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It is suggested that the light-cone coordinate system is the natural language for the Lorentz-
covariant phase-space representation of quantum mechanics. The localized light wave is discussed as
an illustrative example. It is shown that the unitary transformation of a localized light wave from
one Lorentz frame to another can be achieved through its covariant phase-space representation.

I. INTRODUCTION

Since photons are relativistic particles, the quantum
mechanics of photons occupies an important place in rela-
tivistic quantum mechanics. The difficulty in formulating
the theory of photons is that there is no position operator
which is covariant and Hermitian.! This is known as the
photon localization problem.!-3

However, when we discuss photons, we always think of
localized light waves in a given Lorentz frame.* The
question then is whether someone in a different Lorentz
frame will think in the same way. If the localized light
wave represents a photon, it cannot be covariant. If, on
the other hand, the localized wave is covariant, it cannot
describe the photon.

With this point in mind, Han et al.® considered the co-
variance of localized light waves. They concluded that
their covariant model of localized light waves cannot
represent photons. Their conclusion is summarized in
Table I. Han et al. pointed out further that, if the
momentum distribution is sufficiently narrow, the light-
wave distribution can numerically be close to that of the
photon. For this reason, it is still useful to study the co-
variance of localized light waves.

The covariance of the model discussed in Ref. 5 is de-
rived from an analogy with the relativistic quark model.®
However, the analogy is less than perfect, because the rel-
ativistic quark model contains one of the space-time di-
mensions which does not exist in the case of light waves.
It is therefore of interest to look into the possibility of es-

TABLE 1. Covariant light waves and photons. They are
different. The light waves are localizable but cannot have a par-
ticle interpretation. The particle interpretation of free photons is
given in terms of the Fock space representation in quantum elec-
trodynamics. However, the photons in field theory are not local-
izable.

Particle
Localizable interpretation
Light waves Yes No
Photons No Yes

tablishing the covariance of localized light waves without
resorting to the quark model.

There is another research line of current interest. Since
its introduction in 1932,”® the phase-space representation
has been proven useful in many branches of modern phys-
ics, including statistical mechanics,” nuclear physics,'” ele-
mentary particle physics,!! quantum mechanics,!? con-
densed matter physics,!> atomic and molecular physics,'*
semiclassical dynamics,'® and in modern optics.!® Howev-
er, we do not know how the phase-space distribution in
one Lorentz frame would appear to an observer in a
different frame.

The purpose of the present paper is to solve the covari-
ance problem for light waves using its phase-space repre-
sentation. We shall construct a covariant phase-space
representation for localized light waves. The light-cone
coordinate system turns out to be the natural language for
the covariant phase-space representation.

In Sec. II, we extend the little group of photons to in-
clude Lorentz boosts of the plane-wave solutions of
Maxwell’s equations. This extended little group can ac-
commodate superpositions of light waves propagating in
the same direction with different frequencies. Section III
deals with localized light waves having the symmetry of
the extended little group. It is pointed out that the prob-
lem of unitarity is an outstanding problem for the covari-
ance of localized light waves. In Sec. IV, a localized
phase-space representation is constructed. This represen-
tation is unitary and produces the multiplier needed in the
spatial or momentum representation of covariant light
waves.

II. EXTENDED LITTLE GROUP FOR PHOTONS

The little group is the maximal subgroup of the Lorentz
group which leaves the four momentum of a given particle
invariant.'” For a massless particle moving along the z
direction, the little group is generated by

J37N1aN2 » (1)
with
N]:KI_J2) N2:K2+J1 >
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where J; and K; are the generators of rotations and
boosts, respectively. The above generators satisfy the
commutation relations:

[NI’NZ]:O ’
[J3,N|]=iN, , ()
[J3,N2]=—iN; .

These commutation relations are identical to those of the
two-dimensional Euclidean group.

In addition, we can consider K3 which generates boosts
along the z direction. This operator satisfies the following
commutation relations with the above generators of the
little group:

[K3yJ3]:O )
[K3,N{]=—iNy, 3)
[K3,N;]=—iN; .

Since the operators Ny, N,, J3, and K3 form a closed Lie
algebra,'® we shall call the group generated by these four
operators the “extended little group.”

