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The relativistic photoionization cross sections from ns&&2, npt&z, np3/2 subshells, in the high-energy
limit, have been analytically obtained. The main effects of screening enter through their effects on
bound-state normalizations and energy levels. To estimate further effects, the screened potential at
small distances is analytically described by a power-series expansion in the small distance r. For this
high-energy-limit situation, both bound and continuum wave functions are expanded in power series
for small r. The bound-free transition cross sections are then calculated analytically. Our results
show that, beyond the known screening effect described by normalization factors, the screening effect
enters the cross sections primarily through the change in bound-state energy and is otherwise not too
sensitive to the expansion coe%cients of the potential. The formulas contain no explicit n depen-
dence. Comparisons with existing finite-energy numerical results indicate that ratios, though not ab-
solute values, of cross sections attain their high-energy limits relatively early. Using Poincare's
theorem, all the photoionization results may be analytically continued to the high-frequency region of
the spectrum of electron bremsstrahlung. Screening is dominated by the "extra" screening (namely,
the screening which is not described by the known "normalization screening") except in the very tip
region (a few eV above threshold), where normalization screening is much more important. The ex-
tension to positron bremsstrahlung is also discussed.

I. INTRODUCTION

In this paper we present analytic relativistic expressions
for screened atomic photoeffect cross sections in the high-
energy limit, for the ns and np subshells of all elements.
The same expressions also characterize the high-frequency
(hard-photon end point) region of the bremsstrahlung
spectrutn in the high-energy limit of incident electron (or
positron) energy. Preliminary results of this approach for
the ns and 2p cases have been reported by Gabriel. ' Ana-
lytic results for the high-energy limit are desirable, since
they give some physical insight into the diverse aspects of
the photoelectric process and they complement numerical
predictions which are available for finite photon energy.
Furthermore, such high-energy predictions become of
greater practical interest with the extension of current ex-
periments to higher energies and developments in the
theoretical calculation of radiative corrections. '

Analytic results for photoelectric effect in the high-
energy limit have been obtained previously, ' but without
taking into account atomic electron screening of the nu-
clear charge, i.e., the atomic electron ejected as a photo-
electron was described both in the initial and final state as
moving in a point Coulomb potential. Later Pratt and
Tseng identified the screening effect on high-energy
inner-shell photoeffect cross sections as primarily associat-
ed with the screened bound-state normalization constants.
Many features of the photoeffect process can be under-
stood with the realization that for energies sufficiently far
above threshold, the important regions in configuration
space for the determination of the matrix element are
small, ultimately (in a full relativistic multipole theory) of
the order of an electron Compton wavelength (r —1 in the
system of units adopted here) and not where the bound.

electron wave function is large except for the K shell of
very-high-Z elements).

In the nonrelativistic dipole case this dominant region
would continue to contract toward the origin with in-
creasing energies. Now, at small distances, the screened
potential has a point Coulomb character, and the inner-
shell wave functions are hydrogenic in shape and differ
from point Coulomb wave functions only in their normal-
ization. Consequently we can get approximate predictions
for the total photoelectric cross sections in a screened po-
tential simply by multiplying the point Coulomb results
by the square of the ratio of screened to point Coulomb
bound-state normalizations. This also implies that at high
energy the angular distribution shapes and polarization
correlations are independent of screening. Further, be-
cause small-distance wave-function shapes are indepen-
dent of principal quantum number n, one predicts for the
same reason that results for different subshells of the same
angular momentum are similarly related: Angular distri-
bution shapes and correlations are independent of princi-
pal quantum member n, cross sections are dependent on n

only through bound-state normalization.
However, as we shall demonstrate, additional screening

effects do persist in the high energy limit for the relativis-
tic case, refIecting the fact that the dominant region does
not continue to contract and even at electron Compton
wavelength distances there are deviations from the point
Coulomb shape. It is possible to calculate these addition-
al relativistic screening effects by combining the formalism
developed for the point Coulomb high-energy-limit cross
sections (requiring a modified plane wave, i.e., a three-
dimensional eikonal wave function for the continuum
state) with an analytic description of the screened bound
and continuum wave functions. More precisely speaking,
other than normalization, the dominant screening effects

36 1207 1987 The American Physical Society



1208 R. Y. YIN, O. V. GABRIEL, AND R. H. PRATT 36

on the shape of the bound wave function at small dis-
tances can be described by its "energy shift" (from the
point Coulomb energy), consistent with the previous
finding of Oh in a non relativistic calculation. The
remaining screening effects on the bound state and the
screening effects on the continuum state can be estimated
by using an analytic perturbation theory, which we call
briefly APT, developed for the analytic description of
screening effects on atomic processes characterized by dis-
tances well in the interior of the atom. The theory ex-
pands a screened wave function of specified energy, at
small distances, with reference to a Coulomb wave func-
tion of (perhaps different) specified energy. Here we ex-
tend this approach, determining analytic screening correc-
tions in the eikonal factor of the modified plane wave,
characterizing the high energy limit of a continuum state
of definite momentum. More precisely, we determine
screening modifications to the difference of two such
eikonal factors. (In the high energy limit only the phase,
not the amplitude, is modified at finite —Compton
wavelength —distance. )

High-energy-limit results for photoeffect subshell cross
sections for given (n, l j)tean be expressed in terms of a
double expansion in a —=O.Z, with Z the atomic number
and a the fine-structure constant, screened binding ener-
gies (which can be calculated numerically, for inner shells
from APT, by WKB methods, etc. ), and screening param-
eters A], A2, characterizing the relativistic screened atomic
potential at Compton wavelength distances. We neglect
terms of relative order a and higher and we retain only
the leading term in k ', where k is the energy of the in-
cident photon. It is known that APT gives a poorer
description of screening in low-Z elements. But since
screening becomes less important at high energy in low-Z
elements (unlike in low-energy photoeffect), adequate re-
sults can still be obtained in all cases and the main analyt-
ic approximation, as already indicated, is that Coulomb
terms have not been calculated to all orders.

The results for photoionization can also be extended, by
analytic continuation, to give predictions for the high-
frequency region of the bremsstrahlung spectrum in the
high-energy limit of incident electron (or positron) kinetic
energy. In this situation the high-energy incident electron
loses almost all of its kinetic energy and the wave function
of the low-energy outgoing electron at small distances has
the same shape as for a bound state. As exploited by
Fano, Koch, and Motz, this process is an analytic con-
tinuation of inverse atomic photoelectric effect, i.e., of
direct radiative recombination. Following the analysis
and procedures previously given by Pratt' and Jabbur
and Pratt, " we can obtain the analytic formulas for high-
energy tip-region electron and positron bremsstrahlung
from our work, providing an extension of their results
from the Coulombic to the screened case.

