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Bistable-soliton pulse propagation: Stability aspects
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Making use of numerical collision simulations, we have examined the stability of the bistable
solitary-wave solutions (predicted earlier by Kaplan [Phys. Rev. Lett. 55, 1291 (1985) and IEEE J.
Quant. Electron. QE-21, 1538 (1985)]) to the generalized nonlinear Schrodinger equation for a wide
range of nonlinear functions f(I), I being the intensity. Gradations of stability have been observed,
ranging from absolute instability through "weak" solitons to "robust" solitons. For all models stud-
ied, it was found that dP/d6 (0 guarantees unconditional instability while dP/d6) 0 is a necessary
condition for the existence of v eak and robust solitons. Here P is the energy of the solitary pulse and
6 is a propagation parameter. Sufficiency conditions for robustness of the soliton have also been sug-
gested. We have further demonstrated that it is possible to construct physically realistic nonlinear
models f (I) for which robust bistable solitons exist.

I. INTRODUCTION

It has been recently demonstrated by Kaplan' that for a
certain class of nonlinear functions f (

~

E ), bistable
(more generally, multistable) solitary-wave solutions to the
generalized nonlinear Schrodinger equation

2i dEiBz +t) E/dx +Ef (
(
E

(
)=0

can exist which carry the same energy P but have distinct-
ly different profiles. Restricting ourselves to one-
dimensional optical pulse propagation (the same equation
applies to two-dimensional self-trapping ), E is the com-
plex electric field amplitude; z ~z~, z~ being the distance
coordinate in the direction of propagation; while x is pro-
portional to t —z~/U~, t being the time variable and U~ the
group velocity. For the Kerr nonlinearity,
f(

~

E
~

)=a E
~

(a =const), Eq. (1) is the well-known
cubic nonlinear Schrodinger equation. Multistable
solitary-wave solutions do not occur for this nonlinearity.
They may exist if either the nonlinear function f (I),
where I=

~

E
~

is the intensity, is changing its sign or is
a steplike function. Possible higher-order nonlinear opti-
cal mechanisms leading to such f (I) are multiphoton res-
onances and light-induced phase transitions (see, e.g. , Ref.
1).

Because they may prove to be of considerable impor-
tance for such nonlinear optical applications as fiber optics
communication with undistorted pulses, ' compression of
optical pulses, and optical switching and bistability,
we shall examine in this paper in considerable detail the
vital issue of the stability of these new bistable solitary-
wave solutions. This stability issue was raised by the
present authors in a recent paper, the detailed arguments
and additional numerical evidence being left for the
present paper. It is well known that the nondegenerate
solitary-wave solutions of the cubic nonlinear Schrodinger

equation are stable against both small and large perturba-
tions. In particular, two such solitary waves on colliding
with each other survive their mutual strong nonlinear in-
teraction and emerge after the collision with their profiles
and velocities unchanged, i.e., they are solitons. These
solitons have been observed in optical fibers.

Since the cubic nonlinear equation is by far the most
well known of the nonlinear Schrodinger-like equations
studied to date, the distinction between stability against
small and large perturbations has never been clearly
drawn in the literature. For such (and other) nonlinear
equations, the conditions of stability from small-
perturbation analysis are often regarded as universal cri-
teria for soliton existence. As shall be demonstrated, for
highly nonlinear Schrodinger equations with their f (I)
differing substantially from the cubic nonlinearity, stabili-
ty against small perturbations alone (as well as instability
against large perturbations alone) does not provide a com-
plete description of stability of solitary-wave solutions of
highly nonlinear Schrodinger equations.

To explore the issue of the stability of bistable solitary
waves we will proceed in this paper as follows. In Sec.
II we introduce a variety of nonlinear models which ex-
hibit bistability for certain ranges of the parameters.
Two basic categories of models are considered, viz. , po-
lynomials models, particularly those in which the terms
have opposite signs, and steplike models. For several of
these models the solitary-wave solutions and correspond-
ing energy formula are obtained either analytically or
numerically. The stability of these solutions is investi-
gated numerically in the next two sections by allowing
two solitary pulses to collide. Collisions of a solitary
pulse with nonsolitary wave profiles have also been con-
sidered. The explicit numerical scheme used in the col-
lision studies is outlined in Sec. III, the results being
presented in Sec. IV. To interpret our collision results,
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we have introduced the notion of "robust" solitons as
distinct from "weak" solitons. The lat ter are stable
against (sufficiently) small perturbations whereas the
former ones are stable against any possible perturba-
tions, including large perturbations in the form of col-
lisions with other solitary waves (as well as with nonsoli-
ton pulses). The solitons of the cubic nonlinear
Schrodinger equation are robust in this sense. It is
found that some models exhibit robust (in particular bi-
stable robust) solitons while others display weak solitons.
Still others have solitary solutions which are unstable
against any (even extremely small) perturbations