The boost generated by K3 has no effect on J;, while
changing the scale of Ny and N,. In particular, if we
start with a monochromatic light wave whose four poten-
tial is

A*(x)=(4,0,0,0)e =", @)

in the metric convention: x*=(x,y,z,t), the Lorentz
boost generated by K3 leaves the above expression invari-
ant. Since N; and N, generate gauge transformations on
A*(x) which do not lead to observable consequences, we
can stick to the above expression, and ignore the effect of
N, and N,.

J3 generates rotations around the z axis. In this case,
the rotation leads to a linear combination of the x and y
components. This operation is consistent with the fact
that the photon has two independent components, which
is thoroughly familiar to us. Therefore, for all practical
purposes, A*(x) has just one component which remains
invariant under transformations of the extended little
group. We can thus write 4#(x) as

AM(x)= Ae'kz—en) (5)

While the group of Lorentz transformations has six
generators, the extended little group has only four. This
means that the extended little group is a subgroup of the
Lorentz group. How can we then generalize the above
reasoning to take into account the most general case? The
choice of the z axis is purely for convenience, and it was
chosen to be the direction of the wave propagation. If this
direction is rotated, it is not difficult to deal with the
problem. If the boost is made along the direction
different from that of propagation, then the operation is
equivalent to a gauge transformation followed by a rota-
tion.” Therefore, the extended little group, while being
simpler than the six-parameter Lorentz group, can take
care of all possible Lorentz transformations of the mono-
chromatic wave.

The above reasoning remains valid for the case of the

superposition of several waves with different frequencies
propagating in the same direction:

Arx) =3 Ao M (6)

and the norm

N:ZJA,-!Z 7

remains invariant under transformations of the extended
little group. We shall study in Sec. III how the summa-
tions given by Egs. (6) and (7) can be written as integrals.

III. LOCALIZED LIGHT WAVES

For light waves, we are familiar with the expression!’

flz0=0172m"2 [ g(kle!=="dk . (8)

However, the expression commonly used in quantum elec-
trodynamics is

Az= [ alke’ =91 /Vo)dk . 9)

Equation (9) is a covariant expression in the sense that the
norm

[ 1a(k)| X1 /w)dk (10)

is invariant under the Lorentz boost, because the integra-
tion measure (1/w)dk is Lorentz invariant. On the other
hand, the expression given in Eq. (8) is not covariant if
g (k) is a scalar function, because the measure dk is not
invariant.

It is possible to give a particle interpretation to Eq. (9)
after second quantization. However, A (z,t) cannot be
used for the localization of photons. On the other hand,
it is possible to give a localized probability interpretation
to f(z,t) of Eq. (8), while it does not accept the particle
interpretation of quantum field theory. This situation is
summarized in Table I.

If g (k) is not a scalar function, what is its transforma-
tion property? We shall approach this problem using the
light-cone coordinate system. We define the light-cone
variables as

s=(z+1)/2, u=(z—1t). (11)
The Fourier-conjugate momentum variables are
ki=(k—w), k,(k+4+w)/2. (12)

If we boost the light wave (or move against the wave with
velocity parameter f3), the new coordinate variables be-
come

s'=a.s,

’ ’
ki=a_ks, ky,=a k,,

u=a_u,
(13)

where
1/2

H+
=

|

-+
=]
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If we construct a phase-space consisting of s and k; or
u and k,, the effect of the Lorentz boost will simply be
the elongation and contraction of the coordinate axes. If
the coordinate s is elongated by a ., then k; is contracted
by a_ with a,a_=1. The orthogonality of the coordi-
nate system is preserved. It appears therefore that the
light-cone coordinate system is the natural language for
the covariance of the phase-space representation of quan-
tum mechanics.

In the case of light waves, k; vanishes, and k, becomes
k or w. In terms of the light-cone variables, the expres-
sion of Eq. (8) becomes

fan=(1/2m"? [ gke™ dk . (14)

We are interested in a unitary transformation of the above
expression into another Lorentz frame. In order that the
norm

[ 1gk)| %k (15)
be Lorentz invariant, f(u) and g(k) should be
transformed like®

flw)—(a ) *flaiu),

(16)

g(k)—(a_)"?gla_k) .

Then Parseval’s relation
[7 1w du= [~ |gk)|%dk (17)

will remain Lorentz invariant.