We outline the general assumptions and formalism
which underlie our calculations in Sec. II. The expres-
sions for ns and np subshell photoelectric cross sections,
as well as a discussion of these results, are presented in
Sec. III. Corresponding results for the high-frequency re-
gion of the bremsstrahlung spectrum of high-energy elec-
trons and positrons are given in Sec. IV.

II. GENERAL FORMALISM

The formalism used in this work was developed by
Pratt ' and has been subsequently extended by Jabbur
and Pratt" in their study of the high-frequency region of
the bremsstrahlung spectrum.

A. Assumptions leading to the single-electron
transition matrix element

The following assumptions discussed in the review arti-
cle of Pratt et al. will be adopted in this work.

(1) The target is a single isolated neutral atom in its
ground state.

(2) Bound and continuum electrons in the field of the
target atom can be described as solutions of the Dirac
equation for a single electron interacting with a central
potential which is Coulombic at small distances.

(3) The photoelectric process can be treated as a first-
order radiation field interaction transition of a single elec-
tron between bound and continuum states in the same
central potential.

These assumptions imply the neglect of extended struc-
ture in the target, molecular, and solid-state effects, tem-
perature and pressure effects, electronic correlations, non-
local exchange, higher-order quantum electrodynamic
effects, etc. The photoeffect matrix element deduced from
first-order relativistic external field quantum electro-
dynamics is given by

M = —(2iralk)' f gza ee'"'gbd r, (1)

where k is the photon momentum. p is the momentum
of the ejected electron, o. are the Dirac matrices, and e is
the photon polarization vector. g~ and Pb are solutions
(continuum and bound wave functions) of the Dirac
equation:

[ ia.V+ f3+ V—(r)]g„ (2)

where V(r) is the potential. Natural units
(A'=c =m, =1) are used throughout this chapter. This
single-particle matrix element is used to find the
differential cross section

d cr=(2~)
i
M

i
5(W)d p, (3)

where W=(P +1)' —k —E is the energy transfer and
E is the energy of the bound electron (which includes rest
mass energy). Integration over final electron energy,
with the 6-function of energy conservation, leads to the
differential cross section for the photoelectron angular
distribution.

It has been argued by Pratt that in the high-energy
limit the matrix element (1) is decided at electron Comp-
ton wavelength distances. The argument can be brieAy
summarized as follows: The integrand in (1) contains the
factor exp[ i (p —k) r],—where

~ p —k
~

=
~ p ~

—
~

k
~

~1
for most transitions, as c~ ~, from energy conservation.
This means important contributions to the integral occur
when r is of the order of 1 (in the unit of electron Comp-
ton wavelength), since for larger distances the integrand
oscillates rapidly. This fact underlies the present work.
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B. Assumptions leading to the high-energy-limit
matrix element expressed in terms of integrals

over eikonal wave functions

For gb, relativistic APT bound-state wave functions
are already available, although we give a more direct cal-
culation of the needed small-distance behavior in Sec.
II C. The central difficulty in relativistic photoeffect cal-
culations arise from P~. The full continuum solutions of
the Dirac equation in a potential (even a point Coulomb
potential) have been available only in a partial-wave ex-
pansion, and at high energies an increasingly large num-
ber of terms in this expansion contribute to the matrix ele-
ment. Consequently, even by the MeV range, a direct cal-
culation of the cross section becomes an arduous task.
For the high-energy limit of photoeAect, use of an approx-
imate continuum wave function was justified by Pratt.
This distorted plane wave is a solution of the three-
dimensional eikonal equation (obtained from the
Sommerfeld-Maue equation by dropping the V term),

(i p. V —e~ V)tb~ =0, (4)

X+(r) =X+(p,z) =+ f V(p, z')dz', (6)

where 7 is the solution needed for the photoeffect and
7+ is the solution needed for the inverse photoeffect.
These solutions 7+ and 7 are chosen to satisfy the
boundary condition for a plane wave (at + oo ) with outgo-
ing or incoming spherical waves, respectively. In Eq. (6),
V is taken as the same screened central potential seen by
the initial bound electron. (If the potential has a long-
range Coulombic tail, the 7's must be modified to include
logarithmic phase factors, but these changes will not con-
tribute to the difference in X's needed for this paper. )

Note that a smoothed representation of the interior re-
gion of the potential V, involving an expansion for small
r, does not suffice to evaluate the distortion function 7.
This can be seen clearly from the nonrelativistic expres-
sion given by Bechler and Pratt, ' which remains valid in
this relativistic case since relativity does not enter in the
integral (6). Rewritten in our notation, their result is

X= —a [ink, (r —z) —bo]+a'A~z

+a (A3/2)[rz —p Ink(r —z)]

+a (Ap) bi+a A3(p z +z'/3),
where k is defined by 1.13aZ', and Al, A2, A3 are po-
tential expansion coefficients used in APT (we will dis-
cuss APT in detail in Sec. IIC). The coefficients bp, b&,

given by their Eq. (3.27), cannot be found in terms of the
small-distance expansion of the potential. In order to
get these coefficients, one needs also to know the shape
of the potential at intermediate and larger distances.

where c~ is the energy of the ejected electron. Specifying
the boundary conditions appropriate for the outgoing pho-
toelectron, the desired solution is

i (p.r+Y )

~ =ue

where u is the field-free electron spinor and the distor-
tion function 7 is given by

where I is the triple integral

I = f dz f dz' fpdpF(r, r')e's"",

F(r, r') = —,
' g lf/b(r)(1 —a)gb(r'),

final spin

states

g(r, r')=E(z —z')+X(r) —X(r') .

(10)

(12)

Here we use a cylindrical coordinate system with z axis
along the incident photon momentum direction; p is set
equal to p. Thus (remembering that e is the bound-state
energy), we only need to determine the change in the dis-
tortion function of the three-dimensional eikonal wave
function due to a shift in z coordinates [X(p,z) —X(p,z')]
in order to calculate the total cross section. It can be
shown that F and g are functions of p, z, and z' only. A
general expression for F is given in Ref. 11.

The main problem, then, is the evaluation of the triple
integral I. The approach that we will adopt develops the
integral as a power series in a. In order to accomplish
this task we need small-distance expansions for the ini-
tial and final electron wave functions Pb and P~. We
will keep terms that contribute to the matrix element
through relative order of a (in all the nsi/q, npi/2, and

np3/g cases) and drop all higher-order terms.

C. Small-distance behavior of wave functions

1. Description of screening by shifted energy,
with APT as supplement

As we will demonstrate quantitatively below, the main
screening eff'ect on wave-function shapes at small dis-
tances can be described by using a Coulomb wave func-
tion of "shifted energy" (shifted from the point Coulomb
energy value). Remaining screening effects, and also
screening eFects on continuum wave functions, can be es-
timated using APT.