Based upon such models, we suggest in Sec. V a general
stability criterion for arbitrary f(I). For all models stud-
ied it was found that dP /d 6 & 0 guarantees stability
against (sufficiently) small perturbations whereas
dPid5 & 0 guarantees unconditional (absolute) instability.
Here 6 is a parameter which correlates with the height
and width of the solitary-wave solution (the larger the
value of 5, the taller and narrower the solitary pulse).
This condition was first proposed by Kaplan, ' but without
the collision results presented here, nothing could be said
about its range of applicability. Further, although we find
that dP/d6 & 0 is a necessary condition, it is not sufficient
to guarantee "robustness" of the soliton. Su%ciency con-
ditions for robustness are suggested in Sec. V.

In addition to any possible practical applications, the
findings presented here are important from a conceptual
viewpoint because of their implications for other nonlinear
evolution equations of physical interest which may display
either multistability for appropriately chosen nonlineari-
ties or the existence of both robust and weak solitons.

II. BISTABLE SOLITARY %'A VES

Solitary-wave solutions of Eq. (1) of the form
r

i6zE(x,z) = U(x —wz)exp +iwx
2

are sought with U =
~

F.
~

a real function satisfying the
condition U~O as

~

y=—x —wz
~

~ oo, 5 a real constant,
and w playing the role of a velocity parameter. w &0
( &0) corresponds to solitary waves propagating with a ve-
locity less (greater) than the group velocity. To have a
collision between two solitary waves it is necessary to
have w~0 for at least one of the pulses.

On substituting (2) into Eq. (1), the following equation
for U results:

d U
, +U[f(U') —5]=0

with 5:—5+w . Subject to the condition that U (and its
first derivative) ~0 as

~ y ~

~ ao, the first integral of (3) is
of the form

(3)

(dUldy) =2 f U[5 —f(U')]dU .
0

Equation (4) can only be integrated analytically for partic-
ularly simple forms of the nonlinear function f(U~). In
general, one has to integrate (4) [or (3)] numerically (e.g.,
using a Runge-Kutta scheme) to determine the profile U.
Specific examples of both situations shall be given shortly.

Once U(y) has been determined, the energy associated
with the solitary wave is given by P
= J"

~

E
~

dy = J
" U dy. One need not, ' however,

explicitly determine U(y) to find P since it follows direct-
ly from (4) that

where

dI
+5—F(I)

(5)

F(I)= —f f (I)dI, F(0)=01

I 0
(6)

and I is defined as the minimum positive root of the
equation F(I)=5. Physically, I is the peak intensity of
the solitary wave. Multistability occurs when correspond-
ing to a given value of P more than one value of the pa-
rameter 6 is possible.

We shall now consider some specific models for
f (

~

E
~

), the majority of which display multistability for
certain ranges of the parameters.

A. Polynomial models

1
p =PV'a

q l3 = ——arcsin v'1+ p

where

(7)

The plot of Eq. (7) in Fig. 1(a) is in agreement with our
qualitative argument. If one changes the signs, i.e., either

The physical basis of polynomial models rests on the
fact that an n-photon process for a two-level system has a
transition probability which varies as the nth power of the
incident intensity. The polynomial models are made up
of combinations of different n-photon processes, one-
photon processes dominating at lower intensities, higher-
order photon processes contributing at higher intensities.
Which particular polynomial models correspond to exper-
imental reality in a given material is beyond the scope of
this paper.

To build a polynomial model with bistability present,
first consider f (I)=aI" with both a and n &0. Making
use of (5) and (6), one can analytically show that the ener-

gy P-(5)' " ' . For n =1 (cubic Schrodinger case),
dP/d6&0; for n =2, dP/d6=0; for n =3, dP/d6&0,
and so on.

In order to demonstrate the change of stability behavior
of solitary pulses as related to the behavior of P(5), we
have to consider nonlinear models formed from combina-
tions of polynomial terms.

