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General expressions are derived for various quantities that characterize the far field generated by
any fluctuating localized current distribution that is statistically stationary, at least in the wide sense.
In particular, expressions are derived for the cross-spectral density tensors of the electromagnetic
field, for the coherence matrix and the Stokes parameters, for the degree of polarization, and for the
degree of coherence of the far field in terms of the cross-spectral density of the transverse part of the
source current. The analysis is illustrated by considering radiation from a fluctuating linear current
source.

I. INTRODUCTION

Past investigations relating to radiation generated by
fluctuating light sources have ignored, as a rule, the vector
nature of the source distribution, and usually only planar
sources were considered. ' Radiation from fluctuating
three-dimensional scalar sources was studied by Carter
and Wolf and by LaHaie. For some purposes it is desir-
able to go beyond the scalar model and take into account
the vectorial characteristics of the source. This is, of
course, essential when one is interested not only in the an-
gular distribution of the radiated energy but also in the
polarization properties of the far field. Moreover, the far-
zone properties of a field generated by fluctuating sources
has become recently of special interest because of the
discovery that source correlations can produce red shifts
and blue shifts of lines in the spectrum of the emitted ra-
diation.

Expressions for the cross-spectral density tensors of the
electromagnetic field generated by a localized three-
dimensional, fluctuating, statistically stationary charge-
current distribution in terms of the cross-spectral density
tensor of the source current were derived by Carter.
Now radiation from deterministic sources of electromag-
netic radiation is well known to depend only on the trans-
verse part of the source current and hence it seems ap-
propriate to reexamine the problem considered by Carter
in order to elucidate the role of the transverse part in the
context of radiation from stochastic sources. This prob-
lem is treated in the present paper. We derive expressions
for the cross-spectral density tensors of the electromagnet-
ic field in the far zone in terms of the cross-spectral densi-
ty tensors of the transverse part of the source current.
We also obtain expressions for the (spectral) coherence
matrix, the Stokes parameters, the degree of polarization,
and the degree of coherence of the far field, and we illus-
trate some of the results with reference to radiation from
a fluctuating linear current source.

II. SUMMARY OF FORMULAS RELATING
TO THE ELECTROMAGNETIC FIELD

IN THE FAR ZONE PRODUCED
BY A MONOCHROMATIC CURRENT DISTRIBUTION

It will be useful to begin by summarizing some formu-
las that we will need later, relating to radiation in free
space from a monochromatic current density distribution

J(r, t) =j(r, co)e (2.1)

localized in some finite domain D. In Eq. (2.1) r denotes
the position vector of a typical point, t denotes the time,
and co denotes the frequency. The time-independent part
of the electric field E and of the magnetic field H at a
point r in the far zone, in a direction specified by unit vec-
tor s, is given by

ikr
E(rs, co) -F(s,co) as kr~ oo, (2.2a)

ikr
H(rs, co) —G(s, co) as kr~ao, (2.2b)

where (in Gaussian system of units)

F(s, co) = —(2~) s X [sX j(ks, co)],
C

0

G(s, co) =(2tr) —s X j(ks, co) .
C

In these formulas

(2.3a)

(2.3b)

(2.4)

j(Kco) = J j(r', co)e' 'd r' .
(2~)'

(2.5)

is the wave number associated with the frequency co, c is
the speed of light in vacua, and j(K,co) is the Fourier
transform of the current density, viz. ,
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The right-hand side of Eq. (2.3) may readily be ex-
pressed in terms of the Fourier transform of the trans-
verse part of the current

W„(r&,rz, co) = ( E*(r„co)E(rz,to) )

W, t, (ri, rz, to) = ( E*(ri,co)H(rz, co) )~,
(3.4a)

(3.4b)

[KX j(K,to) ] X Kj K, to =
E (2.6)

etc.
It follows at once from Eqs. (3.4) and (2.2) that in the

far zone (superscript oo)
in the simpler form

F(s, co) =(2') —j (ks, co),
c

G(s,co)=(2m)' —sXj (ks, to) .
C

(2.7a)

(2.7b)

ik(r2 —r& )

W„" (r, s„rzsz, co) =Wpp(s„sz, to)
7 il 2

where

Wpp( s ],s z, co ) = ( F'
( s i, co )F( sz, to ) )~,

(3.5)

(3.6)

From Eqs. (2.2) and (2.3) we readily deduce that

H(rs, co) =s X E(rs, co),

s.E(rs, co) =s H(rs, co) =0 .