The shifted energy c' is defined as

E'—=v+6, (13)

where c is the eigenvalue of the Dirac equation, for a
screened potential, and the factor 5 is defined as the

Nevertheless, as far as the difference [X(r')—X(r)] is
concerned, which we will see below is the only quantity
needed in determining the total cross section, these b
coefficients do not play any role; the knowledge of
small-distance properties of the potential permits a full
evaluation.

Substituting Eq. (5) into the matrix element Eq. (1), we
have

(2'&�/k)1/2 f d 3r g( r)e —'[(P—k) ~+7(~)]

where S(r)=u a.eit/b and X(r) is X (r) defined in (6).
It has been shown ' that when there is almost complete
transfer of momentum between a photon and a bound
electron, as is true in the dominant circumstances of
high-energy photoeA'ect, the cross section, integrated
over all states of the outgoing high-energy particles, is
just

o =(4w ct/k)I,



1210 R. Y. YIN, O. V. GABRIEL, AND R. H. PRATT 36

difference between the potential energy of a test electron
charge, in the vicinity of nucleus, with and without the
screening of bound electrons:

fi = [ Vcoul Vscreened ]r 0 (14)

Replacing the screened eigenvalue c by this shifted ener-

gy, according to Eq. (13), and expanding the screened
Dirac equation at small distances, we find the leading
coefficients of the wave functions, as function of this
shifted energy, are exactly the same as for the point
Coulomb wave functions, as function of point Coulomb
eigenvalues. (Here, by "leading coefficients, " we mean
the first two or three coefficients in the small-distance
expansion of wave functions. ) This says that the wave
function's shape at small distances can be characterized
primarily by the shifted energy. Since the screened ener-

gy c can be numerically calculated and 6 can be fairly
well determined, this shifted energy provides an effective
way to describe screening at Compton wavelength dis-
tances. Nevertheless, further screening effects still exist
in coefficients of higher-order terms in the small-distance
wave-function expansion, which cannot be described by
this shifted energy. We use APT to provide an estimate
of these remaining screening effects.

The method of APT is based on a smoothed description
of the potential inside an atom, as a function of one pa-
rameter A. , having the form

choice of V, does depend on the region of distances of in-
terest. Here the important region corresponds to electron
Compton wavelength distances, while for low-energy
photoeffect, the V„should be taken to characterize the en-
tire interior of the atom, particularly the dominant re-
gions for inner shells.

Although APT is quite successful in the analytic
description of screened potentials, wave functions, eigen-
values. etc. , it is less useful in discussing screening
effects in high-energy-limit photoionization and brems-
strahlung. Screening effects on the potential at Compton
wavelength distances are not well characterized by a po-
lynomial expansion. Electron wave functions behave as
r~ ' at such distances, where y=(x —a )' is not in-
teger. The resulting behavior of the charge density im-
plies similar features in the potential. V, is well deter-
mined, but not higher V coefficients. To overcome this
difficulty, we adopt the following two measures: (i) We
use the shifted energy c', as discussed above, to primari-
ly characterize the screened wave functions, and (ii) we
use APT, reduced to a quadratic potential fit, to provide
an estimate of the magnitude of residual screening
effects.

Given our concern here for Compton wavelength dis-
tances, it is more transparent if we interpret the expansion
(15a) as an expansion in terms of the quantity (ar).
Defining A, —:V, k'/a", the expansion of the potential can
be rewritten, from (15a), as

V(r)= ——[1+Vi(kr)+ Vp(kr) + V3(lr) + ] .
r V(r)= ——(I+Aiar+Aqa r +A3a r + ) .

r
(15b)

(lsa)

Here X= 1.13aZ ' is a parameter characterizing the
screening, in the sense that A.

' determines the range of
the short-distance screened potential V and can be used to
characterize the dimensions of the neutral atom. The
value of A, ', which evidently depends on Z, is a few tens
of electron Compton wavelengths. The V„coefficients,
which characterize the screening due to the atomic elec-
trons, can be found for either analytic potentials (say, the
Yukawa potential) or fitted for numerical potentials (e.g. ,
Hartree-Slater potential). Generally, the appropriate

(The A„, however, are Z dependent while the V„were
essentially Z independent. ) With the V„coefficients of
unity and A, /a = 1.13/Z ( 1, the A„are generally
small. When we calculate the transition cross sections,
we will expand in a and keep all terms through relative
order a . It turns out [see Table I and Eqs. (29) and (30)]
that the A3 and higher A, coefficients do not occur in the
cross sections through this order in a.

Finally, from Eqs. (14) and (15b), it is immediately ob-
vious that in Eq. (14) 6=Aia . This identity enables us
to use the knowledge of A[, provided by APT, to deter-
mine 6 and therefore the shifted energy c'.

TABLE I. Expansion coeScients for the bound wave functions.

ns] /2 np ]/2 71p 3/2

Ap

A4

Bp

Bl

B2

B3

1

—( 1+a 5/12) +a u 5/12
—'+u/6

—( 1+3Ap ) /18 —u /9

——' —a /8

3 A3/2

a (1+a'/4)/2
2[1—a'( —,'+u/4)]/3

—[1+a '( —,
' —3A2/4 —u ) ] /3

(1+u)/15
—(1+10Ap+ 7u /2)/135

1

—2[1+a '( —,
' —5u /8) ]/3

533/2
324

1

—[ 1+9a '( —' —u ) /20] /2

(1 +u)/10
—(1+10Ap+ 7u /2) /90

—(1+a /16)/4

323/2
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2. Bound wave fu-nction shapes at small distance

Bound-state wave functions can be written in the form

if, (r) 0, (r)
'(bE+m ( )

g (r) Q (r) (16)

(1+oL)fl, =t~Q, (17)

so that
—( l + 1 ), when j = l + —,

'

l when j=l ——'

Expanding both f (r) and g(r) in terms of ar, at Comp-
ton wavelength distances we have

f(r) ~n
=Nrr g B (ar)", (19)

n=0

where the angular functions 0 are simultaneous eigen-
functions of J,L, and J„and w is defined by

Now we consider how to calculate the needed portion
of the APT continuum wave functions. From Eq. (6) we
have

Y(r) —X(r')= f"V(p, z")dz" —f" V(p, z")dz"
Z Z'

V p, z" dz" .
Z

(23)

Writing V(r) in terms of cylindrical coordinates we ob-
tain, through order a,
X(r) —X(r') = —a(So+I&&i+X2&2+X3A3) I:-==: (24)

The quantity u, as defined by Eq. (22), is essentially the
screened binding energy (with the "outer screening" term
A ~a subtracted). An additive constant term in the poten-
tial, as outer screening, does not affect the wave functions,
and thereby the resulting cross sections, although it does
change the eigenvalues. The quantity u is of the order of
unity.