As the simplest example, we choose the polynomial
model f=a

~
I +a 2I, with a ~, a q either positive or nega-

tive, which was considered by Cowan, Enns, Rangnekar,
and Sanghera. ' For a[,a& &0, the energy curve P versus
6 should have a positive slope when the aiI term dom-
inates and flatten out (i.e., slope ~0) when the second
term becomes important. Actually, from (5) and (6) one
finds exactly that for this case the normalized energy
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FIG. 1. Normalized energy p vs the parameter P for some po-
lynomial models f (I) discussed in the text; (a) Models corre-
sponding to Eq. (7), ; Eq. (8), ———;Eq. (9), —--. Col-
lision results for solitary-wave profiles corresponding to the
points 1,2,3, . . . , 6 were presented in Cowan et al. (Ref. 10).
The numbers correlate with the figure captions in that reference.
The observed collision behavior was as follows: Quasisoliton
(1,2,3); dispersive (4a, 5), dispersive plus radiative spiking (4b),
and explosive (4c,6). (b) Polynomial model defined by Eq. (10)
for different R values.

tunately, neither Eq. (5) for the energy P nor Eq. (4) for
the solitary wave profile U can be solved analytically for a
complex polynomial model such as that given by (10).
For this particular model, we have numerically integrated
Eq. (4) for different values of 6 using a standard fourth-
order Runge-Kutta scheme. The area under the U curve
then gave us P as a function of 6. For a given value of
the ratio R =a~a3/a2, a universal energy curve results if
(a~+a 3/a z)' P—:p is plotted against (V'a3/aq/ai)
(6 /6 „)—:(3 where 5 is the value of 5 at which
dp/dP~ oo. Fig. 1(b) shows the p(P) curves obtained for
R =0.02, 0.04, and 0.08 for which 6„=4.75, 2.62, and
1.55, respectively. Bistability occurs for R 5 0.08. That
is, for, say, fixed values of a ~ and a 3, there is some
minimum value of a2 for which bistability is possible.
This was to be expected from our earlier qualitative argu-
ment. Given the qualitative rule of thumb outlined above,
clearly other polynomial models could be easily invented
for which multistability is possible for certain ranges of
the parameters. As with (10), the solitary-wave profiles
and energy curves would have to generally be obtained
numerically.

8. "Smooth" step-function models

Kaplan' has already noted that both the "sharp" step
nonlinearity

(a) f =aiI —azI, or (b) f = —aiI+aqI, with both ai,
a2 &0, analytic formulas for p may also be easily ob-
tained, viz. , for case (a)

V'1
p = ln v'

while for (b),

Ti 1
p =—+arcsin

2 v'I+@

(8)

f(I)=
C I20

1—,I)IpI2

and the "smooth" step nonlinearity

0, I (Ip
(12)

Equations (8) and (9) are also plotted in Fig. 1(a). From
the viewpoint of constructing a polynomial model with bi-
stability present, one finds from these (and other) simple
models that, except for the n =2 case which is special, a
term of the structure aI' in the polynomial with n & 0 but
a &0 will have a contribution to dP/d6 of the opposite
sign to the situation when a ~ 0. This is seen, e.g. , in Fig.
1(a), for the case f= —a i I +a qI . (It should be noted
that if both coefticients of I and I are negative, then there
is no solitary-wave solution. )

Thus, e.g. , the polynomial model f = —a i I +a zI
—a&I with ai, az, a3 &0 would yield a U-shaped P(5)
curve with two values of 6 possible for a given P above
some critical value P,, On the other hand, for the poly-
nomial model'

U (x)
) Ip

08

P=O-05

0
0 I/IO

f=a iI +azI a3I— 0
-20 0 X 20

an ¹haped P(5) curve would be expected to result by
suitably adjusting a &, a 2, and a 3 with each of the 3
branches of the N associated with one of the terms of
f (I). Thus for a certain range of these parameters, there
would exist 3 values of 6 for a given value of P. Unfor-

FIG. 2. Solitary-wave profiles U(x)/V'Io for p=0.2, 5=1
and two representative P values calculated from Eqs. (18)—(20).
Inset: Schematic representation of f (I) for linear + smooth-
step model, Eq. (16).
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both with 5&0 can have more than one solitary-wave
solution corresponding to the same value of P. From the
viewpoint of numerically studying the "collision" of soli-
tary waves propagating according to Eq. (1), smooth step-
function models, i.e., those which do not have a discon-
tinuity in f (I), are more desirable to work with to avoid
numerical diSculties due to the step function, particularly
if the step is large. Furthermore, smooth steps are more
realistic. For this reason, we shall confine our attention
here to smooth step-function models. Equation (12),
which is the simplest of such models, is sketched in the
inset of Fig. 2 (the p=O curve).