(2.8)

(2.9)

III. CROSS-SPECTRAL DENSITY TENSORS
OF THE FAR FIELD PRODUCED
BY FLUCTUATING CURRENTS

The formulas (2.2), together with the relations (2.8) and
(2.9), express the well-known fact that the electromagnetic
field in the far zone behaves globally as a divergent spheri-
cal wave whereas it behaves locally as a plane electromag-
netic wave.

with strictly similar expressions for the other three cross-
spectral density tensors W&&, W,&, and W&, of the far
field. Now it follows from Eq. (2.7a) that

'2

Wpp(s, ,sz, to) =(2m ) — W-. —.(ks, , ksz, co), (3.7)
c

where

W-. —.(ks, , ksz, co) = ( j *(ks, ,co)j (ksz, to) )„. (3.8)

On substituting from Eq. (3.7) into Eq. (3.5), we obtain
the following expression for W'„"'.

W,', '(rsvp, rsz, co)

According to the Wiener-Khintchine theorem (in an
obvious generalization), the cross-spectral density
W(ri, rz, co) of a fluctuating scalar source Q(r, t), charac-
terized by a stationary ensemble, is equal to the Fourier
transform of its cross-correlation function,

= (2~)
k
C

2 ik(r2 —r& )

W;.;.(ksi, ksz, co)
7"

&
1"2

(3.9)

JY(ri, rz, co)= f (Q*(ri, t)Q(rz, t+w))e' 'dw . (3.1)

Here the asterisk denotes the complex conjugate and the
angular brackets denote the ensemble average.

It has been shown not long ago that there is always an
ensemble I q(r, to) exp( i tot ) ] of mo—nochromatic oscilla-
tions such that the cross-spectral density can be expressed
in the form

W(r], rz, co) = (q'(r], co)q(rz, co) )„, (3.2)

Wii(ri, rz, to) = (j "(ri,to)j (rz, to) ) (3.3b)

respectively; and the cross-spectral density tensors involv-
ing the field vectors are expressible as

where the symbol ( )„represents the average over this
ensemble of "frequency-dependent" realizations. A simi-
lar representation also exists for the cross-spectral density
of the field generated by the source.

There are similar representations, of course, for the
cross-spectral density tensors of various fluctuating vector
quantities, e.g. , of current densities or of the field vectors,
that are characterized by stationary ensembles. In partic-
ular, the cross-spectral density tensor of the current densi-
ty and of the transverse current density are expressible, in
dyadic notation, in the form

Wlq(ri, rz, co) = (j*(ri,co)j(rz, co) )

and

The cross-spectral density tensor of j on the right of Eq.
(3.9) may readily be expressed in terms of the Fourier in-
verse of the cross-spectral density tensor of the transverse
part j of the current density, as we will now show. On
substituting in Eq. (3.8) for j in terms of j viz. ,

j (Kco)= f j (r', co)e ' ''d r',
(2~)'

(3.10)

we obtain the formula

Wii r'I, r2, co
(2m)

t I
3 3Xe d ria r2,

i.e.,

W-. —.(Ki, Kz, co) =W ii ( —Kl, Kz, co),

where

(3.1 1)

W ij (K i, Kz, co) = Wii(r'i, rz, co)
(2~)'

I I—i(K1 rl +K2 r2 3 i 3Xe d T&d 72

(3.12)

W-. —.(K„Kz,co)= f f (j *(ri,to)j (rz, co))
(277)

I I—i(K2.r2 —Ki.r& ) 3 3Xe d l &d 72
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is the Fourier inverse of the cross-spectral density tensor
of the transverse current.

We note some transversality conditions that the above
tensors satisfy. It follows from the definitions (3.8) and
(2.6) that

Ki W-. —.(Ki, K2, co) =W--. (Ki, K2, co).K2 ——0, (3.13a)

which implies, in view of the relation (3.11), that

Ki Wi~j( —Ki, K2, co)=W )~i( —Ki, K2 co).K2=0 . (3.13b)

On substituting Eq. (3.11) into Eq. (3.9), we obtain the
I

following expression for the cross-spectral density tensor
(in dyadic notation) of the electric field in the far zone:

W«(risi, r2s2, co)(oo)

2 ik(r, -r, )
k e=(2ir) — W . ( —ks, , ks2, co)
C JJ f') T2

(3.14a)

In a strictly similar manner one can obtain the following
expressions for the three other cross-spectral density ten-
sors of the far field

Ik(r, —r, )

Wbb (risi, r2s2, co)= —(2m) — si X W "(—ksi, ks2, co) Xs2
-( ) 6 k =r e

C JJ T) P'2
(3.14b)

2 Ik(r2 —r
&

)