3. Small dista-nce behavior of high ene-rgy

continuum wave functions

where y =(tt —a )'~ . The nth term of these expansions
first contributes to the cross section in order a" or
higher, and hence to any desired order in a, it is
sufficient to replace the infinite sums in Eq. (19) by finite
polynomials in ar.

To determine the A, B coefficients, we may start from
the wave equation

df f a+~—— s, +1+—g =[(s—c, ) —(V —V, )]g,dr r r

where

Xo ——ln[(z" + r) Ip],
g) =az

73=a [z"r+p ln[(z" +r)/p]] /2,
X,=a z "(p +z" /3) .

Inserting (24) and (25) in Eq. (12), we obtain

g (r, r )=go+g2A2+g3A3

(25)

(26)

—t~ —+ e, —1+—f = —[(E—c, ) —(V —V, )]f,dr r ' r
where

where V, = —a/r is the point Coulomb potential and

8 =[ +a /(n
I

tt
I
+y) ]

(20)

(21)

go ——r. '(z —z')+a ln[(z +r) l(z'+r')],
g2

—a [zr z'r'+p ln[(z +r—)/(z'+r')] I /2,

g3 =a [p (z —z')+(z' —z' )/3],
(27)

is the point Coulomb eigenvalue. Note that ( E, E, )

represents the eigenvalue (including rest mass energy)
and (E,E, ) will be used to denote the binding energy, all
in the unit of m, c . The subscript c stands for a
Coulombic quantity. Define

u —=2(E —A~a )/a

and substitute (20) into (21), obtaining recurrence rela-
tions. Specifying the value of one coefficient, say let
Ao = 1 or Bo ——1, we can get all of the coefficients A;, B;
rather easily from these recurrence relations. These
coefficients are presented in Table I, with the choice
A o = 1 for ns»2, np 3/2 states and Bo = 1 for the np»2
state. [According to the criterion of our expansion, in
the j =l ——,

' cases we do not keep the pairs associated
with a (or higher power terms in a) for these
coefficients. ] The diff'erent choice for the np, &2 case is
made because, for the j =1 —

—,
' cases, g (r) is bigger than

f (r) at small distances. In this case we will also need
more terms in the polynomial expansion to obtain the
same relative accuracy in the cross section, as shown in
Table I.

with shifted screened bound-state energy c'= c+a A&

where a A~ comes from the second term of Eq. (24), and
the screened bound-state energy c comes from the first
term of Eq. (12). It is worth mentioning that the results
(26) and (27) can be obtained directly from Eq. (7).

4. Formalism of the calculation

Using Eq. (26), we can rewrite Eq. (10) as

I =Io +I2 A2 +I3A3 (28)

where

Io —— dz dz'pdpF r, r' e

I„=f dz dz'pdpF(r, r')e 'ig„, n =2, 3 .

(29)

(30)

It is found that I3 contributes only in relative order a or
higher to the cross section, so it will not be needed. The
calculations of Io and I2 can be carried out analytically
using the technique discussed in Refs. 4 and 11. For the
ns~q2, np~q2, and np3/2 bound states the function F(r, r')
defined by Eq. (11) can be written in the form''
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r

ff*+gg'cos(8 8—')+ifg'cos8' i—f'g cos8 for ns»2

ff 'cos(8 8'—)+gg'+ifg'cos8 if—'g cos8' for np 1/ 2
42rrr'F(r, r') = '

22ff 'cos(8 —8')+gg'[3 cos (8—8') —1]+ifg'[3 cos(8 —8')cos8' —cos8]
if—'g [3 cos(8 —8')cos8 —cos8'] for np3/2

(31)

where

cosO=z/r,

cosO'=z'/r', with p'=p

f'=f(r'),
g'=g (r') .

(32)
exp( 2ra )—

0' gns]/p =o p N PnsP 4 3 1/2
(37)

sections, keeping all terms of an expansion in a through
a, assuming the potential at small distances can be
characterized by a polynomial expansion in (ar). For the
ns~/q case, we have

Substituting Eq. (31) into Eqs. (29) and (30), making the
transformations

where

z =p sinh(x +i2r/2),
z' =p sinh(y —i 2r/2),

performing the integration over p, and returning the con-
tours to the real axis, we get

2 exp( —2ra)l (2y+2) '
1 I (2y+2+ )nJ

4~(e )"+' (~ )" 1(2y+ 2)

(34a)

~2 exp( —2ra)l (2y+2) '
1 I (2y+2+n)—

4~(')"+' (e )" 1(2y+2)

(34b)

+2ra ( —m. ——u ——A2—77 ~ 148 46 310769
720 315 105 328 125 ).

Here harp
——4m. a a/k is the high-energy limit of Sauter's

formula and the normalization N is best obtained
through numerical calculation.

For the npi/2 case, the "small" component g(r) of the
bound-state wave function is bigger than the "large" com-
ponent f(r) at small distances. The smallness of A0
( 0ca ) results in the involvement of more coefficients,
since we want to keep the expansion to the same relative
order (a ). This means also that more integrals need to
be performed to get the cross section. The final result for
this case is

where i=4 for ns$/p np3/p and i=6 for np~/~, since the
leading term in Ip is of order a higher in the np~/q case.
In Eq. (34), J„and J„are integrals, generally of the form

f" dx f" dy ', k=4. 5, . . . , 10
—co (coshx +coshy)p

'

exp( —5ra) 2a h(np i/2) =a 0P 4a
N P„p 1/2

where

Pl /2 + 432 + 135 27 2+ 450000

(39)

e(x;)= ' —1, when x; &0, (36)

where G (x,y) is some even function of x and y involving
various combinations of terms such as (sinhx; )

(coshx;), x;, (ln sinhx;), ln(coshxi+coshxz), and the
step function

1, when x; ~0

5 2 172 3854 288 557+~a ( 432~ + 315 a + 945 +&+ 590625 ) ' (40)

exp( na)—.
1Tph(np3/2 ) =20'p

3
N P

&a "i'3/2 ' (41)

Finally, the photoionization cross section from the
np3/q subshell is

etc., where m=0, 1,2 and x& ——x, x~ ——y. The integrals can
be performed with routine methods, and one then has an-
alytic expressions for the cross sections.

III. RESULTS AND DISCUSSION

140

281 ~ 233 67 135 836 399+ 4480 420 140 2 294 000 000 (42)

A. Results

The major effort in calculation is to perform the in-
tegrals contained in Eq. (34). The expressions for the in-
tegrands are too lengthy to present. Here we give our
final analytic expressions for the photoionization cross

In addition to these analytic formulas for high-energy-
limit photoionization cross sections, here we also present
analytic formulas for the ratios of subshell cross sections,
for fixed 1 and j, varying the principal quantum numbers.
Defining R„i/(n', n)=P„i&/P„i~', we have, from Eqs. (38),
(40), and (42),
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TABLE II. Comparison between numerically calculated Io/G, obtained from Eq. (33), and the
same quantity given by the analytic result, Eq. (40), for the 2@1/2 case. Here G =a N'exp( —~a)/4n
and the coefficients C1,C2, C3 are defined by Eq. (40).