It is not difficult to understand why u and k in Eq. (16)
are multiplied by ¢, and a_, respectively. However, we
still have to give a physical reason for the existence of the
multipliers (a+)'/? in front of f(u) and g (k). They are
there because the integration measure in Eq. (15) is not
Lorentz invariant.

Multiplier representations of transformation groups
have been discussed in the literature.”® The best known
physical example is the Schrodinger wave function under
the Galilei transformation.?! In the case of Galilei boost,
the multiplier has unit modulus, and its physical origin is
well understood.?! The purpose of the present paper is to
determine the physical origin of the multipliers in Eq.
(16).

In Ref. 5, Han et al. argued from their experience in
the relativistic quark model that the integration measure
can become Lorentz invariant if we take into account the
remaining light-cone variables in Egs. (11) and (12).
Indeed, the measures (du ds) and (dk,dk,) are Lorentz
invariant. However, this argument is not complete be-
cause the s and k; variables do not exist in the case of
light waves. In Sec. IV, we shall use the covariant phase-
space representation to solve this problem.

Let us illustrate what we did above using a Gaussian
form for g (k):

1/4

_ =l
gk)= exp b (k—p) |, (18)

b

where b is a constant and specifies the width of the distri-
bution and p is the average momentum:

1295
p= [ klgth) |k . (19)
f(u) takes the form
1/4 b
flu)=|— exp ipu—~2~u2 (20)

Under the Lorentz boost, f(u) and g (k) are transformed
into

(@ )b /m) 4 exp

’

—ia  pu —%(a+u)2

L ik —ap? |,

1/2 1/4
(a_)""“(1/7b)""" exp b

respectively. The above expression will be useful in illus-
trating the phase-space representation in Sec. IV.

IV. COVARIANT PHASE-SPACE REPRESENTATION

Unlike the case of quantum electrodynamics, the
Lorentz boost of f(u) and g(k) requires multiplicative
factors, as is seen in Eq. (16). In order to trace the physi-
cal origin of these factors, let us study the phase-space
representation for the light waves in the light-cone coordi-
nate system. In this case, ¥ and k act as the position and
momentum variables, respectively.

We can now define the phase-space representation of
the light wave as

P(u,k)= [ r*u—y)fu+pe®dy . @2)

1
T

This form of phase-space representation has been studied
extensively in the literature for the solution of the
Schrodinger equation,’~'%12-15 those of the Dirac equa-
tion,'"?? and those of Maxwell’s equations.!® In this sec-
tion, we are interested in how the above distribution in
one Lorentz frame appears in different frames.?3~2°

Since f(u) is the Fourier transform of g (k), we can re-
cover the distribution functions in position and momen-
tum from the above phase-space representation by in-
tegrating over the k or u variable:?

plu)=| fw|*= [ P(u,k)dk ,
(23)
oltk)=|gk)|*= [ Pu,k)du .

Under the Lorentz boost of Eq. (13), the phase-space dis-
tribution function becomes

P(u,k)—>Pla u,a_k) . 24)

Because the measure (du dk) is Lorentz invariant, as is il-
lustrated in Fig. 1, there is no need for a multiplicative
factor in the above expression. The normalization integral

[ P(u,k)du dk (25)

is Lorentz invariant.
After integrating over k of the transformed phase-space
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distribution, we can obtain the transformed distribution
function in position. Then, p(u) will be transformed as

plu)—a pla,u). (26)
Similarly, the transformation property of o (k) is
glk)—a_ola_k) . 27)

We can now safely conclude that the multiplicative fac-
tors for f(u) and g (k) in Eq. (16) are derivable from the
covariance of the phase-space representation.

Let us illustrate what we did above using the Gaussian
form of g (k) given in Eq. (18). The phase-space distribu-
tion takes the form

P(u,k)= exp{ —[bu?+(k —p)?/b]} . (28)

T
This means that the distribution is localized within an el-
liptic region:

[bu’+(k—p)?/bl<1. (29)

In Fig. 1, this region is illustrated by a circle whose center
is at ¥ =0, and kK =p. Under the boost, the new phase-
space distribution function becomes

exp{ —[bla u)+(a_)(k —a,p)?/bl} . (30)

T

This will deform the ellipse (circle in Fig. 1) of Eq. (30).
This deformation will not change the normalization in-
tegral of Eq. (26). By carrying out the integration over k
or u of the above expression, we can obtain the spatial or
momentum distribution function which can be derived
from the expression of Eq. (21).