For this nonlinear model, Eq. (5) may be readily in-
tegrated yielding the normalized energy

15

10—

p =PA' /I

= [ I /P' + [arccos( —P' )]/(1 —P)' ) /(1 —P)
0.0 0.2 0.4 0.6

(13)

with @=5/A. The inset of Fig. 3 corresponds to Eq. (13),
there existing two branches for p &p„=5.55
[P„=P(p„)=0.15]. From Eq. (4), the corresponding
solitary-wave solution at z =0 is found to be

FIG. 3. Normalized energy p vs P for some smooth-step
models defined in text: Solid curves: Eq. (17), linear +
smooth step model for various p values. Dashed curves:
linear + quadratic + smooth-step model (21) for p=0. 1 and
different y values. Inset: p(P) given by Eq. (13) (smooth-step
model) of text.

exp[(AP)' (xp —ix i )], ix i
&xp

/I 1/2
[(1+P'~ cos[2[h(1 —P)]' x I)/(1 —/3)]',

~

x
~

&xp
(14)

with

xp =arccos( —P' )/2[6 (1—/3)]' (15)

model creating the "linear + smooth-step" model, viz. ,

eI, I(I0
f(I)= (16)

In Sec. IV, we shall find that robust solitons exist for
P&P„but not for /3&/3„. The question naturally arises
whether one can have two robust solitons corresponding
to the same energy for smooth step-function models. For
this to occur, one needs, as for the polynomial model (10),
an ¹haped (rather than U-shaped) p(P) curve. As point-
ed out earlier for the Kerr nonlinearity f (I)=aI, (a &0),
dP /d 6 & 0. Furthermore, this nonlinearity corresponds
to the cubic case with known robust solitons. This sug-
gests that we "splice" the linear f (I) onto the smooth-step

with both a, h&0, p=aI0/6, and 0&p &1. Equation
(16) is sketched in the inset of Fig. 2. For a=@=0, it
reduces to the "smooth-step" model (12), while for p= 1

it corresponds to the "clipped" Kerr nonlinearity. Equa-
tions (4) and (5) may be analytically solved for the linear
+ smooth-step model yielding the normalized (p

Pb ' /Ip) energy formul—a

2[/3' + (P—P„)' ] '+ [(/3 P,„)' +25, ' (—1 ——,'P„)xp]/( I —P) for P & /3„, =p/2
izz2P' //3„ for /3 &/3„

(17)

and solitary-wave profiles

I &X0
, &2

P' I/3' cosh[(b/3)' (x +xp)] (P—P„)' sinh[(bP)' (x +xp)]] ' for x '

1 (—X0 (18)

(I(1—
—,'P„,)+[(I——,'P«, ) —(1—2P«, )(1—P)]'~ cos[2&b(1 —P)x]] /(1 —P))' for

~

x
~

&xp, P&P«,



1274 R. H. ENNS, S. S. RANGNEKAR, AND A. E. KAPLAN 36

and

C1 l

1/2

sech[(bP)' x] for P&P„ (19)

with

( p+—,' p...—)

[(1——',P„,)' —(1—2P... )(1 —P)]' ' (20)

For a=Q, p„,=Q and these formulas reduce to those for
the smooth-step model. Solitary-wave profiles U(x)/Ip
calculated from (18)—(20) are shown in Fig. 2 for @=0.2,
b, = 1 and two representative p values. The larger the
value of P the taller and narrower is the solitary pulse.
The solid curves in Fig. 3 illustrate the behavior of p(P)
given by (17) as a function of p. For p &0.42, the p(p)
curve has three branches, a lower positive-slope branch for
P &P,„,, an upper positive-slope branch for P ~P„, (corre-

sponding to the minimum of the "dip"), and a negative-
slope branch for P„,&P &P„,. Since p=aIp/6, the ex-

istence of a threshold value (i.e., approximately 0.42) for p
tells us that for given values of o.'and Ip there is a
minimum value of the "step size" 6 required for two
positive-slope branches to occur.

It is clear from our discussion of polynomial models
that analytic formulas for both p(p) and U(x) are also ob-
tainable for the "linear + quadratic + smooth-step"
model

a]I +a2I I (Ip

Another model displaying bistability for n ) 3 is the fol-
lowing

f (I) /& =/J g+ 1+
(22b)

which is sketched in the inset of Fig. 4, also for n =5.
Equation (22b) corresponds to a Kerr nonlinearity plus a
saturable n-photon resonance. Note that unlike model
(22a), f (I) given by (22b) does not saturate at large I but
becomes Kerr-like once again. Still other more complex
models have been created and studied.

For both models (22a) and (22b), Eq. (3) has been
solved for U using a standard Runge-Kutta scheme and
then the p:P&h/Ip v—ersus p=5/6 curves obtained for
different n values. Figure 5 shows typical energy curves
(the solid curves) for n =5 for model (22a), bistability
occurring for @50.36. The critical value of p increases
with increasing n, e.g., p„=0.13 for n =3 and (approxi-
mately) 0.9 for n =10. Note that the cusp which oc-
curred at /3„, in Fig. 2 originating from the discontinuity

in slope in the nonlinear function f(I), has now been
rounded off. Also shown (dashed lines) in Fig. 5 are the
energy curves for model (22b) with n =5. In this case

with ai, a2, 6 &0 and p=a~Ip/6, y=a2Ip/6A. %e shall
not write the lengthy formulas here. The dashed lines in
Fig. 3 show the effect on p(p) of increasing y for a given

p value (p =0.1). As y is increased from zero, the
negative-slope region between p„,= —,

' p+ 2y and p,„,
shrinks and eventually disappears. Multivaluedness is
lost.

