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Many-photon processes with the participation of squeezed light
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The description of an electromagnetic field of complicated statistics with noise, coherent, and
squeezed features are discussed using the nondiagonal coherent-state representation of the density
matrix and the normally ordered characteristic function derived therefrom. The quantity ((a )"a")
which plays a central role in the theory of many-photon processes is found for this field. Particular
cases with dominant coherent signal, noise, or squeezing are discussed. It is found that the ratios
((a )"a") /((a to ) )" for the coherent, the chaotic, and the strongly squeezed vacuum states are 1, n!,
and (2n —1)!!,respectively. The value of ((a )") related to the anomalous coherence function is con-
sidered. It is found that the noise does not influence ((a )").

I. INTRODUCTION

The possibility of two-quantum processes was discussed
by Goeppert-Mayer as early as 1931,' long before the in-
tensities of the light sources were high enough to observe
such processes. Since the 1960's a considerable interest in
many-photon processes can be seen.

Many-photon processes give us a key to solve one of the
principal problems of quantum optics —the measurement
of the higher correlation functions of the radiation fields. '

While the probability of a one-photon process depends on
the intensity of light, the probability of many-photon pro-
cesses depends strongly on the statistical properties of the
optical field.

In the present paper we shall consider many-photon
transitions in atoms. The radiation field is assumed to
have complex statistical properties, including squeezing,
noise, and coherent signal. Our motivation was to achieve
a deeper understanding of experiments on many-photon
processes where the statistics of light can be measured.
On the other hand, multiphoton processes with the parti-
cipation of a nonclassical electromagnetic field are of prin-
cipal interest.

G„„=((a a ) )"=G~~,

while for a chaotic field, "'
G„„=n!(( aa))"=n!G ~~.

(2.3)

(2.4)

III. STATISTICAL PROPERTIES OF LIGHT

The quantum statistics of the radiation field have re-
cently been extensively investigated in connection with the
squeezed states of light. ' Experimentally detected
squeezing has been first reported in Ref. 31.

A state is squeezed if either of the Hermitian field
operators

where G'" (It], It' ]) is the (n, rn)th-order normally or-
dered correlation function of the electromagnetic field' '
and 4( [co] ) is a function introduced by Agarwal. "

G'"'" (IO], IOI) —Tr[p(a )"a "]=G„„ (2.2)

where p is the density operator of the field.
G„, describes the quantum-statistical properties of light.

In a pure coherent state,

II. TRANSITION PROBABILITY

X+ ——a+a, X = —i(a —a ), [X+,X ]=2i
has a variance less than unity

(3.1)

w'" =G'""'([o],[o])
l
e(I~o]) l'r

[r /4+(co, ncoo) ]— (2. 1)

We consider an atom with a resonant absorption fre-
quency ~, and a quasimonochromatic field with ~o mean
frequency and Am bandwidth. We assume that Ace is
small compared to the inverse lifetime of the excited state
of the atom Ace «y, that there is only a small detuning,
i.e., co, =n~o, and that there is no intermediate level Ace;

for which co; =n'coo, n'&n, n and n' being integers. Un-
der these circumstances the transition probability in unit
time equals"

or (3.2)

According to the uncertainty relation

(3.3)

where the equal sign stands for a pure squeezed state.
Figure 1 shows the variances of X+ and X for diA'erent
quantum states: A is a coherent or vacuum state, B can
be a chaotic or a photon number state. A and B are
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QX )I

hX )l

~ a ~+~+ z~~ ~~
e e =e

(3.8)

[&,[A,B]]=[B,[A,B]]=0,
we find

&(g) =exp[ —
I

U
I

'
I
il I

'+-,'(»*il'+»n*')] (3 9)

The functions R(P*,a) and X(r)) are connected by an in-
tegral transformation

hX (I 1X(g)= —fd aR(a*,a+&)e (3.10)

R(P', a)= e~ —fd r)g(q)e lnl' nP +—n* (3.11)

hX

FICx. 1. Variances of the field quadratures X+ and X . A is
a coherent or vacuum state, 8 is a chaotic state, C has some
squeezed features, D is squeezed but not a minimum-uncertainty
state, and E is a squeezed minimum-uncertainty state.

2 2pUt=&ajn+Uai„, tl —
I

U
I

=1 (3.4)

In a squeezed state the P representation is inconvenient;
thus, for the density operator p one should use the R rep-
resentation

p= fd ad PR(P*,a) I/3)(a
I

unsqueezed states. C has some squeezed features but does
not meet the condition (3.2) to be called a squeezed state.
D is already squeezed but is not a minimum uncertainty
state. An example of C and D is the superposition of
noise and squeezing effects. E is a squeezed vacuum or a
squeezed coherent state. A pure squeezed state can be ob-
tained from a coherent (or vacuum) state by several loss-
less nonlinear optical processes (e.g. , degenerate paramet-
ric generation, four-wave mixing with combination of the
probe and conjugated modes, ' or directly in an aniso-
tropic case, etc. ) characterized by a Bogoliubov transfor-
mation

Using (3.9) and (3.11) we have for a squeezed vacuum
state

R(P*,a)= —exp (u*a +UP' )
0 2Q

(3.12)

One can ascertain directly that this state is a pure state
(p =p) by finding out that R satisfies the relation

d yR ',yR y*,ae —Irl' R +a, 313

and also that for real U's

bX+ =u+U, ~+~ =1 . (3.14)

This means that during a lossless nonlinear process
characterized by (3.4) we go, in Fig. 1, from a vacuum
state 3 to a pure squeezed state E along the minimum-
uncertainty hyperbola.