The elliptic deformation described in Fig. 1 is like the
deformation of the phase-space representation of the
squeezed coherent state of light. Indeed, in their recent
work,?® Schleich and Wheeler discussed the phase-space
representation of the minimum-uncertainty wave packet
in terms of the deformed Gaussian function. The physics
of the squeezed state is quite different from the Lorentz
boost. It is however interesting to note that these two
different physical phenomena can be described by the
same mathematics.

I BOOST
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@

FIG. 1. Phase-space distribution of the localized light wave in
the light-cone coordinate system. The Lorentz boost along the z
direction contracts (elongates) the u axis while it elongates (con-
tracts) the k axis in such a way that the area element in the
phase space is conserved. This represents the Lorentz invariance
of Planck’s constant.

V. CONCLUDING REMARKS

It has been shown in this paper that the phase-space
representation plays an essential role in the construction
of the unitary representation for localized light waves.
The result of the present paper indicates that the phase-
space representation may prove useful in the covariant
description of quantum systems. For instance, a covari-
ant picture is urgently needed for relativistic hadronic
models in which hadrons are bound states of quarks.

The concept of Planck’s constant in terms of the
volume element in phase space is quite familiar to us, and
this is still being investigated.?’” We have learned in this
paper that this procedure can be extended to the relativis-
tic phase space. The light-cone coordinate system appears
to be the natural language for this covariant description.

IT. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400
(1949).

2A. S. Wightman, Rev. Mod. Phys. 34, 845 (1962); T. O. Philips,
Phys. Rev. 136, B893 (1964); W. O. Amrein, Helv. Phys. Acta
42, 149 (1969); S. T. Ali and G. G. Emch, J. Math. Phys. 15,
176 (1974).

3For a recent review article on this subject, see S. T. Ali, Riv.
Nuovo Cimento 8, No. 11 (1985).

4C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986).

5D. Han, Y. S. Kim, and M. E. Nogz, Phys. Rev. A 35, 1682
(1987).

6R. P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. D 3,

2706 (1971). For a reformulation of the relativistic quark
model in terms of the representations of the Poincaré group,
see Y. S. Kim and M. E. Noz, Theory and Application of the
Poincaré Group (Reidel, Dordrecht, 1986).

7E. P. Wigner, Phys. Rev. 40, 749 (1932).

8For review articles on this subject, see E. P. Wigner, in Perspec-
tive in Quantum Theory, edited by W. Yourgrau and A. van
der Merwe (MIT Press, Cambridge, Mass., 1971); P. Carruth-
ers and F. Zachariasen, Rev. Mod. Phys. 55, 245 (1983); R. F.
O’Connell, Found. Phys. 13, 83 (1983); M. Hillery, R. F.
O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106,
121 (1984); N. L. Balazs and B. K. Jennings, ibid. 104C, 347



36 COVARIANT PHASE-SPACE REPRESENTATION FOR . .. 1297

(1984); E. P. Wigner, in Proceedings of the First International
Conference on the Physics of Phase Space, edited by Y. S. Kim
and W. W. Zachary (Springer-Verlag, Heidelberg, 1987); F. J.
Narcowich and S. A. Fulling, Seminars in Mathematical Phys-
ics (Texas A&M University, College Station, Texas, 1986),
No. 1.

9L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics
(Benjamin, New York, 1962); S. Fujita, Introduction to Non-
Equilibrium Statistical Mechanics (Saunders, Philadelphia,
1966); K. Imre, E. Ozimir, M. Rosenbaum, and P. F. Zweifel,
J. Math. Phys. 8 1097 (1967); R. W. Davies, and K. T. R.
Davies, Ann. Phys. (N.Y.) 89, 261 (1975); R. Hakim, Riv.
Nuovo Cimento 1, No. 6 (1978); A. Royer, Phys. Rev. A 32,
1729 (1985); J. D. Alonso, Ann. Phys. (N.Y.) 160, 1 (1985).

