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Electron-spin polarization in high-energy storage rings. II.
Evaluation of the equilibrium polarization
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A new algorithm is presented to evaluate the equilibrium degree of polarization in a high-energy
electron storage ring (the Derbenev-Kondratenko formula). The algorithm includes all modes of or-
bital motion, to arbitrary orders in principle, thus facilitating the calculation of so-called "spin reso-

nances, " especially higher-order resonances. The algorithm is applicable to storage rings of arbitrary
geometry and energy, and, in particular, is able to deal with overlapping resonances. Precautions are
described to ensure stability of the algorithm. In the approximation of linear orbital dynamics, a
computer program has been written to implement this algorithm, and sample results are presented.

I. INTRODUCTION

It has been realized for many years that electrons and
positrons in high-energy storage rings become polarized
by the emission of synchrotron radiation. ' This
phenomenon can be useful to high-energy physicists. As
well as permitting the study of polarization dependencies
of basic reactions, measurement of the polarization in the
vicinity of so-called spin resonances is currently the most
accurate method of calibrating the energy of an electron
beam in a storage ring. This technique has been used to
determine the masses of a number of hadrons produced as
resonances in e+e collisions. Furthermore, a storage
ring called HERA, a 30-GeV electron —820-GeV proton
collider is presently under construction at DESY
(Deutsches Elektronen Synchrotron), where it is planned
to control the polarization of the electron beam so as to be
longitudinal at the interaction point: this would provide
valuable new tests of the electroweak interactions. It is
therefore desirable to be able to calculate the polarization.
The companion paper to this work presented a detailed
exposition on the origin and buildup of the polarization,
in particular rederiving the so-called Derbenev-
Kondratenko formula for the equilibrium degree of po-
larization. Many efforts have been made to evaluate this
formula, which suffer from various limitations. This pa-
per presents a new algorithm, which does not suffer from
these restrictions, to evaluate the above formula for a
given accelerator.

To calculate the polarization of a high-energy storage
ring one must calculate not only the spin motion but also
the orbital motion of the electrons, because there is spin-
orbit coupling. The orbital trajectories consist of oscilla-
tions around a central trajectory, and calculations of the
polarization have so far been restricted to first order in the
orbital oscillations, or else have required restrictive ap-
proximations, e.g. , only longitudinal, but not transverse,
oscillations are treated, and some terms in the spin equa-
tion of motion are neglected. The algorithm below in-
cludes all modes of orbital motion to, in principle, arbi-
trary orders, and also retains all terms in the spin equa-
tion of motion. This facilitates the calculation of so-called

II. GENERAL REMARKS

In a high-energy storage ring, the orbital particle trajec-
tories consist of oscillations around a central trajectory
called the equilibrium closed orbit. The equilibrium
closed orbit is periodic around the ring, but, in general,
the oscillations are not. The unperturbed spin motion
consists of classical precessions described by the Thomas-
Bargmann-Michel- Telegdi (Thomas-BMT) equation
ds/dt =Q&s, where
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is the spin precession vector. Here a =(g —2)/2, P is the
particle velocity in units of c, y=(1 —iP ) ', and E
and B are the accelerator electromagnetic fields. Since 0
depends on the orbital trajectory, so does the spin motion,
hence a fixed spin quantization axis is inadequate to diag-
onalize the unperturbed Hamiltonian. The axis I use,

"spin resonances, " in particular the higher-order reso-
nances. Higher-order resonances have been observed ex-
perimentally, but have been hard to calculate theoretical-
ly. A computer program has been written to implement
this algorithm, based on the program described in Ref. 5.
For numerical work, I consider only linear orbital dynam-
ics, although the formal theory can accommodate non-
linear, but integrable, orbital dynamics as well. Prelimi-
nary results are displayed, of the polarization as a func-
tion of accelerator energy, showing spin resonances of
various orders, including also some overlapping reso-
nances, to illustrate the type of effects that can be calcu-
lated.

I begin with some general remarks in Sec. II. The algo-
rithm proper is given in Sec. III. A description of the
computer program, and numerical results, are presented
in Sec. IV, and Sec. V contains my conclusions. Some
subsidiary calculations are presented in two Appendixes.
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called n, depends on the orbital trajectory, and by
definition satisfies the Thomas-BMT equation on the tra-
jectory ' ' It is chosen so as to diagonalize the unper-
turbed Hamiltonian. I also need the quantity y(Bn/By),
which is the derivative of n between two trajectories
which differ only by energy at a given point in the ac-
celerator. In Sec. III, I shall solve for n and y(Bn/By)
in terms of the accelerator fields and other parameters,
e.g., the accelerator energy.