In a real situation there are factors which lead to noise:
(1) the initial state before the squeezing process may be al-
ready noisy, (2) the nonlinear optical processes, e.g. , four-
wave mixing are connected with loss and noise, and (3)
after the squeezing process any optical processing may in-
ject noise into the field. The resulting electromagnetic
field has complicated statistics with noise, squeezing as-
pects, and coherent signal.

The noisy initial state can be modeled in the P repre-
sentation by the weight function of the input density
operator

x exp[ —(
I 0 I

'+
I
a

I

')/2] . (3.5) Pp(a) = exp( —
I
a —ap

I
/Np )

1 2

mXp
(3.15)

As an example let us find R (P*,a) for an initial vacuum
state

(3.6)

describing a superposition of a coherent signal (ap) with
noise (Np).

The loss and noise effects during the nonlinear process
with interaction length L can be accounted instead of (3.4)

30
after a nonlinear process which realizes (3.4). It is con-
venient to find the normally ordered characteristic func-
tion first: a,„,=u(L)a;„+u(L)a;„+F(L), (3.16)

X(g)=Tr(pe"' e " '),
gn((a")"a ) =

m

Xil)I„
(3.7)

where

F(x)=f dx'[Q(x')u(x —x')+Q (x')u(x —x')] . (3.17)
0

Using (3.4), (3.6), and the well-known identity
Q(x) is a noise operator satisfying the usual commutative
relation for noise sources
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[Q(x),Q (x')]=2@5(x—x'),

y is the loss coefticient and

[u (x)] —
I
v(x)

I

'=e

(3.18)

(3.19)

Gii=M+
I

W
I

(3.28)

G»=2M'+4M
I

W
I

'+
I

W
I

'+
I

S
I

'+ W'S*+ W*'S,

(3.29)

2 2a „,=pa,„,+qb p +q =1, (3.20)

The injection of additional noise after squeezing can be
described by a transformation

G»=6M'+»M'I W I'+9M
I

W I'+9M IS '
+9M(SW*'+S*8")+9

I
W

I

'
I

S
I

'

+3
I

W
I

'(SW*'+S*W')+
I

W
I

' (3.30)
where the mode characterized by the annihilation opera-
tor b is in a chaotic state.

Using the expressions (3.10) and (3.11), (3.15) and
(3.16), and (3.20) one can find directly that any combina-
tion of the above-mentioned factors (1), (2), and (3) leads
to the next form of R and 7 for the output field

Measuring G„„ for different n's one can find the values of
8, S, and M characterizing the complex statistics of light.

The measurement of ~+ can also give useful informa-
tion on M and S, for in the rather general case character-
ized by X(rI) of Eq. (3.22) we have

R(P*,a)=(m —Is
I

)'

X exp[/3 a —m(a —W)(/3* —W'*)

X+—,'[s*(a—W) +s(/3* —W*) ]]
(3.21)

~+ = 1+2M+S+S *,
that is,

Re S= —,'(~+ —~ ),
M= —,'(~++~' ) ——,

'

(3.31)

(3.32)

(3.33)

g(g)=exp( —M
I rI

I
+ ,'[S*rj +—Sr/* )+TIW* —g*W),

(3.22)

where W=
I

W
I

e'~ is the coherent signal, and m and s
or M and S are related to the noncoherent part of the
field,

IV. DISCUSSION OF PARTICULAR CASKS

To discuss G„„ for higher n let us consider some partic-
ular cases.

m2 —Is
I

s= —= Is Ie'
m —Is

I

(3.23)

(a)
I

W'
I

»M,
I

W
I

»S, i.e., the coherent signal is
much stronger than the noise and the squeezing effects.
Under these circumstances G„„ is close to its coherent
value given by (2.3)

For the vacuum M =S=8 =0, in the pure coherent
state M =S =0 and for the chaotic field O'=S =0. The
state is a pure squeezed state if

M=Q—= —,'[(4
I

S
I

+1)' —1],
S=e' coshr sinhr,

r being the squeezing parameters. If /=0, then

~+——e—+2r .

(3.24)

(3.25)

where % is the noise photon number.
The expression for G„„can easily be obtained using the

well-known generating function of the Hermite polynomi-
als. From (3.7) and (3.22) we find

The mixed state emerging from a superposition of a pure
squeezed state with coherent signal 8' and a chaotic field
is described by (3.21) and (3.22) if

(3.26)

G„„=IWI "+ IWI" (SW» +S*W )
2

+n WI" M

From (4.1), (3.23), and (3.28) we have

(4.1)

=n (n —l)[M+
I
S

I
cos(2$ —P)] . (4.2)

11

For example, if n =2,

G22 —G» =2
I

W
I

[M+
I
S

I
cos(2$ —P)]+M +

I

S
I

(4.3)

the second and third terms being much smaller than the
first one.

