, as a
result of a nonvanishing average velocity or of diffusive
fluxes. The local density matrix deviates only slightly
from the steady state p during this slow evolution of the
density.

These general considerations are put on a mathematical
footing by using a projector-operator formalism. We in-
troduce the projector P in such a way that Pp is propor-
tional to the steady-state solution p with respect to Lp.
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This is accomplished by the definition

Pp(r, v, t) =p(v)n (r, t), (3.1)

PLo ——0, LoP =0 (3.2)

which follow from that fact that collisions and radiative
transitions do not remove atoms from the local position r,
and from the defining relation (2.9). A reduced evolution
equation for the density n alone follows by deriving an
evolution equation for Pp with

=1—P . (3.3)

By using the obvious projector equalities

Q'=Q (3.4)

combined with (3.2), one obtains from (2.6) the evolution
equations

d
dt

Pp=PL iPp+PL|Qp, (3.5a)

where the density n is expressed in terms of p by Eq.
(2.1). One readily checks that P obeys the operator equal-
ities

which is just the average velocity of the atoms in the
steady state with respect to Lo. This drift velocity is usu-
ally nonzero due to the combination of velocity-selective
excitation, as expressed by the Doppler shift k.v in (2.4)
and (2.5), and the state dependence of the collision rates.
Hence uo is directed along the wave vector k. The
difFusion tensor D in (4.1) is given by the formal expres-
sion

oo LprD= d~ dv v Tre '
vp —uouo

0
(4.3)

which has the significance of the time integral of the ve-

locity autocorrelation function of atoms in the steady
state. The integrand of the time integral in (4.3) ap-
proaches zero on the rapid time scale. This diffusion ten-
sor depends on the local intensity, and it is therefore an
implicit function of r. Furthermore, since the evolution
operator Lo is anisotropic, due to its dependence on the
wave vector k of the light, the diffusion tensor D will also
be anisotropic, and it must have cylindrical symmetry
with the k vector as a symmetry axis. Therefore, the
diffusion tensor D is determined by two constants, a
transverse diffusion constant D, and a longitudinal one
DI, so that

d
dt

Qp= QL iPp+ Q (Lo+L i )Qp (3.5b) D,& D( 5,1 +——( Dt D, )k; k& /—k 2 . (4.4)

A closed equation for Pp alone, which is valid to second
order in Li, follows after solving (3.5b) for QP to first or-
der in Li and substituting the result in the last term of
(3.5a). ' ' The final result takes the form

Pp(t) =PL iPp(t)+ j d&PL|e " QL iPp(t) .
dt 0

(3.6)

IV. GENERAL DIFFUSION EQUATION

The reduced evolution equation (3.6) yields an equation
for n when we substitute the definition (3.1) for the projec-
tion operator P, and the definition (2.7) for the evolution
operator Li. The evaluation of the terms on the right-
hand side of (3.6) is straightforward. The resulting equa-
tion for the density n takes the form of the continuity
equation (1.1), with the particle fiux given by

j= —D-Vn +uon +u&n . (4.1)

The term uo in (4. 1) originates from the first term on the
right-hand side of (3.6), and the time integral in (3.6) gives
rise to the other two terms in (4.1). The velocity uo is the
drift velocity, which is related to the normalized steady-
state density matrix p by

Uo= dv VTI p v (4.2)

The integrand in the last term of (3.6) decays to zero as a
function of ~ on the rapid time scale, so that the total evo-
lution of Pp remains slow, as expected.

Each term in (3.6) is proportional to the steady-state
density matrix P(v), which can therefore be divided out.
This produces then an evolution equation for n. It is im-
portant to note that p depends on the local intensity, so
that p also has an intrinsic parametric dependence on the
position r.

For zero intensity, the diffusion tensor is isotropic and has
the strength of the diffusion constant of ground-state
atoms in the buffer gas. Finally, the velocity ui occurring
in (4.1) is a correction on the efFective drift velocity that
arises from the variation of the steady-state density matrix

p with position. We obtain

oo Lpr
ui ——— d~ dv v Tre v-Vp —uoV. U0

0
(4.5)

Again, the integrand of the time interval in (4.5) ap-
proaches zero on the rapid time scale. Since p and uo de-
pend exclusively on the position r through the r-
dependent intensity or Rabi frequency, we may express ui
in the form

(4.6)ui =C-VA

with C the cylindrically symmetric second-rank tensor

()pC= — d~ dv v Tre ' v —uo
0 an an

(4.7)

For excitation on resonance, the velocity distribution
Trp(v) is symmetric, and the drift velocity uo disappears.
The gradient velocity Ui, however, will be nonzero even in
this case, provided that the intensity varies with position.