The linear + smooth-step model and its sequel (21)
were artificially created by splicing and also displayed a
somewhat unrealistic discontinuity in slope. More physi-
cally realistic smooth step-function models displaying bi-
stability may be created which do not involve these
features, e.g. ,

0.5—

0.1f(I)/a =
1+/ 0+0"

(22a)

with /=I/Ip and n a positive integer. Equation (22a) is
plotted in Fig. 4 for n =5 and some representative p
values. From our discussion of the polynomial models, it
is clear that (22a) will yield an ¹haped energy curve for
n ) 3 and p less than some critical value, the value of p„
depending on n. For p=0 and n~ao, this model ap-
proaches the step nonlinearity (11). The nonlinear func-
tion (22a) corresponds physically to combined one-photon
and n-photon resonances with a resonant saturation.

]

4 5

2 g 3

FIG. 4. Steplike model (22a) for n =5 and @=0.1, ———;
p=0. 5; ——,p=1, . Inset: Steplike model (22b) for n =5
and p =0. 1, ———;p =0.5, ——;p = 1,
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To keep the x range (and thus the computing time)
down, periodic boundary conditions were imposed by tak-
ing the extreme right and left mesh points to be adjacent
in the approximation to E in (23) and (24). As a conse-
quence, pulses impinging on the boundaries reappear on
opposite edges. Care was also taken to work with input
pulses whose widths were narrow compared to the grid
width in the x direction and to the initial separation of the
pulses.

To monitor the accuracy of our numerical runs as well
as to guide us in choosing an optimal mesh size, we de-
rived the first three invariants (i.e., quantities independent
of z) of Eq. (1) for arbitrary f (I), viz. ,

J, =P = J Idx,

Jq ——i EE~* —c.c. dx,

(25)

(26)

0
l

0.0 0.1
I l l

0.2 0.5 0.4
(

0.5 0.6 0.7

J3= f" iE„ i' —J f(s)ds dx . (27)

FIG. 5. Normalized energy p vs /3 for model (22a) (solid
curves) and model (22b) (dashed curves) for n =5 and various p
values.

p„=0.5. For a given n value, p,„ is larger for model
(22b) than for (22a).

To study the stability of colliding solitary waves corre-
sponding to the various points indicated schematically in
Figs. 1, 3, and 5, we next introduce a simple numerical
scheme to simulate Eq. (1).

III. NUMERICAL SCHEME FOR COLLISION STUDIES

—k(vf)

Vm n+1 Vm n —1+(k/h )[urn+1, n 2um n +um —l, n ]
2

+k(uf)

(23)

(24)

with k/h «1 in our numerical runs. [It was found that
the computation time was shorter when working with the
coupled real equations than trying to solve the complex
equation (1) directly. ] To obtain accurate values of u, v

for the first step to use in this three-step scheme, the first
step Az was further subdivided into several hundred
smaller steps and a forward difference approximation
(FDA), e.g., ((3u/r)z)=(u„+1 —u„)/k, used. The FDA,
which is less accurate for a given step size k than the
CDA, could not be used for large z because then numeri-
cal instabilities were observed to occur.

To study the collision process, Eq. (1) was simulated
numerically, an explicit three-step scheme being em-
ployed, the central difference approximation (CDA), being
used for dE/dz on all z steps except the first. That is,
separating E into real and imaginary parts, viz. ,

E =u +iv, labeling the mesh points (x,z) by m, n and set-
ting b,z= k, hx=h, Eq. (1)—was replaced by the coupled
system

umn + 1
= um, n —1 (k/h )[Vm ~ l, n 2Vm, n + Vm —l, n ]2

These invariant quantities are consistent with the first
three conservation laws for the particular case of the cu-
bic nonlinear Schrodinger equation. For our input pulses,
initially J2 ——0. We found it convenient to monitor the
maximum value of

~

bJ1/J,
~

and
~

bJ3/J3 . In all our
computer runs, max

~

AJ, /Jl
~

was better (usually very
much better) than 1.5% and max

~

bJ3/J3 better than
about 5%. The latter tended to be higher because of the
derivative (E„) term and the highly nonlinear function

f (s) in J3.
In presenting our collision results in Sec. IV, we have

chosen to plot E
~

which is a physically measurable
quantity.