(oo) 6 k T e
W,b (r, s„r2s2, co) = —(2ir) — W,, ( —ksi, ks2, co) X s2

c l" ) T2
(3.14c)

Ik(r2 —rl )

wbe (risi, r2s2, co) =(2ir) — si x w JJ( —ksi, ks2, co)
c r]r2

(3.14d)

W j~(K»K2, co) =W, (K»K2, co) —sis, W~J(K»K2, co)

—
Wij (K» K2, co).s2s2

+sisi W~J(K»K2, co) s2s» (3.15)

where

It is not difficult to express the tensor W JJ associated
with the transverse current density which appears in these

formulas in terms of the tensor WJ~ associated with the
total current density. The calculation is carried out in
Appendix A. The result is

IV. RADIATED POWER

We will now derive expressions for the average values
of the energy density of the far field and for the angular
distribution of the power radiated by the source. The
averaged energy density & U(r, co)) and the averaged
Poynting vector &S(r,co}) at a point r in a stationary
field, at frequency co, are given by an obvious generaliza-
tion of the corresponding formulas relating to a mono-
chromatic field, viz. ,

& U(r, ~)).=, [& E*(r,cu). E(r,~) )
1

K) K2
(3.16)

+ & H*(r, co) H(r, co) ) ], (4.1)

are unit vectors in the directions of K~ and K2, respective-
ly.

We see from Eqs. (3.14) that the tensors Wbb ', W,'b"',

and W~", ' are expressible in terms of the tensor W,', '

by the following formulas:

Wqq ———s~ XW«X s2,( oo) (oo)

(oo) (oo)
Weq = —W«X s2,

( ) ( )Wp„——s) X W„

(3.17a)

(3.17b}

(3.17c)

Moreover, it is also readily seen from Eqs. (3.14), if use is
made of the relations (3.13b), that

& S(r, co) ) = Re& E*(r,co) XH(r, co) )
8m

(4.2)

1
& U(r, co)) = [TrW„(r,r, co)+TrW&b(r, r, co)],

16m

(4.3)

and

where Re denotes the real part and the Gaussian system
of units is used. If we recall the definitions (3.4) of the
cross-spectral density tensors W«and W,q, the formulas
(4.1) and (4.2) may be rewritten in the form

si W, b (risl, r2S2, co)=0,(~) (3.18a) & S(r,co) ) = Re[V(W, b (r, r, co)}] .
8m

(4.4)

and

W, b (risi, r2s2, co) s2=0,(oo)

where a and b each stands for either e or h.

(3.18b}

In Eq. (4.3) Tr denotes the trace. In Eq. (4.4) V denotes
the vector of the dyadic, i.e., V(W,b ) is the vector with
components ( W,b )23 —( W,b )32, ( W,„)»—( W,b )», and
(W,„)»—(Web)», where (W„),„(j=1,2, 3, k=1,2, 3)
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are the components of the Cartesian tensor represented
by the dyadic W,~.

Now we have from Eqs. (3.14a)—(3.14c), with the
cho1ce ri = r2 = I', 8) = s2 =s,

2

W,', '(rs, rs, co)=(2n) — 8'»( ks—, ks, co), (4.5a)
cp'

2

W(hh )(rs, rs, ~)= —(2~)6 — s X W JTJ( —ks, ks, ~) Xs,
cp

(4.5b)

Formulas (4.7) and (4.9) express the average energy
density and the averaged Poynting vector of the far field
in terms of the trace of the Fourier transform of the
cross-spectral density tensor of the transverse part of the
current density j (r, co). We may readily express this
trace in terms of the trace of the Fourier transform of the
cross-spectral density tensor of the total current density
j(r, co). The relationship between these two traces is de-
rived in Appendix D and is found to be

TrW~~( —ks, ks, co) =TrW~~( —ks, ks, co)

—s.W„(—ks, ks, co).s . (4. 1 1)

W,'h '(rs, rs, co) = —(2ir) —W~~( —ks, ks, co) X s .
C7

We also have, according to Appendix B,

TrWhh '(rs, rs, cu)=TrW,', '(rs, rs, co) .