1+Cl a
Analytic result

1+C 1 a + C2a 1+C1a +C2a + C3a ' Numerical result

0.01
0.05
0.10
0.20
0.30
0.40

1.014
1.070
1.140
1.279
1.419
1.559

1.014
1.074
1.157
1.350
1.579
1.843

1.014
1.074
1.159
1.363
1.622
1.946

1.014
1.074
1.160
1.371
1.662
1.991

R.. .(n', n) = 1+a 4(u —u)/3 —hara 4(u' —u)/35,

Rz, ,(n', n)=1+a 148(u' —u)/135

+era 100(u' —u)/1701,

R~, ,(n', n) = 1+a 13(u' —u)/6 —wa 337(u ' —u)/840 .

(43)

(44)

(45)

Compared to the existing results. ' ' "' the cross sec-
tions given in this work include higher-order expansion
terms in a, general n dependence and screening-dependent
terms. All the calculations which lead to these new
features have been independently checked. As an exam-
ple, we show in Table II for the 2P~/q case the numerical-
ly calculated Io/G and the same quantity given by the an-
alytic formula Eq. (40), with the expansion through in-
creasing orders of a. Here G =a N exp( —hara)/4'.

As a further check of our analytic cross-section formu-
las, we have compared these predictions for the subshell
ratios with the existing finite-energy numerical data. ' It
is of course not reasonable to expect the high-energy-limit
predictions to give the right energy dependence for cross
sections in the relatively low-energy region, where in fact
numerical data exist (the MeV region). However, in ex-
amining the existing numerical data we have noticed that
the subshell ratios of the photoionization cross sections
reach high-energy-limit behavior at much lower energy
than the cross sections themselves, a phenomenon ob-

Here u (and u') depend on the quantum number n (and
n') [see Eq. (22)]. It is interesting to see that the extra
screening enters the ratios of subshell cross sections only
through the energy difference u' —u =2(E' E)/a, at-
the level of our expansion.

B. Checks and tests

served before in other situations. ' ' The leading term of
the photoionization cross section in a 1/k expansion is the
same for the transitions from all subshells: 1/k, where k
is the photon energy. This energy dependence is canceled
in a subshell ratio, so that all such ratios become constant
at high energy. However, it appears that the next term(s),
whose coefficient(s) is (are) presently unknown, probably
cancel(s) as well. Using Scofield's table. ' we see this
phenomenon for many outer subshells. As an example,
we show a few subshell ratios for finite-energy photoion-
ization cross sections (Sn, Z=50) in Table III. We see
that the o.4, /o. 3, ratio is quite constant when the photon
energy varies from 200 to 1500 keV (relative error less
than 0.1%). The ratios cr4p, y

/c3rp and o4&, , /o3p„,
are also almost constant. However, when different j are
involved, the subshell ratios do not show high-energy-
limit behavior in this energy range. Using Scofield's data
as an example again, we also show the 04p1/2/04p3/2 ratios
for Sn in Table III. Apparently, this ratio has not yet sta-
bilized. This comparison suggests that the coefficient(s) of
the next term(s) in the expansion in I/Ic depends on j con-
siderably.

If we assume these stabilized subshell ratios are the
high-energy-limit values, we can compare them with our
predictions. The agreement is excellent (see Sec. IV), and
this suggests the accuracy of our calculations.

C. Discussion of the results

l. Extra screening sects and their n dependence

Here we discuss extra screening effects and their n

dependence. By extra screening we mean the ratio be-
tween a screened and a Coulomb cross section, after nor-
malizations are removed. First, we present the analytic
expressions for extra screening, followed by some numeri-

TABLE III. Photoionization subshell ratios for tin (Z=50) (Ref. 14).

Eph (keV)

200
500

1000
1500

0.2035
0.2037
0.2037
0.2037

t 1/2 j 1/2

0.1877
0.1879
0.1878
0.1880

4~3/2 / 3~3/2

0.1858
0.1865
0.1868
0.1865

0.8389
0.9108
0.8850
0.8549
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TABLE IV. Extra screening: n$1/2, npl/2, np3/2 cases.

Z

13

50

1,2j

0, 1

1, 1

1,3
0, 1

1,1

1,3
O, l

1,1

1,3

n=1

1.0010

1.0029

1.0001

71=2

1.0027
1.0031
1.0040
1.0099
1.0093
1.0189
1.0072
1.0079
1.0257

ll =3

1.0038
1.0042
1.0062
1.0157
1.0155
1.0328
1.0137
1.0180
1.0518

n=4

1.0197
1.0198
1.0423
1.0186
1.0254
1.0716

n=5

1.0224
1.0225
1.0484
1.0222
1.0308
1.0860

n=6

1.0247

—~a [4(u —u')/35+50Ap/63],

S„~ =1+a [148(u —u')/135 —76A2/27]

(46)

+m a [ 100(u —u ') /1701+ 45 326Az /8 505],

S„z ——1+a [13(u —u ') /6 —17Az/6]

(47)

cal results for a number of elements and a comparison of
extra screening with the normalization screening. After-
wards, we will discuss the n dependence of the extra
screening and the connection with bremsstrahlung.

Defining ~nlrb
——Pnl&~Pnt~'"', where the Pno are given

by (38), (46), (42), and P$,'"" are defined as the
Coulomb P's, we have

5„, =1+a [4(u —u')/3 —4A2/3]

ing" for photoionization cross sections from ns[/2, np]/q,
and np3/2 subshells for various atoms (Table IV).

From Table IV we see the extra screening beyond nor-
malization does exist, usually at, or for low Z less than,
the few percent level. This reflects the fact that even at
Compton wavelength length distances there is still devia-
tion of the potential from the point Coulomb potential.
A comparison between the normalization screening and
extra screening is presented (for low-, medium-, and
high-Z elements) in Table V. In all cases the normaliza-
tion screening is much larger, although the extra screen-
ing is significant in many cases (for large n and for p3/p).

The extra screening shows significant n dependence.
This is of course related to the way it enters the wave
functions and the cross sections. From Table I we see
that only two quantities, i.e., u and Aq, contain screening.
However, u dominates for all cases, as indicated by Table
V, showing the comparison between

—~a [37(u —u ')/840+321A2/280], (48)
hu = u —u ' = 2(E E' A& a 2

) /—a 2— (49)

where u' is the Coulomb u. It is clear that the extra
screening effects start to appear with the a term in all
three cases; only two quantities, namely, Au:—u —u '
and A2, characterize the screening dependence for all
cases. Before we discuss the characteristic importance
of these two quantities, we give a few numerical exam-
ples of extra screening and its comparison with the nor-
malization screening.