103, R. Nix, Nucl. Phys. A 130, 241 (1969); N. L. Balazs and G.
G. Zippel, Ann. Phys. (N.Y.) 77, 139 (1973); R. A. Remler,
Ann. Phys. 95, 455 (1975); Phys. Rev. D 16, 3464 (1977). R.
A. Remler and A. P. Sathe, Ann. Phys. (N.Y.) 91, 295 (1975);
Phys. Rev. C 18, 2293 (1978); M. Thies, Ann. Phys. (N.Y.)
123, 441 (1979); H. Kuratsuji, Prog. Theor. Phys. 65, 224
(1981); M. Durand, P. Schuck, and J. Kunz, Nucl. Phys. A
439, 263, (1985).

1P, Carruthers and F. Zachariasen, Phys. Rev. D 13, 950
(1976); J. B. Whitenton, B. Durand, and L. Durand, ibid. 28,
579 (1983); B. Lesche, ibid. 29, 2270 (1984); H. M. Franca
and M. T. Thomas, ibid. 31, 1337 (1985); N. C. Petroni, P.
Gueret, J. P. Vigier, and A. Kyprianidis, ibid. 31, 3157
(1985); J. Winter, ibid. 32, 1871 (1985); J. A. Zurek, ibid. 32,
2635 (1985); F. Zachariasen, in Proceedings of the First Inter-
national Conference on the Physics of Phase Space, edited by
Y. S. Kim and W. W. Zachary (Springer-Verlag, Heidelberg,
1987).

123, E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949); M. S.
Bartlett and J. E. Moyal, ibid. 45, 545 (1949); L. Cohen, J.
Math. Phys. 7, 781 (1966); S. Shlomo and M. Prakash, Nucl.
Phys. A 357, 157 (1981); R. F. O’Connell and E. P. Wigner,
Phys. Lett. A 83, 145 (1981); 85, 121 (1981); R. F. O’Connell
and A. K. Rajagopal, Phys. Rev. Lett. 47, 1029 (1982); 48,
525 (1982); S. Shlomo, J. Phys. A 16, 3463 (1983); P. Ber-
trand, J. P. Doremus, B. Izrar, V. T. Ngyuen, and M. R. Feix,
Phys. Lett. 94A, 415 (1983); R. Werner, J. Math. Phys. 25,
1404 (1984); A. J. E. M. Janssen, ibid. 26, 1986 (1985); T. A.
Osborn, ibid. 26, 435 (1985); B. Lesche and T. H. Seligman,
J. Phys. A 19, 91 (1986); F. J. Narcowich and R. F.
O’Connell, Phys. Rev. A 34, 1 (1986); M. Moshinsky, in
Proceedings of the First International Conference on the Phys-
ics of Phase Space, edited by Y. S. Kim and W. W. Zachary
(Springer-Verlag, Heidelberg, 1987).

3H. Sumi, Phys. Rev. B 27, 2374 (1983); 29, 4616 (1984); J. V.
Jose, ibid. 29, 2836 (1984); R. F. O’Connell and J. Wang,
Phys. Rev. A 31, 1707 (1985); F. Barocchi, M. Neumann, and
M. Zoppi, ibid. 31, 4105 (1985); R. Dickman and R. F.
O’Connell, Phys. Rev. B 32, 471 (1985); R. F. O’Connell, in
Proceedings of the First International Conference on the Phys-
ics of Phase Space, edited by Y. S. Kim and W. W. Zachary
(Springer-Verlag, Heidelberg, 1987).

14H. W. Lee and M. O. Scully, J. Chem. Phys. 73, 2238 (1980);
77, 4604 (1982); J. P. Dahl and M. Springborg, Mol. Phys. 47,
1001 (1982); F. H. Ree, J. Chem. Phys. 78, 409 (1983); J. M.
Gracia-Bondia, Phys. Rev. A 30, 691 (1984); B. C. Eu, J.
Chem. Phys. 78, 409 (1984); L. Cohen, ibid. 80, 4277 (1984);
K. Takatsuka and H. Nakamura, ibid. 82, 2573 (1985); R. L.

Sundberg, A. Abramson, J. L. Kinsey, and R. W. Fied, ibid.
83, 466 (1985).