In summary, we conclude that the atomic flux takes the
form (4.1), with uo a velocity in the direction of the wave
vector k, with ui expressed as in (4.6) as a cylindrically
symmetric tensor acting on the gradient of the Rabi fre-
quency, and with D a cylindrically symmetric tensor.
This result is fully general in that it is based upon nothing
else but the assumption that the macroscopic
modifications in the density n occur on a time scale that is
slow compared with the rate of collisional thermalization
and radiative transitions. In particular, this result is not
dependent on restrictive assumptions concerning the mul-
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tiplet structure of the atomic levels, and it allows for the
inclusion of Zeeman degeneracy as well as fine structure
or hyperfine structure. On the other hand, the result is
rather formal, and explicit expressions for the drift veloci-
ty uo, the gradient velocity u~, and the diffusion tensor D
can only be obtained by adopting specific models for the
atomic levels and for the collision kernels. Nevertheless,
the general structure of Eqs. (4.1)—(4.5) allows us to draw
general conclusions on the interdependence of the various
physical effects, in particular, the light-induced drift and
diffusive pulling. This we shall do in Sec. V.

V. DISCUSSION AND CONCLUSIONS

Dij = oij (Dipl +D2Jj2 )

with

P„= dv p„„v

(5.1)

(5.2)

The origin of the various terms in the atomic flux (4.1)
is rather evident. The term proportional to uo simply ac-
counts for the fact that in the steady state p, the atoms
have a nonzero average velocity. It is this velocity uo that
has been numerically or analytically calculated by solving
the evolution equations without the free-flow term. '

The diffusion tensor has the standard form of the integrat-
ed autocorrelation function of the velocity. In the present
system this correlation function is anisotropic, and it de-
pends on the light intensity. This simply reflects the an-
isotropy and the intensity dependence of the evolution
operator Lo. The term proportional to uI arises from the
fact that the diffusion tensor is basically a weighted aver-
age of the diffusion of atoms in the ground state and
atoms in the excited state. However, the atomic motion
due to the net diffusive flux brings the atoms to a region
with a different distribution over the atomic states, which
results in a modified diffusion tensor. This change in the
distribution over the atomic states then leads to a correc-
tion in the diffusive flux, which is expressed by the veloci-
ty u~.

These considerations may be illustrated by adopting a
s&mplifying approximation in Eqs. (4.4) and (4.5), by sup-
posing that the velocity autocorrelation function for atoms
in either one of the two states depends negligibly on the
shape of the steady-state velocity distributions. On the
other hand, we allow these correlation functions to be
different for ground-state atoms and for excited atoms.
This means that the diffusion tensor becomes isotropic,
since the anisotropy of the steady-state distributions can
no longer matter, and the diffusion constants can be ex-
pressed as a weighted average of the diffusion constant D ~

and D2 corresponding to atoms in the two states. Hence
we write

the fraction of the atoms in the state n (n =1,2). The
same approximation applied to (4.5) yields the result

u1 D 1 ~p 1 D2~p2 (5.3)

where the gradients of the steady-state populations p ~ and

p~ are due to the intensity variation with the position r.
Substituting the results (5.1) and (5.3) into (4.1) gives the
very simple result

j= —V(D~p ~n +D2p2n)+uon . (5.4)

This equation expresses the atomic flux as the sum of a
diffusive flux and a light-induced drift. The diffusive flux
is simply the sum of two fluxes, one for each atomic state.

It is obvious that this simple expression (5.4) contains
light-induced drift as well as diffusive pulling. In particu-
lar, when we assume that the light frequency is at reso-
nance, the drift velocity uo must disappear, and only the
diffusive flux remains in (5.4). In the stationary state in a
closed cell, the total flux must vanish. When we use

p] +pq ——1, this leads to the result

[D & +p &(Dq D~ ) ]n =—const . (5.5)

If the excited-state diffusion constant D2 is the smaller
one, we find that in regions of high intensity, where p2 is
appreciable the density n must be larger than in the dark-
er regions. This is the effect of diffusive pulling. Obvi-
ously, the term ui is essential for the description of this
effect.

Apart from the simplified result discussed in this sec-
tion, the derivation of the general result (4.1) demon-
strates the connection between light-induced drift and
diffusive pulling. In particular it is obvious that it would
not be consistent to evaluate the drift velocity u from the
steady-state distribution p with respect to Lo, and substi-
tute it in (1.2), while retaining for D simply the gas-kinetic
diffusion coefficient pertaining to a gas mixture without
radiation. Inclusion of the difference in cross section in u
to higher order than the first one implies that also the
diffusion tensor is affected by the presence of excited
atoms. Similarly, the combined description of light-
induced drift and diffusive pulling demands the inclusion
of a term with u~, which only arises when the free-flow
term is included to second order and the difference in
cross sections at least to first order. This explains why
diffusive pulling did not appear in our earlier derivation of
a diffusion equation. '

Obviously, it would be interesting to obtain explicit re-
sults for the intensity dependence and the anisotropy of
the diffusion tensor. This is possible for specific simple
collision models, as we intend to demonstrate in a subse-
quent paper.
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