Using the analytic formula (46), (47), and (48), together
with numerical binding energies (obtained from
Liberman's' code with Kohn-Sham exchange) and A~

and A2 coeKcients (obtained by a least-squares fit to the
same Kohn-Sham potential), we obtain the "extra screen-

and

~~2 +2 +2 +2 (50)

for a few atoms (Z= 13, 50, and 82), for ns
~ /2 states

(The numbers inside the parentheses, right-hand column,
show the variation of A2 due to the uncertainty of A2 in
least-squares fits at Compton wavelength distances. ) The
major extra screening is carried by Au, and it is this quan-
tity we should focus on in order to understand the n

dependence of extra screening. Meanwhile we may ignore
the variation of A2 (due to its uncertainty) since this varia-
tion is almost always less important than Au.

TABLE V. Comparison between normalization screening and extra screening for low-, medium, -, and high-Z elements (occupied
states only).

Initial
state

1$1/2

3$1/2

3p1/2
3p3/2
5$1/2

5P 1/2

5P3/2

Nor. Scr.

0.9505
0.1582
0.0580
0.0579

Z=13
Ext. Scr.

1.0010
1.0038
1.0042
1.0062

Nor. Scr.

0.9810
0.5399
0.4436
0.4287
0.0580
0.0248
0.0218

Z= 50
Ext. Scr.

1.0029
1.0157
1.0155
1.0328
1.0224
1.0225
1.0484

Nor. Scr.

0.9861
0.6799
0.6074
0.5677
0.1826
0.1359
0.1143

Z= 82
Ext. Scr.

1.0001
1.0137
1.0180
1.0518
1.0222
1.0308
1.0860
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Au can be regarded as composed of two parts, the
screening energy shift (n-dependent term) bE =E' E—'
(negative always) and the n-independent term —A&a
(which is positive since A&, representing the outer elec-
tron screening of the nuclear potential, is negative). The
absolute value of AE decreases with the increase of n
and approaches zero, primarily due to the fact that both
screened and Coulomb binding energies approach the
threshold monotonically. Meanwhile, —A&a is always
greater than

~

b,E ~, a result connected with the fact
that A&a is the potential-energy shift seen by a test
charge at Compton wavelength distances and E'—E' is
the level shift due to screening determined, generally
speaking, at much more outer distances (depending on
the quantum number n). Consequently, bu is a positive
quantity and approaches the limit —2A& when n ~ oo as
shown in Table VI. The maximum extra screening car-
ried by b, u occurs in this limit. (Incidentally, this limit
is also the limit for the bremsstrahlung tip; see Sec. IV
for details. ) This agrees with what we see in Table IV:
The extra screening effects increase with n, but within
the few percent range.

2. Comparison toith finite energy nu-merieal results

As we have already mentioned, the finite-energy numer-
ical photoionization cross sections, and particularly their
ratios, begin to show certain high-energy-limit behavior in
the MeV region. It is therefore interesting to compare the
predictions from our high-energy-limit formulas with the
existing high- (but finite) energy data. In Table VII we
present ratios obtained (i) from Scofield's numerical data,
(ii) from normalization theory, and (iii) from this work,
for various elements. Normalization theory predicts that
the high-energy limit of such ratios, varying principal
quantum number for fixed (lj), is just the square of the ra-
tio of corresponding normalizations:

so that the knowledge of the screened normalizations im-
mediately provides the ratio. We can see from Table VII
that the normalization theory results agree quite well with
the numerical ones. The difference of this work compared
to normalization theory lies in the inclusion of "extra n
dependence" and "extra screening, " namely,

this work ~nor theo~extra n dependence extra screening

6,„,„,„„,„;„s is given by Eqs. (46), (47), and (48). As a
matter of fact, extra n dependence has been studied in
Refs. 4 and 5 for the ns&&2 case with n=1,2. From
Table VII we can see clearly that, with these two effects
included, the results of this work agree with the numeri-
cal data better than the normalization theory results do,
although normalization theory correctly gives the dom-
inant effects.

Finally, we should mention that a similar comparison
with the finite-energy numerical results, but for the ratio
between the subshells with same n, l but different j, ~ould
be very interesting since the normalization screening of
this ratio is relatively small and the extra screening has a
better chance to be visible. However, this ratio does not
reach its high-energy-limit behavior as early as the others
discussed before (for which 1 and j are kept constant). We
note this suggests that the coeKcient of the next term in
the expansion in terms of 1/k, of order 1/k, depends on
j considerably.

IV. HIGH-FREQUENCY REGION
OF THE SPECTRUM

OF ELECTRON BREMSSTRAHLUNG

A. The analytic continuation between photoeffect
and bremsstrahlung

%72~PllJ /llj

2, .n lJ
(51) The relationship between the high-frequency end-point

region of the bremsstrahlung spectrum (almost all incident

TABLE VI. Decomposition of Au and comparison between Au and A~.

AE„,
Decomposition of Au (keV)

hE„~ —A)a
Comparison between Au and A~

Au„~, A2

13
13
13

—0.7996
—0.2465

0.0000
—0.2514

0.0000

0.9052
0.9052
0.9052

0.0459
0.2865
0.3936

0.2842
0.3936

—0.036(0.022 )
—0.036(0.022 )
—0.036(0.002)

50
50
50
50

—6.2691
—3.0699
—1.3804

0.0000

—3.1863
—1.3874

0.0000

6.8535
6.8535
6.8535
6.8535

0.0172
0.1112
0.1609
0.2014

0.1078
0.1606
0.2014

—0.0032(0.01 )
—0.0032(0.01 )
—0.0032(0.01 )
—0.0032(0.01 )

82
82
82
82

—13.6727
—7.5036
—3.7781

0.0000

—7.7836
—3.8196

0.0000

15.0842
15.0842
15.0842
15.0842

0.0154
0.0829
0.1236
0.1648

0.0798
0.1231
0.1648

0.003 1(0.004)
0.0031(0.004)
0.0031(0.004)
0.0031(0.004)



1216 R. Y. YIN, O. V. GABRIEL, AND R. H. PRATT 36

TABLE VII. Comparison of cross-section ratios obtained by
work.

numerical calculation (Ref. 14), normalization theory, and this

Z

8
20
50
75
92
92
92

o.(n, l, 2j) /o. (n ', l, 2j)

(201)/(101)
(301)/(201)
(401)/(301)
(501)/(401)
(601)/(501)
(501)/(401)
(501)/(301)

Numerical
result (Ref. 14)