I5E. J. Heller, J. Chem. Phys. 67, 3339 (1977); 71, 3383 (1979);
M. V. Berry, Philos. Trans. R. Soc. London. Ser. A 287, 273
(1977); V. P. Maslov and M. V. Fedoriuk, Semiclassical Ap-
proximation in Quantum Mechanics (Reidel, Dordrecht,
1981); R. T. Prosser, J. Math. Phys. 24, 548 (1983); H. W.
Lee and M. O. Scully, Found. Phys. 13, 61 (1983); M.
Feingold and A. Peres, Phys. Rev. A 31, 2472 (1985); A. M.
Ozorio de Almeida, Ann. Phys. 145, 100 (1983); M. Sirugue,
M. Sirugue-Collin, and A. Truman, Ann. Inst. Henri Poin-
caré 41, 429 (1984); S. Shlomo, Nuovo Cimento 87A, 211
(1985); S. J. Chang and K. J. Shi, Phys. Rev. A 34, 7 (1985);
R. G. Littlejohn, Phys. Rep. 138, 193 (1986).

16J. Klauder, and E. C. G. Sudarshan, Fundamentals of Quan-
tum Optics (Benjamin, New York, 1968); W. H. Louisell,
Quantum Statistical Properties of Radiation (Wiley, New York,
1973); B. V. K. Vijaya Kumar and C. W. Carroll, Opt. Eng.
23, 732 (1984); R. L. Easton, A. J. Ticknor, and H. H. Bar-
rett, ibid. 23, 738 (1984); R. Procida and H. W. Lee, Opt.
Commun. 49, 201 (1984); N. S. Subotic and B. E. A. Saleh,
ibid. 52, 259 (1984); A. Conner and Y. Li, Appl. Opt. 24,
3825 (1985); S. W. McDonald and A. N. Kaufman, Phys.
Rev. A 32 1708 (1985); O. T. Serima, J. Javanainen, and S.
Varro, ibid. 33, 2913 (1986); K. J. Kim, Nucl. Instrum. A
246, 71 (1986); H. Szu, in Proceedings of the First Internation-
al Conference on the Physics of Phase Space, edited by Y. S.
Kim and W. W. Zachary (Springer-Verlag, Heidelberg, 1987).

17E. P. Wigner, Ann. Math. 40, 149 (1939).

18A .- Janner and T. Janssen, Physica 60, 292 (1972).

195, W. Goodman, Fourier Optics (McGraw-Hill, New York,
1968); E. Gordin, Waves and Photons (Wiley, New York,
1982); W. H. Steel, Interferometry, 2nd ed. (Cambridge Uni-
versity Press, London, 1983).

20v. Bargmann, Ann. Math. 48, 568 (1947); M. Miller, Symme-
try Groups and Their Applications (Academic, New York,
1972).

21E. Inonu and E. P. Wigner, Nuovo Cimento 9, 705 (1952).

22R. Hakim and H. Sivak, Ann. Phys. 139, 230 (1982); G. G.
Emch, J. Math. Phys. 23, 1785 (1982); D. Vasak, M. Gyu-
lassy, and H. T. Elze, Ann. Phys. (N.Y.) 173, 462 (1987).

23y, Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. (USA)
34, 211 (1948). This paper discusses the unitary transforma-
tion of wave functions from one Lorentz frame to another
frame.

24For Lorentz transformations of the harmonic oscillator wave
functions, see Y. S. Kim, M. E. Noz, and S. H. Oh, Am. J.
Phys. 47, 892 (1979).

25For earlier papers on the covariance of phase space, see D. G.
Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod.
Phys. 35, 350 (1963); A. Das, Prog. Theor. Phys. 70, 1666
(1983); S. T. Ali and E. Prugovecki, Acta Applicandae Math.
6, 47 (1986).

26W. Schleich and J. A. Wheeler, in Proceedings of the First In-
ternational Conference on the Physics of Phase Space, edited by
Y. S. Kim and W. W. Zachary (Springer-Verlag, Heidelberg,
1987). For earlier papers on the squeezed states in phase
space, see D. Stoler, Phys. Rev. D 1, 3217 (1970); H. P. Yuen,
Phys. Rev. A 13, 2226 (1976).

27For a recent discussion of this subject in terms of modern
mathematics, see C. L. Fefferman, Bull. Am. Math. Soc. 9,
129 (1983).