(4.5c)

(4.6)

It follows at once from Eq. (4.9) and the significance of
the Poynting vector that the radiant intensity J(s, co), i.e.,
the rate at which the source radiates energy at frequency
co per unit solid angle around a direction specified by a
unit vector s is given by

J(s,~)= lim r s. {S'"'(rs,co) }
Let us now set r=rs in the expression (4.3) and let us
proceed to the asymptotic limit as kr~ oo, with the direc-
tion s being fixed. If we make use of the expression (4.5a)
and of the relation (4.6) we obtain the following formula
for the average energy density of the far field:

2

{U' '(rs, co) ) =8' —TrW)~~( —ks, ks, co) .
Cl"

(4.7)

Next let us consider the average Poynting vector of the
far field. We show in Appendix C that

'2

V(W', h '(rs, rs, co) }= (2m') —TrW ~~j( —ks, ks, co)s .
Cl'

(4.8)

Now according to Eq. (4.7) the trace that appears on the
right-hand side of Eq. (4.8} is proportional to the averaged
energy density and is, therefore, necessarily real. This
fact may also be established more directly by making use
of the fact that the cross-spectral density tensor of the
transverse current is necessarily non-negative definite.
Hence the expression (4.8) represents a real vector. Using
this result in the formula (4.4), specialized to the far field,
we find that

8~'k2{S( '(rs, co) } = TrW ~~j( —ks, ks, co)s .
CP"

(4.9)

On comparing Eqs. (4.7) and (4.9) we see at once that
the average energy density and the average Poynting vec-
tor of the far field generated by the fluctuating current
distribution are related by the formula

{S'"'(rs, co) ) =c{U'"'(rs, co)) s . (4.10)

This relation is of exactly the same form as the corre-
sponding formula pertaining to the far field generated by a
localized monochromatic current distribution. It implies
that at each point in the far zone the average energy den-
sity may be regarded as propagating in the outward radial
direction with the vacuum speed of light c.

8~ k TrW j~j( —ks, ks, cu) .
c

(4.12)

This formula is the electromagnetic analogue of an expres-
sion for the radiant intensity well known in the theory of
radiation from fluctuating three-dimensional scalar
sources. '

Using Eq. (4.12) we see at once that the total power ra-
diated by the fluctuating current at frequency co is given
by the formula

P(co)—:f J(s,co)dQ

S~'k2
TrW

~~
—k s, k s, co d 0, ,c

(4.13)

where the integration extends over the whole 4m solid an-
gle generated by the unit vector s.

If we make use of the relations (4.11), formulas (4.12)
and (4.13) may be expressed at once in terms of dyadic

W~~ associated with the total current density rather than

in terms of the dyadic W~~ associated with its transverse
part.

V. THE 2&(2 ELECTRIC COHERENCE MATRIX,
THE STOKES PARAMETERS, AND THE DEGREE

OF POLARIZATION OF THE FAR FIELD

We noted in Sec. II that any realization of the elec-
tromagnetic field at each point r=rs in the far zone of a
fluctuating localized source has the structure of a plane
electromagnetic wave that propagates in the s direction.
Now the polarization properties of such a wave are most
conveniently analyzed in terms of a 2)&2 coherence ma-
trix or in terms of (four) Stokes parameters. Hence we
can use either of these two descriptions to investigate the
state of polarization of the far field generated by our fIuc-
tuating source. In this section we will derive formulas for
the coherence matrix and for the Stokes parameters of the
radiated field.

Let us set ri =r2=r, si=s2=s in the formula (3.14a).
This gives
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2

W (rs, rs, co) =(2m') —W j~&( k—s, ks, co) . (5.1)
cr

It will be convenient to simplify the notation by setting

6(rs, co) =W,',"'(rs, rs, co),
2

3 =(2') I
cr

(5.2a)

(5.2b)

The formula (5.1) then becomes

6(rs, co)= AW,~j( —ks, ks, co) .

With the dyadic 6'(rs, co) we may introduce a 3&&3 elec-
tric coherence matrix with elements

Z'zq(rs, co) =p 8(rs, co) q= (Ez"(rs, ~)Eq(rs, co) ) (5.4)

s = sinOcosg, s~ = sinO sing, s, = cosO . (5.5)

Let x, y, z denote the unit vectors along the Cartesian rec-

where p, q (p =x,y, z, q =x,y, z) label Cartesian com-
ponents, taken with respect to some fixed rectangular
coordinate systems, and p and q represent unit vectors
along the corresponding coordinate axes.

The matrix 6zq(rs, co) is a 3X3 correlation matrix of
the electric field in the far zone. Similar correlation ma-
trices may, of course, be introduced for the magnetic field
or for the mixed combinations containing both the electric
and the magnetic fields.

Since the far field is transverse, we may introduce at
each point P (rs) in the far zone a local orthogonal coordi-
nate system of axes, such that only four of the nine ele-
ments of the electric coherence matrix are, in general,
nonvanishing. A natural such coordinate system is pro-
vided by the directions defined by the coordinate lines of a
spherical polar system (see Fig. 1). In that system of the
axes the components s,s~, s, of the unit vector s are given
by

tangular axes and e„eg,e~ the unit vectors along the coor-
dinate lines of the spherical polar system. Then"'

e„= sinO cosPx+ sinO sing y+ cosO z,
eg = cosO cosP x+ cosO sintt y —sinO z,
ec, = —sing x+ cosP y .