0.057 06
0.1323
0.2037
0.1815
0.2064
0.2575
0.069 63

Normalization
theory

0.057 16
0.1325
0.2044
0.1818
0.2064
0.2584
0.070 75

Extra
n dependence

0.9967
0.9963
0.9933
0.9951
0.9974
0.9951
0.9844

Extra
screening

1.0007
1.0019
1.0039
1.0036
1.0023
1.0031
1.0073

This
work

0.057 01
0.1323
0.2038
0.1816
0.2064
0.2579
0.070 16

50
74

50
74

(411)/(311)
(511)/(411)

(413)/(311)
(5 13)/(413)

0.1880
0.1546

0.1864
0.1482

0.1888
0.1551

0.1875
0.1486

0.9935
0.9940

0.9961
0.9858

1.0041
1.0046

1.0090
1.0114

0.1883
0.1549

0.1866
0.1482

kinetic energy radiated) and the atomic photoelectric eff'ect

was discussed some time ago by Fano, Koch, Motz,
McVoy and Fano, ' and Pratt. ' Through detailed bal-
ance, photoeAect, involving emission of an electron from a
(n,j, l, m) state, is related to direct radiative recombination
(DRR), filling a vacancy in a (n, j,l, m) state. The matrix
element for DRR, involving a final negative binding ener-

gy state (E„&l), may be analytically continued to the cor-
responding bremsstrahlung matrix element involving a
positive kinetic energy final state (E & l ). Evidently,
knowledge of the photoionization cross section in the
high-energy limit also provides predictions for the corre-
sponding bremsstrahlung cross sections.

The difT'erential cross section for an incident electron
(with momentum p and total energy E ) to radiate a
photon (with momentum k and energy ficu=fick =k), in
the situation that the final electron is not observed, can
be expressed as a sum of cross sections into final electron
states of definite angular momentum (j, 1, m) as

do brem= g do(rem
j,I, m

where

da('„, =(2ir) ~p 'E H('„d'k $(cp —k —E), (52)

H('„= —e(2'/k)'~ f d r iitr*,„,~(E,j, l, m)a. e*

g eXp( —ik. r)P;„, , (53)

and cz & 1 is the total energy of the outgoing electron.
(Near the hard photon end point of the spectrum, if the
incident electron kinetic energy is not low, the expansion
in j, l, m converges rapidly; for high incident energies it
is dominated by s waves and p waves in the final elec-
tron. ) The diff'erential cross section for an incident pho-
ton (with momentum k and energy k) to eject an elec-
tron (with momentum p and energy c. ) from a bound
state (n,j,l, m) of an atom (or ion) is

H~bi,'i" = —e (2ir/k)' fd r g;*„,(n, j, 1,m)a. e*

Xexp( —ik r)gs„,i, (55)

and c& 1 is the total energy of the bound electron. The
high-energy continuum wave function is normalized to
unit volume (both in bremsstrahlung and in photoioniza-
tion) and to an energy 6 function for the outgoing (low-

energy) electron of the bremsstrahlung. As to the bound
state, it is normalized so that J ~ g d r= l.

The matrix elements H b„and H pQ t are related
through analytic continuation. More precisely, if we
define "reduced" wave functions as normalized simply to
rr ' at the origin (i.e., dividing through by the usual
normalization factors at the origin) and "reduced" ma-
trix elements defined in terms of reduced wave functions,
then Hb„and Hph, '$ represent one analytic function of
the energy c., continued analytically between low contin-
uum energy c& 1 and bound-state energy c. &1. Since
the boundary conditions on reduced wave functions do
not depend on the parameter c, Poincare's theorem'
tells us that they are analytic functions of c.. From this
it also follows, using the methods of Dillon and Inokuti
and Lassettre ' for the bound-bound —bound-free con-
tinuation, that these reduced matrix elements represent
one analytic function of c. (The normalization factors
do not continue analytically, and in our applications we
are calculating them with numerical methods. )

With a second application of Poincare's theorem, we
can obtain results for positron bremsstrahlung from the
corresponding results for electron bremsstrahlung. Now
the analytic parameter is a =—Zo. , and we continue
through zero between positive and negative values to get
the two cases. We will be able to go between electron and
positron results with the substitution a~ —a.

B. General expressions and Coulomb results
for high-frequency region

of the electron bremsstrahlung spectrum

1. General expressions
do~~~b„=(2ir)

~
H~b„d p 5(E~ —k —c),

where

(54)
From our discussion above and the analytic expressions

for the high-energy-limit total photoionization cross sec-
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o b«m(s 1/2) =o 0[exP( —ma)/(4a )]

(~ 1/2 )Pbrem (~ 1/2 )
2

crb„(pi/2) = era[exp( —ma)/(4a)]

XN (P1/2)Pbrem(P1/2) ~

ob (p3/2 ) =o 0[exp( tra )/a—]

(P3/2 ) brem(P3/2 )
2

(57)

(58)

tions, we may readily obtain the high-frequency-region
electron bremsstrahlung partial-wave cross section (we
will discuss the full spectrum, which is the normal experi-
mental observable, later) in the high-energy limit
(E~ eo ):

where Pb«m(si/2), Pb«m(pi/2), and Pb«m(p3/2) are still
given by (38), (40), and (42), except that the binding ener-

gy E—contained in u, Eq. (23), should be replaced by the
electron kinetic energy T. The X's now are the normali-
zation factors for the low-kinetic-energy outgoing elec-
tron. They can be given analytically for the point
Coulomb wave function (see below) and we will calculate
them numerically for the screened cases. Note that,
within Eqs. (56) to (58), only the P's and N's are different
from the corresponding quantities for photoionization.

2. Point Coulomb potential results

Our formulas can be immediately applied to the point
Coulomb case by setting the A& and A2 coe%cients to zero
in our expressions for the P's. We obtain in this way an
extension of the previous Coulomb results. ' "' Explic-
itly,

crbr'e"'(s, /2)=oo[exp( —ma)/(4a )]Nc«1[1—4@a/15+a (8T)/(3a ) —139m /720+", „'~
+ma ( —296T)/(315a )+77m /720 —,",,"„",],

cr ;bern(p 1/)2=o[0ex '(p na) j(4 —)a]N ,c„ (p11/)2[1+4m a/9+ a(296T)/(135a )+19' /432+ 4,"'"
+n.a (344T)/(315a ) —5' /432+ "'"']

crb;em(p3/2)=oo[exp( fata)ja ]2—NC«1[1 —33ma/140+a (13T)/(3a ) —2981m /13440+,'""'
+ma ( —233T/(210a )+281m. /4480 —,',""' '],

where the point Coulomb normalizations for the continuum wave functions are, according to our definitions,

(59)

(60)

(61)

Nc«1(tc) = .
[2(E+ 1)]' Re[(y+iv)( ~+ia—/p)]', for si/2, p3/2 states

I 2y+1

I (2y+1) [2(e—1)]' Im[(y+iv)( tc+iajp—)]', for the pi/2 state
(62)

with

G =e"
~

I (y+iv) ~p~ ' /(2m)' (63)

For the bremsstrahlung tip case (T~O), as noted in Ref.
11,

2r-~22ra
(y —a. )

2

I (2y+1)
lim

~
Nc«1

~

= ~ for si/2 p3/2 states
T~O

a 2r —~22r
for the p~/2 state .