IV. COLLISION RESULTS

Kaplan's original proposed stability criterion' was that
those solitary-wave profiles for which dP /d 5 (or
dp/d/3) & 0 would be stable while those for which
dP/d6 &0 would be unstable. This conjecture was based
upon a small perturbation analysis of the step-function
model (11).

Making use of the models introduced in Sec. II, this
conjecture has been tested by allowing two solitary waves
to collide with each other as well as with non-solitary-
wave pulses. Large as well as small perturbations may be
studied by this procedure. Although a wide variety of rel-
ative speeds were considered, in all the figures presented
here [except for Fig. 7(a)] we have taken wL ———wz ——5,
where L and R refer to the pulses initially (z =0) on the
left and right.

Since it was the first bistable model to be studied for
solitary pulse collisions, " let us start with the smooth-
step-function model (12). Keeping in mind that for this
model dp/d/3& 0 for /3&/3„=0. 15 and vice versa, consid-
er the numerical runs illustrated in Fig. 6. We have
selected input solitary-wave pulses calculated from (14)
corresponding to the /3 values labeled a (/3, =0.1) and b
(/3b =0.2) in the inset of Fig 3. Figure. 6(a) shows that in
an a-a collision, the two pulses disperse after the interac-
tion. On the other hand, in a b bcollision [Fig. 6(b-)], the
two pulses are solitonlike emerging from the collision un-



1276 R. H. ENNS, S. S. RANGNEKAR, AND A. E. KAPLAN 36

(a)
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1.14-
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'
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Jgj

8O -8O t: O
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IEI

I

I -120
I

FIG. 6. Typical collision results for the smooth-step model
(12). (a) For two solitary waves corresponding to point a in the
inset of Fig. 3. (b) For two solitary waves corresponding to point
b in the inset of Fig. 3. Parameters: Io ——0.9 for (a), 0.8 for b;
6=3. Mesh size: Ax =0.08, hz =0.003.

changed. A "mixed" collision between pulses correspond-
ing to points (a) and (c) of the inset was shown in Ref. 11,
pulses (a) again dispersing, whereas pulse (c) was soliton-
like in behavior. Still larger P values have been con-
sidered (e.g. , a d-d collision (not shown here), where point
d in the inset corresponds to II3=0.9), all numerical runs
being consistent with Kaplan's conjectured stability cri-
terion. That is, those pulses for which P& 0. 15 are stable
and survive the collision process unchanged and vice-
versa.

Qn the other hand, Kaplan's stability criterion is not
consistent with the strong solitary pulse collisions studied
earlier by Cowan et al. ' summarized schematically in
Fig. 1(a). The points labeled 1,2, . . . refer to figure num-
bers (numerical runs) in Ref. 10. For both the models

f =aiI+a2I and f =a~I a2I (with —a~, aq &0),
dp/dP&0 for all P (no bistability present). Even though
dp/df3& 0, it was found that the solitary waves were not
solitonlike in the collision process. For example, so-called
"quasisoliton" behavior was observed for collisions of
identical solitary pulses corresponding to points 1,2,3 in
Fig. 1(a). That is, smaller solitonlike pulses emerged after
the collision with velocities differing from those of the in-

put pulses, the difference in energy being shed as radia-
tion. For other values of f3 [see figure caption 1(a)], radia-
tive or explosive behavior was observed. The question
arises, why does Kaplan's criterion work for one model
and not the other? An important clue was provided by
the observation that solitary pulses corresponding to the
various points in Fig. 1(a) with dp/dP& 0 could survive
collisions with sujIiciently small (solitary and non-solitary)
pulses. A nice example of this is illustrated in Fig. 7(a).
The solitary pulse initially on the left corresponds to the
point labeled 4a in Fig. 1(a). The pulse initially on the
right is a non-solitary-wave profile obtained by multiplying
the input solitary-wave pulse profile on the left by —,'. Be-
cause it is not a solitary wave, the pulse on the right be-
gins to spread even before the collision. Nevertheless the
solitary pulse experiences a sizable perturbation. Even

though the solitary pulse cannot survive a collision with
another identical pulse (it disperses), it survives the weak-
er collision in Fig. 7(a) apparently unchanged. Therefore
the solitary pulse is "weakly" stable.

Let's now return to our study of bistable models. As
pointed out by Kaplan, ' a natural followup to the nu-
merical study of the smooth step model would be to study
the collision of two bistable solitary waves (which carry
the same energy) in a medium with a nonlinearity such
that for both of them dP/do&0. Instead of a "U-
shaped" energy curve, an "X-shaped" energy curve is re-
quired. In Sec. II, we have constructed several f (I)
which have this feature.