(5.6)

= (E*(rs, cu)Ep(rs, co) ) (5.7)

where a and P each stands for O and P, which now label
"angular" components. Finally, on substituting for
6(rs, cu) from Eq. (5.3) into the second expression in Eq.
(5.7), we obtain the following expression for the four ele-
ments of the 2 && 2 electric coherence matrix of the far
field:

6' p(rs, co)= Re .WJJ( —ks, ks, co) ep . (5.8)

To avoid any possible misunderstanding we stress that in
this formula the subscripts a and P label components tak-
en along the curvilinear O, P coordinate lines at the point
P(rs) in the far zone, whereas the subscript jj on the right

indicates that W~~ is the Fourier transform of the cross-
spectral density of the transverse current j .

From the knowledge of the 2 ~ 2 electric coherence ma-
trix (5.8), one can completely answer all questions relating
to the state of polarization of the far field. The appropri-
ate formulas are obtained, with trivial modifications, '

from formulas given in Sec. 10.8 of Ref. 9.
In terms of the elements of the 2&2 electric coherence

matrix (5.8), one may readily obtain expressions for the
four Stokes parameters so, s~, s2, s3 that are also frequently
used to analyze the polarization properties of a fluctuating
electromagnetic wave. They are given by (cf. Ref. 9, Sec.
10.8.3)

Referred to the spherical polar coordinate system, the
electric coherence matrix at each point in the far zone will
have only four (generally nonvanishing) elements, given
by

6 Is(rs, co) = e 8(rs., co) eg.

SO ~aa+ @pp

S] = Poaa &pp

~2 —~a/3+ ~Pa

S3 = l ( 6pa —hap)

(5.9)

(no summation over repeated indexes).
Finally, let us consider the degree of polarization P (s)

of the far field, in a direction specified by the unit vector
s. It is given by [cf. Ref. 9, Sec. 10.8, Eq. (52)]

1/2
4 det@(rs, co)

[Trc (rs, co)]
(5.10)

FICx. l. Illustrating the significance of the unit vectors e„eg,
and ey pointing along the coordinate lines of a spherical polar
system. Detb'(rs, co) = A detW~~( —ks, ks, m), (5.11a)

Since both the determinant and the trace of a dyadic (ten-
sor) are invariant with respect to the rotation of axes, we
have from Eq. (5.8)
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Trb'(rs, co) = A TrW jj( —ks, ks, co) . (5.11b)

On substituting from Eqs (5.11) into Eq. (5.10) we obtain
the following expression for the degree of polarization of
the electric field in the far zone:

where Oi and O2 are the angles that the unit vectors s] and
sq make with the z direction (the direction of the current),
as shown in Fig. 2.

From Eq. (6.6) it follows at once that

4 detW jj( —ks, ks, co)
P„(s)= 1—

[TrW,, ( —k s, ks, co ) ]

1/2

(5.12)

TrW jTj( —ksks, co) = 8( —ks, ks, co) sin O . (6.7)

On substituting from Eq. (6.7) into the formula (4.12) we
obtain the following expression for the radiant intensity
generated by our fluctuating linear current source:

VI. AN EXAMPLE: THE FAR FIELD
FROM A FLUCTUATING LINEAR CURRENT SOURCE

5 2

J(s, co) = 8( —ks, ks, co) sin O .
8m k

(6.8)

Wj, (r&, r2, co) = 4(ri, r2, co)zz,

where

(6.1)

We will now illustrate some of our formulas by consid-
ering the far field generated by a volume distribution of
current density that oscillates in a fixed direction but is
subject to some random perturbations, which will be as-
sumed to be characterized by a stationary ensemble. For
simplicity we will also assume that the perturbations affect
only the magnitude but not the direction of the oscillating
current.

Let us choose a rectangular Cartesian system of axes,
with the z direction along the direction of the oscillations.
The cross-spectral density tensor Wj~ of the current may
then by expressed in terms of an ensemble of frequency-
dependent realizations j(r,co)z of the current density, in
the form [cf. Eq. (3.3a)]

This expression has a similar mathematical structure as
the corresponding formula for the radiant intensity of a
fluctuating scalar source [cf. Ref. 2(a), Eq. (3.9)], but it
differs from it mainly in that it does not include the factor
sin O. The factor sin O in the formula (6.8) is, of course,
familiar from the theory of linear antennas. ' However,
unlike in the case of a sinusoidally oscillating linear anten-
na, there is now an additional contribution to the angular
distribution of the radiation arising from the s dependence
of the Fourier transform of the correlation function 8.