(b) M » W, M »
I
S I, i.e., the noise prevails over

both coherent signal and squeezing. In this case,

G„„=n!M"[1+nM '
I

W
I

G„„=(a t"a" )

n

=(n!) g Hk
k =o &2S 2 (k!) (n —k)!

(3.27)

(
I

W I'+ W2S"
4M

+W*'S+ IS I')], (4.4)
Expression (3.27) gives G„„ in a rather cumbersome

way, which can be simplified only for small n's and
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)G n

[ /S /'+2[ W /' S
/

11
G o=&a ")=i"(S*)" 2 " H„ &2S' (5.1)

)&cos(2$—P) —
~

W
~

] . (4.5) A remarkable result of (5.1) is that the noise does not
influence G„p at all. For small n's

(c)
~

S
~

&&N,
~

S
~

&&
~

W ~, i.e., the main feature of
the state is squeezing:

["/2]
~

S
~

2( —(
Q

"—2( —(

G„„=(n!) 'V

() 2 '(n —21)!(1!)

G ip ——8'*,
G2o ——S'+ G &o

G3o ——38' S +G&o

(5.2)

X [Q i
S

i
+21Q

i
W

i
cos(2$ —P) It can be seen from (5.2) that for a squeezed vacuum the

second-order anomalous coherence function Gqo gives us
S* immediately. If

~

W
~

&&
~
S, we have

+(n —21) )S ((N+
(

W
) )], (4.6)

n (n —1)
G o=Gio+ G]o

2
(5.3)

where [k + —,
' ]= [k]=k.

In the squeezed vacuum state N =
~

W
~

=0,
~S

~

=Q(1+Q), G)(=Q, and

(,)2Q„[~' (1+1/Q)'
() 2 (n —21)!(1!)

(4.7)

For a slightly squeezed vacuum (Q && 1)

G ( &
t ) )(n —[n/2])

[n /2]) )222[n /2]

while in a strongly squeezed vacuum (Q » 1)

G„„=(2n —1)!!(&a a ))" .

(4.8)

(4.9)

V. ANOMALOUS COHERENCE FUNCTION

So far we have dealt with diagonal correlation functions
G„„. Recently, the importance of the off-diagonal correla-
tion functions or anomalous coherence functions has
been pointed out. There are several possibilities to mea-
sure the anomalous coherence function. In Ref. 34 it was
suggested that the measurement of the intensity correla-
tions of the superposition of a field under consideration
and a coherent field would yield information on the
anomalous coherence function of the original field.
Agarwal pointed out that mixing of a field with its phase-
conjugated replica provides a convenient way to measure
the anomalous coherence function. '

In this section we shall investigate G„p, which is in fact
an equal time anomalous coherence function. For the
general case with noise, coherent signal, and squeezing,
from (3.7) and (3.22) using the Hermite polynomial gen-
erating function, we have

From (2.3), (2.4), and (4.9) we can see that in the expres-
sion for G„„ the factors before ( &a a ) )" for the coherent,
the chaotic, and the strongly squeezed vacuum states are
1, n!, and (2n —1)!!,respectively. It means that the ratio
&(a )"a")/(&a a) )" in the case of the squeezed vacuum
increases even in comparison to the Gaussian noise. This
is quite remarkable if one remembers that the (n!) factor
in (2.4) is explained by the presence of more irregularities
in the intensity distribution in the case of the chaotic field
compared to the pure coherent one.

On the contrary, in the case of squeezed chaotic field (or
squeezed vacuum),

G„p=(n —1)!!(S*)"/, n =21 & 0

G„p ——0, n =2l+ 1
(5.4)

while for an unsqueezed chaotic field all G„p's vanish.
It is to be noted that the mean values and the variances

of the observables X+ and L are closely related to the
off-diagonal coherence functions

Go = —,'(&& )+(&& )),
G,.=-,'(&~ ) —(&& )),

(5.5)

and

~+ = 1 + 2G((+(G2p+ Gp2 ) —2G)pG()) + (G (p + G()( )

(5.6)

VI. CONCLUSIONS

ACKNOWLEDGMENTS

We are pleased to thank A. Vinogradov and G. Corradi
for helpful discussions. This work was supported by the
Hungarian National Office for Technical Development,
the Academy Research Fund (AKA), and the National
Scientific and Research Fund (OTKA).

In the absence of noise a number of nonlinear optical
processes, especially if an intracavity arrangement is used,
are expected to produce squeezing. In a real process the
emerging field has chaotic, coherent, and squeezing
features. Using a density-operator —characteristic-function
approach, we have shown here how these features affect
the quantity &(a )"a") which can be measured experi-
mentally, e.g. , by multiphoton processes. Such measure-
ments together with measuring the mean values and vari-
ances of the field quadratures X+ and L can give us the
value of M, 8' and S needed to describe an electromag-
netic field of complex statistics. According to our results
the probability of a multiphoton process for a strongly
squeezed vacuum state is higher than for a coherent or a
chaotic field.
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