Let us first consider the polynomial model (10), the
normalized energy curves having been shown in Fig. 1(b).
Taking the R =0.04 curve, consider the three points la-
beled a (I3, =0.027), b (Pb =0.218), and c (P, =0.724) all
corresponding to the same p(=0. 83). For pulses a and c,
dp/d13&0. An a-c collision was shown in Fig. 2 of Ref.
8, pulse a remaining unchanged after the collision but
pulse c dispersing. This latter behavior is also illustrated
in Fig. 7(b) where a b -c collision occurs. Both pulses fiat-
ten out after the collision, the behavior being expected for
b (for which dp/dP &0) but not for c. By considering
other II3 values on the upper positive-slope branch as well
as other R values, we were forced to the general con-
clusion that solitary pulses belonging to the upper
positive-slope branch are not stable against large perturba-
tions (in the form of collisions with other pulses) even
though dp/d13&0. We did find, however, that pulses on
the upper positive-slope branch were stable against
sufficiently small perturbations (see Fig. 1, Ref. 8), i.e.,

they are also "weakly" stable. On the other hand, pulses
corresponding to dp/dP &0 were found to be unstable no
matter how small the perturbation was (see, e.g. , Fig. 3,
Ref. 8). To distinguish between the stability displayed by
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FIG. 7. (a) Stability of solitary wave (initially on left) corre-
sponding to point 4a in Fig. 1(a) against collision with a non-
solitary wave (initially on the right). Parameters: For pulse on
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=1.6. Mesh size:
Ax =0.08, Az =0.003. (b) Collision result for polynomial mod-
el (10) for pulses corresponding to points b and c in Fig. 1(b).
Parameters: 6b =0.452, 5, = 1.5. Mesh size: Ax =0.04,
Az =5~10-4.
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the solitary pulses, we have introduced the concept of
weak solitons and robust solitons. ' The latter are stable
against large perturbations, in particular collisions with
other large solitary waves. The solitary pulses on the
upper positive slope of the smooth-step model and the
lower positive slope branch of the polynomial model (10)
are examples of robust solitons. Pulses corresponding to
the upper positive-slope branch of the polynomial model
and the two positive-slope curves in Fig. 1(a) are examples
of weak solitons.

The condition dP/d6&0 guarantees stability against
(sufficiently) small perturbations, i.e., guarantees the ex-
istence of weak solitons. It is a necessary but not
sufficient condition for robustness of a soliton. On the
other hand, dP/d6 &0 guarantees unconditional instabili-
ty. That dP/d6&0 is associated with unconditional in-
stability helps us to understand the results corresponding
to the model f= —a ~I+a2I [Fig. 1(a)]. For this model,
the slightest disturbance was observed to destroy the input
solitary pulses.

Although we have shed considerable light on the stabil-
ity issue, two important questions remain, viz. : Can two
(or more) robust solitons corresponding to the same ener-

gy coexist? If so, what are the additional conditions (in
addition to the necessary condition dP/d6 & 0) on f (I) to
ensure robustness?

To answer the first question we next turn to the linear
+ smooth-step model (16). Referring to Fig. 3, we again

select three points a (P, =0.031), b (/3b =0.065), c
(/3, =0.4) on the p =0. 1 curve all corresponding to
p=6. 97. Figs. 8(a) and 8(b) show respectively an a band-
a b-c collision. It is clear that now both pulses a and c
are robust solitons, whereas pulse b is unstable. Runs
corresponding to other P and p values, e.g. , the points
a', b', c' (p=9. 17, /3, =0.013, /3b =0.032, P, =0.5) on the
@=0.05 curve, confirm this behavior. Figure 9(a) shows a
mixed a'-c' collision, both pulses behaving like "robust
solitons. " Robustness for dp/d/3&0 occurs even when

p~@„, i.e., even when multivaluedness is lost. Figure
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FIG. 9. Typical collision results for linear + smooth-step
model (16). (a) For solitary waves corresponding to points a'
and c' in Fig. 3. (b) For two solitary waves corresponding to
points d on p =0.9 curve in Fig. 3.

9(b) illustrates a d-d collision where d corresponds to the
point (Pd =0.5) indicated on the p, =0.9 curve of Fig. 3.
Consistent with our previous remarks, a pulse correspond-
ing to point b' was found to be unstable against the slight-
est perturbation (see Fig. 3, Ref. 8).