Next let us consider the state of polarization of the far
field. Because of the rather simple form of the tensor
(6.1), it will be advantageous to make use, in the present

case, of a certain simple property of W~~ which we will
now establish.

It follows from Eq. (2.6) with K =k s and j(k s, co )
=j(ks, co)z that

(6.2)

Let us first determine the radiant intensity J(s, co) pro-
duced by the source. For this purpose we must deter-
mine, according to the general formula (4.12), the Fourier
transform of the cross-spectral density tensor Wj~ of the
transverse current. It follows from Eqs. (3.15) and (6.1)
that it is given by

j (ks, co)=j(ks, co)t,

where

t=sX(zXs) .

Let us introduce a unit vector t along t, i.e.,

sX (z Xs)
~

sX(zxs)
~

(6.9)

(6.10)

(6.1 1)

+(si z)(z s2)sis2] (6.3)

W jj(Ki,K2,co)=cj(Ki,K2, co)[zz —(si.z)siz —(z.s2)zsp By straightforward calculation one can show that
sX(zXs)=tsinO and using this result in Eq. (6.11) it fol-
lows that

where

8(Ki, K2, co ) = 6 I I +(ri& rp&~)
(2~)'

I I—i(K& r&+K2.r2), 3, y 3 pXe

(6.4)

t=t sinO . (6.12)

D denotes the domain occupied by the current, and

K) K2
(6.5)

f~uctuati
cu t'f eg f

With Ki= —ksi, K2=ks2 (k =ccrc/c), the formula (6.3)
reduces to

W,, ( —ks „ks2,co) = cj"( —ks, , ks2, cu)

c ('~e /i-
Oj Pc~ .

co /o„fp p~
Og

S/f

X [zz —(cosO|)slz —(cosO2)zs2

+ ( COSOi )(COSO2 )S isz] (6.6)

FICx. 2. Illustrating the notation pertaining to calculation of
the far-zone behavior of a field generated by a fluctuating linear
current source.
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It is clear from Eqs. (6.10) and (6.12) that the unit vector
t is perpendicular to s and lies in the plane specified by s
and z (see Fig. 3). On substituting from Eq. (6.9) into Eq.
(3.8), specialized to the case when s] =s2=s, and on using
the relations (3.11) and (6.12) we obtain the following ex-

pression for W//( —ks, ks, co):

Oi-

W,, ( —ks, ks, co) =8( —ks, ks, co)(sin O)t t . (6.13)

DetW J/( —ks, ks, co) =0 . (6.14)

It then follows from Eq. (5.12) that the degree of polariza-
tion

In deriving this formula we also made use of Eqs. (6.2)
and (6.4).

Since in the representation (6.13) the dyadic

W//( —ks, ks, co) has only one component, namely the t t
component, it is clear that

FIG. 3. Illustrating the relative orientation of the three unit
vectors which represent the direction of the linear current densi-
ty (z), the direction of observation (s), and the direction of polar-
ization of the far field (t).

P„(s)= 1 for all s, (6.15)

i.e., the electric field is completely polarized at every point
in the far zone. Clearly the polarization is linear, along
the direction of the unit vector t, as is evident from Eqs.
(6.13) and (5.1).

Although the far field is completely polarized, it is not
fully coherent, in general. To see this we introduce the
degree of spectral coherence of the electric field by the for-
mula"-"

BEE(r] r»~)

(E*(r],co).E(r2, cu) )

[(E*(r],co) E(r],co) ) ]' [(E*(r2,co) E(r2, co) ) ]'/

(6.16)

or, using Eq. (3.4a),

TrW„(r], r2, co)
pEE(ri r2 ~)=

1/2 1/2[TrW„(r],r],co )] [TrW„(r2, r2, co ) ]

(6.17)

Let us now specialize Eq. (6.17) to the case when r] and
r2 represent points in the far zone at the same distance r
from the origin in directions specified by unit vectors s]
and sq, respectively. Then r ~

——r s i, r2 ——r sq, and if we
make this substitution in Eq. (6.17) and use the relation
(3.14a) we find that

]]2EE ( r S1,r S2, CO ) =(~) TrW,~/( —ks, , ks2, co)

[TrW,, ( ks„ks],~]' —[TrW,&(
—ks2, ks2, co)]

(6.18)

Now for a fiuctuating linear current source we have from Eq. (6.6) that

TrW, , ( —ks], ks2, cu) = ct( —ks], ks2, co)+(O],O2, $),
where

(6.19)

N(O], O2, $)= 1 —cos O] —cos O2+ cosO] cosO2 cosp (6.20)

p denoting the angle between the unit vectors s] and s2.
On substituting from Eq. (6.19) into Eq. (6.18) we obtain the following expression for the degree of spectral coherence

PFZ:(oo).