I '(2y+ 1)

(66)

lim 6 =a
T~O

Since

lim Re[(y+iv)( a+ia/p)]—' .=(y —tc)/2,
T~O

lim Im[(y+iv)( ic+ia/p)]' =—a/p,
T~O

we obtain

(64)

(65)

For this point Coulomb case, our s~/2, p&/2, and p3/2
partial cross sections agree with those of Jabbur and
Pratt. "' More precisely, our s&/2 result is identical,
since the expansion (in terms of a) has been performed to
the same order; our p~/2 and p3/2 results are expanded to
two orders higher. This higher-order expansion allows us
to see the energy dependence (linear dependence in T to
this order in a) of the pi/2 and p3/2 partial cross sections,
just as had been found in the s~/2 case. However, in the
usual cross section (summed over the partial-wave states
of the final electron), these high-order terms in pi/2 and

p 3/2 will not be included as we make a consistent expan-
sion through relative order a, as those two partial cross
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sections are of order a smaller than the s~/2 term. Our
point Coulomb result for the bremsstrahlung spectrum,
given as a function of the kinetic energy of the outgoing
electron and as function of nuclear charge Z, hence agrees
exactly with the previous work. "'

All of these results, including the normalization factors,
can be applied to positron bremsstrahlung with the substi-
tution a~ —a. Note in this case the factor G, Eq. (63),
goes to zero as c approaches 1 and so p goes to zero:

lim G ( —a ) =exp( era E—/p )
~

a
~

r
p~0

(67)

corresponding to the fact that the low-energy positron
cannot get near the nucleus.

3. Screening sects

As with photoionization, the effect of screening on the
bremsstrahlung spectrum can be separated into two parts:
normalization screening and extra screening. These are
defined in exactly the same way as for photoionization,
except that the negative binding energy —E should be re-
placed by the kinetic energy T. We will discuss the two
screening effects separately.

a. Normalization screening. A major difference be-
tween screened and point Coulomb cross sections at the
tip of the bremsstrahlung spectrum arises from the
difference between the screened and point Coulomb nor-
malizations for the continuum wave functions. From
Eq. (66), we see that the point Coulomb normalization
remains finite and of order a in the zero kinetic energy
limit; by contrast the screened normalization goes to
zero for small momentum p and faster with increasing l.
These different behaviors, as illustrated in Table VIII,
occur mainly in the threshold region (especially within a
few eV of the threshold). With increase in the kinetic
energy of the outgoing electron, the difference rapidly
disappears. When the kinetic energy exceeds a few keV,
the difference is less than 1 or 2% (see Table VIII). At
such energies, as we will see below, the extra screening
becomes more important ~ For positrons screening will
enhance the normalization in comparison to the
Coulomb result Eq. (67).

b. Extra screening. The extra screening of the partial
cross sections, beyond normalization, can be easily calcu-
lated from Eqs. (46)—(48) and the A coefficients. For a

0 brem &s l/& +~P &/&
+~P3/2 (68)

By using Eqs. (61), (62), (63), (72), and numerically calcu-
lating the needed normalization factors, we can rather
easily obtain the screened bremsstrahlung-tip-region spec-
trum. Screening effects are dominated by the extra
screening except in the very tip region (a few eV above
threshold), where normalization screening is much more
important.

There are few experiments which study the tip region of

TABLE IX. Extra screening contribution to high-frequency
region bremsstrahlung cross sections in the limit of high incident
electron kinetic energies.

few representative elements and final electron kinetic ener-
gies (from 80 keV) to the tip), we tabulate this effect in
Table IX. At the tip (T=O) extra screening is identical
with what we have seen in the high-n limit of the photo-
ionization cross sections (see Table V). Extra screening is
usually a few percent in the j = —,

' channel, larger for j = —',
in very-high-Z elements. Further back from the tip, the
extra screening increases somewhat while the normaliza-
tion screening is greatly reduced. Except in light ele-
ments, the extra screening is larger than normalization
screening at keV energies.

Although the partial bremsstrahlung cross sections
which we have been discussing are in principle observable,
the observed bremsstrahlung spectrum corresponds to a
summation over all these partial cross sections. As noted
by Pratt and Tseng, the relative contributions of the par-
tial cross sections to the sum decrease with increasing of
the angular momentum l, particularly for increasing in-
cident electron kinetic energies, for which the relative con-
tributions are fixed and rapidly decreasing with I as the
energy goes to the high-energy limit. For example, when
the incident electron kinetic energy is 1.84 MeV, the s&/z
partial cross section contributes 65% to the total cross
section, the p~/.. and p3/2 partial cross sections are about
16% each, while the d-wave partial cross sections are less
than 1% each. (In light-Z elements the p-wave contribu-
tion is also small. ) Therefore, in the high-energy limit, we
may fairly well represent the total bremsstrahlung cross
section by the summation over our three partial cross sec-
tions:

TABLE VIII. Ratio of screened to Coulomb normalization as
function of outgoing electron kinetic energy T, for Sn (Z=50).

Z T (keV) S1/2

Extra screening

p 1/2 p3/2

T (eV}

0.1

1.0
5.0

10.0
20.0

100.0
1000.0
3000.0

10000.0

S/p

0.3955
0.5327
0.6592
0.7115
0.7661
0.8842
0.9766
0.9907
0.9968

N(screened)/N(Coulomb)

p 1/2

0.0182
0.0786
0.2206
0.3246
0.4479
0.7313
0.9422
0.9762
0.9916

p3/z

0.0182
0.0787
0.2209
0.3250
0.4484
0.7320
0.9431
0.9771
0.9926

13

50

79

0
40
80

0
40
80

0
40
80

1.005
1.006
1.008

1.028
1.033
1.041

1.032
1.036
1.040

1.005
1.006
1.008

1.028
1.033
1.040

1.042
1.049
1.057

1.009
1.013
1.027

1.061
1.092
1.192

1.115
1.174
1.360
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the spectrum produced from high-energy incident elec-
trons. For W (Z=74) and Th (Z=90), with 15.1-MeV
incident electrons, the measured values of k (do. /dk)/Z
at the tip are 1.38+0.41 and 1.6+0.16 mb while the

Jabbur-Pratt point Coulomb results are 1.41 and 1.66 mb;
our results, including screening, are 1.46 and 1.71 mb.
(The kinetic energy of final state electrons is assumed not
to be within a few eV of the tip. )
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