One could argue that by constructing the linear +
smooth-step model, we have perhaps guaranteed the ex-
istence of robust bistable solitons but that this model is
very artificial. Can one construct other, perhaps more
physically realistic, models displaying the same behavior?
Our first attempt to answer this question was to modify
the linear + smooth-step model, thus the introduction of
the "linear + quadratic + smooth-step" model. Refer-
ring to the (dashed) y =0.03 curve in Fig. 3, we con-
sidered three /3 values again labeled A (Pq =0.095), B
(/3~ =0. 134), C (/3c =0.288 ) all corresponding to
p =4.91. Figure 10 shows that the robust behavior per-
sists for this model for pulses corresponding to
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FIG. 8. Typical collision results for linear + smooth-step
model (16). (a) For solitary waves corresponding to points a and
b in Fig. 3. (b) For solitary waves corresponding to points c and
b in Fig. 3. Parameters for Figs. 8—11: A=IO=1. Mesh size
for Figs. 8—11: hx =0.08, Az =3&& 10
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FIG. 10. Typical collision result for linear + quadratic
smooth-step model (21). {a) For two solitary waves correspond-
ing to point 3 in Fig. 3. (b) For solitary waves corresponding to
points 3 and C in Fig. 3.
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dp/dP& 0. Pulses 3 and C are still solitonlike in the col-
lision processes shown.

Both of the smooth-step models considered here in-
volve splicing and are characterized by a discontinuity in
the slope of f (I). The two models defined by (22a) and
(22b) have neither of these features, yet also display
robust bistable soliton behavior for dp/dP&0. Figure
11(a) shows, e.g. , a collision between two pulses corre-
sponding to the point c ( f3, =0.45 ) on the upper
positive-slope branch of the solid @=0.1 curve of Fig. 5.
The pulses remain solitonlike even after a (somewhat
artificial) second collision. Very similar behavior was

also observed for the model defined by (22b), see Fig.
11(b) illustrating a c'-c' collision where c' (/3, =0.45) is

the point indicated on the dashed p=0. 1 curve of Fig. 5.
Based on the models reported here and others that we

have investigated, two additional conditions on f(I) for
robustness have been proposed which are physically
reasonable and consistent with all of the models that we
have studied to date, viz. , (i) f (I)/I =o (1) as I~ cc, sta-
bility against collapse ("self-focusing" ). (ii) f (I) is a non-
negative and nondecreasing function for I ~0, stability
against dispersion. Condition (i) prevents the occurrence
of self-focusing singularities, which occur' for f—aI"
(a &0) for large I for n &2. It excludes, e.g. , the model

f=a, I+a2I (a, ,a~ &0). Condition (ii) is introduced to
rule out, e.g. , the polynomial model (10) and the model

f =a,I —a&I . If f(I) decreases sufficiently at large I,
then the derivative terms in Eq. (1) will predominate and
it is well known that these terms tend to disperse or
spread pulses.

In terms of a single multiphoton process dominating at
large I so that f-I"' (n an integer value) in this regime,
the two additional conditions above define a "window" on

f (I) inside which there are only tu/o possibilities for n,
viz. , n =0 (corresponding to saturation) and n = 1

(becoming Kerr-like for large I). Models (22a) and (22b),
for which robust bistable solitons have been shown to ex-
ist, illustrate these two cases.

In terms of stimulating the search for appropriate phys-
ical mechanisms, the conclusions just reached provide
working guidelines to the type of nonlinearities needed to
produce robust bistable solitons. Robust bistable solitons
will occur if the f (I) is Kerr-like at small I, has a
sufficiently steep (equivalent to a three-photon, or higher
order, process) jump at intermediate I and becomes flat or
increases linearly at large I.

V. GENERAL CONCLUSIONS

From our collision results in Sec. IV we can draw the
following general conclusions:
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FIG. 11. Robust behavior of two solitary waves (a) corre-
sponding to point c in Fig. 5(b), corresponding to point c' in Fig.
5.
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(1) It is not sufficient in describing the solitary-wave
solutions of the highly nonlinear Schrodinger equation to
simply say that the solitary waves are stable or unstable.
Our results demonstrate that there are gradations of sta-
bility. By introducing the concepts of weak and robust
solitons, we have seen behavior ranging from absolute in-
stability through weak solitons to robust solitons. This
distinction has not been clearly made, if at all, in the ex-
isting literature. It also follows that the standard pertur-
bation analysis of stability only distinguishes between
weak solitons and absolutely unstable solitary waves, say-
ing nothing about robustness.

(2) We have demonstrated that it is possible to con-
struct physically realistic nonlinear models f(I) for the
generalized nonlinear Schrodinger equation for which
robust bistable solitons exist. This is further confirmed by
the recent numerical simulations of Enns and Rangne-
kar' ' on optical switching.

(3) We have refined Kaplan's original conjecture on sta-
bility, viz. , dP/d6&0 guarantees unconditional instabili-

ty, dP/d6 & 0 is a necessary condition for the existence of
weak and robust solitons. It is not a sufficient condition
for robustness. Some physically reasonable additional
conditions have been suggested in Sec. IV.
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