4( —ks], ks2, co) N(O], O2, $)
[8(—ks], ks],co))' [8(—ks2, ks2, cu)]' [@(O],O],0)]' [@(O2,O2, 0)]' (6.21)

e(O], O],0)= sin O], e(O2, O2, 0)= sin O2 . (6.22)

Let us briefly consider some implications of the formula

The factors in the denominator of the second term on the
right have a simple form, as is seen at once from Eq.
(6.20):

(6.21). It is clear from that equation that

~
pEE'(rs], rs2, ~)

~
& I in general and hence the far field is

as a rule partially coherent. The first factor on the right
of Eq. (6.21) is of the same form as the degree of spectral
coherence of the far field V produced by a fluctuating sca-
lar source distribution Q, viz. [cf. Ref. 2(a), Eq. (3.11)]
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pv (rsl, rsz~co)

W&( —ks„ksz, co)

[8'&( —ks„ks, ,co)]' [ W&( —ksz, ksz, co)]'~

(6.23)

where W(z(K„Kz,co) is the spatial Fourier transform of
the cross-spectral density function W(z(ri, rz, co) of the
source distribution. It is therefore evident that the degree
of spectral coherence of the electric field generated in the
far zone by a fluctuating linear current source may be for-
mally regarded as arising from an equivalent scalar source
distribution [which contributes the first factor on the right
of Eq. (6.21)], modified by a universal function of the two
directions si, s2, namely by the function

The behavior of this function for some selected values of
its three arguments is shown in Figs. 4 and 5.

APPENDIX A: DERIVATION OF EXPRESSION (3.15)
FOR Wjj IN TERMS OF Wjj

The expression (2.6) for the Fourier transform j (K,co)
of the transverse current may be rewritten in the form

j (K,co) =j(K,co) —ss j(K,co), (A 1)

where s= K/K (K =
~

K
~

) is the unit vector along the K
direction. Hence the correlation tensor, defined by Eq.
(3.8) of the Fourier transform of the transverse current, is
given by

W--.(K„K„co)=([j(Ki,co) —sisi j(Ki co)][j(K„co)—s,s, j(K„co)])

=W-. —.(K, , Kz, co) —s,s, W-. —.(K»Kz, co) —W-. —.(K»Kz, co) szsz+sisi W-. —.(K»Kz, co) szsz, (A2)

where s] ——K~/K] and sq ——K2/Eq are unit vectors along
the K~ and Kq directions, respectively. Now in a strictly
similar manner as led to the formula (3.11), one may es-
tablish the analogous relation Wi, i, (rs, rs, co)= (sXE*(rs,co)sXE(rs, co) } (83)

Let us substitute in Eq. (82) for H(rs, co) in terms of
E(rs, co) from Eq. (2.8). This gives

W-. —.(Ki, Kz)co)=W~)( —Ki, Kz)ico) . (A3)

Using this relation and also the relation (3.11) in Eq. (A2},
we obtain the required expression (3.15) for W,~

in terms
of W jz, viz. ,

Next let us take the trace of Eq. (83). We then obtain the
formula

TrWhh '(rs, rs, co) = ( [sX E'(rs, co)].[sX E(rs, co}]}
(84)

(A4)

W J, (K»Kz, co) =WJJ(K„Kz,co) —sisi. W,, (K„Kz,co)

—W~~. (K„Kz,co) szsz

+sisi W J(Ki,Kz, co) szsz .

Now we have the vector identities

(s XE').(s X E)= —[s X (s X E)] E"

= —[s(s E)—E(s s)] E*

=E" E—(s.E*)(s.E), (85)

APPENDIX B: DERiVATION OF THE RELATION
TrW qI, '(rs, rs, ~)=TrW„" (rs, rs, co)

[EQ. (4.6)]

The cross-spectral density tensor of the magnetic field is
defined by a formula of the form (3.4a), viz. ,

Wl I, (ri, rz, co) = (H'(ri, co)H(rz, co) }„. (81)

Let us set r& ——rs, r2 ——rs, where s is a unit vector and let
us proceed to the asymptotic limit as kr~ oo, with s be-
ing kept fixed. The formula (81) then becomes

Wl ~(rs, rs, co) = (H" (rs, co)H(rs, co) }~, (82) TrW~P '(rs, rs, co}=TrW,', '(rs, rs, co), (87)

where, in going from the second to the third line, we as-
sumed that s =1. Using this identity Eq. (84) becomes

TrWhh '(rs, rs, co) = (E*(rs,co).E(rs, co) )

—([s E*(rs,co)][s.E(rs, co)]) . (86)

The first term on the right of Eq. (86) is just the trace of
the cross-spectral density tensor of the electric field in the
far zone; the second term on the right vanishes because of
the transversahty of the far field [Eq. (2.9)]. Hence Eq.
(86) reduces to

where H(rs, co) is given by the asymptotic formula (2.2b). which is Eq. (4.6) of the text.
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FIG. 4. Behavior of the function %(0~,02, $) defined by Eqs. {6.24), (6.20), and (6.21) in the plane P=n/2 Three-dimensio. nal plots
(a) and contours of constant values of + (b).

APPENDIX C: DERIVATION OF THE FORMULA (4.8)

According to Eqs. (4.5c) and (3.11)

2

(C 1)W,P (rs, rs, co)= —(2n. ) —W; (ks, ks, cu)&(s . . -
cr

Eq. (3.8), we obtain the formula

l2

W, I", '(rs, rs, co) = —(2~) —(j *(ks,cu)j (ks, co) )„Xs .
cr

If on the right-hand side of Eq. (C1) we substitute from Hence
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8= ~zz

=0 $ = 7r/2

O

(b)
l. OO

20'

of h f tion qi(g, gz, p) deftned by Eqs. (6.24), (6.20), and ( . )

(a) and contours of constant values of 4' (b).



1268 WILLIAM H. CARTER AND EMIL WOLF 36

2

V(W', t", (rs, rs, co))= —(2m ) — (j *(ks,co) X [j (ks, co) X s])
Cr

2

= —(2m. ) —
I () *(ks,co)[j (ks, co).s) ) —s(j "(ks,co) j (ks, co) )

CT
(C3)

The first term on the right-hand side of Eq. (C3) van-
ishes because, as follows at once from Eq. (2.6)

j '(ks, co) s=0. The average that appears in the second
term on the right is, according to Eq. (3.8), just the trace
of the tensor W —.. (ks, ks, co). Hence Eq. (C3) reduces to

JJ
2

V(W, t", '(rs, rs, co)) =(2m) —TrW--(ks, ks, co)s .
cp' JJ

(C4)

Finally, if we again make use of Eq. (3.11), we obtain the
formula (4.8) of the text, viz. ,

V(W', P '(rs, rs, co))

Tr[W-. —.(Ki, Kz, co).szsz] = sz W--(Ki, Kz, co).sz (D3)

and

Tr[s,s, W-. —.(Ki, Kz, co).szsz]

=[s, .W-. —.(Ki, Kz, co) sz]s, .sz . (D4)

Tr W;-(Ki, Kz, co) =TrW;-(Ki, Kz, co)

—si.W;-(Ki, Kz, co).si

—sz. W--. (Ki, Kz, co) sz

On substituting from Eqs. (D2) —(D4) into Eq. (Dl) we
find that

2

=(27r) —TrW ~J( —ks, ks, co)s .
cr

(C5)
+[si'W '(Ki Kz ~) sz]si sz . (D5)

APPENDIX D: DERIVATION OF AN EXPRESSION
FOR TrW JJ IN TERMS OF TrWJJ-

If we take the trace of Eq. (A2) we obtain the formula

If we make use of the relations (3.11) and (A3), Eq. (D5)
implies that

TrW ~&(
—Ki, Kz, co) =TrWli( —Ki, Kz, co)

—si W,, ( —Ki, Kz, co).si

TrW--(Ki, Kz, co) =TrW--(Ki, Kz, co)

—Tr[sisi. W-. —.(Ki, Kz, co)]

—Tr[W--(Ki, Kz, co) szsz]

+Tr[sisi. W-. —.(Ki, Kz, co) szsz] .

Now

(Dl)

—sz Wjl( —Ki, Kz, co) sz

+ [si Wq)( —Ki, Kz, co).sz]si. sz .

(D6)

In particular, if we choose Ki ——ks, Kz ——ks, Eq. (D6)
reduces to

(D2)

Similarly

Tr[s,s, W-. —.(Ki, Kz, co)]=Tr[sisi (j*(Ki,co)j(Kz,co) ) ]

=si W-. —.(Ki, Kz, co) si .

which is Eq. (4.11) of text.

—s.W,J( —ks, ks, co) s,
TrW,J( ks, ks, co)=Tr—WJJ( —ks, ks, co)

(D7)
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