The equilibrium degree of polarization P,q in a high-
energy electron storage ring is given by the Derbenev-
Kondratenko formula

programs are available to calculate Ilp, mp, npj, e.g. , see
Ref. 5, and I shall take such information as given. In this
chapter I describe an algorithm to express n and
y(Bn/By) in terms of Itp, mp, npj. To do so, I write
n =n

& lp+ n 2mp+ n 3np. Then
r

n&
—np co mp co0 n&

d
d6j

np co

—mp. Cu lp 'co

—Ip CO

0

(4)

It is useful to introduce spherical components
( Vi Vp V i ) defined by

P,q
———

Bn
[ir[ b. n —y )8

~v~ 1 —-', (n v) + y18 By

1
V+, ——+ —(n, +in2), Vp =n3v'2

and to write

td+ = (Ip+i mp) rd, cd3 —np'rd

Here v is the particle velocity, b= v X v/
~

v X v ~, and the
large angular brackets denote an average around the ring
and over the distribution of particle orbits. This formula
was rederived and extended to first order in a =(g —2)/2
in Ref. 3, and the coefficients in Eq. (2) changed slightly
as a result. It was shown that the fact that a =10 made
little difference explicitly to the coefficients in Eq. (2), but
a significant difference to the behavior of n and y(Bn/By).
Hence I shall use Eq. (2), but with a~o in the calculation
of n and y(Bn/By).

III. ALGORITHM

and to introduce spin-1 angular momentum matrices
I Ji J2 J3 j, and J+ ——Ji +iJ2, where

1 o &z
0 o &z

0

a).J=rdiJ3+ —,'(cd+J +cd J+ ) .

Then

and J =J+. Blank spaces indicate zeros in the above
matrices. I also write

In Refs. 3 and 4 no explicit expression was provided for
either n or y(Bn/By). Only their formal properties were
needed. In this section I describe an algorithm to calcu-
late n, and then y(Bn/By). I begin by introducing some
notation. The azimuth 0 is used as the independent vari-
able (0=2mx/C, where x is the arc length and C is the
circumference of the accelerator), hence the Thomas-BMT
equation reads ds/dO=Q&s. " I shall write Q=Qp+co,
where Qp is the value of Q on the equilibrium closed or-
bit, and denote by np the value of n on that trajectory. I
shaH also need two other unit vectors lp and mp, defined
to be solutions of the Thomas-BMT equation on the equi-
librium closed orbit, such that I lp, mp, np j is a right-
handed orthonormal triad, hence dip/d0=QpXIp, «c.
Since the Thomas-BMT equation describes a precession,
the transformation of Ilp, mp, npj from 0 to 0+27r is a ro-
tation which can be calculated from a knowledge of Qp.
The vector np is obtained by finding the axis of this rota-
tion, i.e., np(0+2~)=np(0). ' The vectors lp and mp
suffer a rotation, viz. ,

V) V)
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and the solution for n is

I

Vp = T exp i I (rd J) d0'.
V

0
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lim T exp i J (rd J) e'Pd0'
e~p+ 00

Vp

0

lp
A

cos( 2rrv ) —sin( 2~v ) Ip

z sin(2nv) cos(2vrv) (3a)

or

(lp+imp)g+2 e —' (Ip+——imp)e . (3b)

The quantity v is a constant, called the "spin tune. "' We
see that np is ambiguous if v is an integer. Numerical

Here T( ) denotes a 0-ordered product, and a conver-
gence factor is used to render the integrals well defined as
0 ~—oo. 14, 15

To proceed further, I expand the exponential in a
power series, and evaluate the resulting integrals term by
term, i.e., a perturbative expansion in powers of co. For-
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mally, there is no constraint on the orbital dynamics, oth-
er than it be stable. For practical purposes„however, I as-
sume from now on that the orbital dynamics is linear. In
that case, an orbital oscillation can be decomposed into a
sum of six normal modes E&,A, =+1,+2, +3, viz. ,

y(0)= yah. EX(0) . (1 1)

Here y(0)=(ri pi r2 p2 r3 p3)," where Iri(0) r2(0)
r 3 (0) I are the longitudinal and transverse coordinate
offsets from the equilibrium closed orbit and
Ipi(0),p2(0),p3(0)I are their conjugate momenta, hence

y =0 corresponds to the equilibrium closed orbit. The a~
are constants. The Eg are six-component column vectors.
They have the property

Ez(0+2m ) =e Eq(0), E 3 Ei—— (12)

where the Qi are real constants, whence Q q= —Q3. '

Since y(0) is real, it follows that a q=ai. In terms of
action-angle variables, I3 =

~
ai

~

and dpi/dO=Qi
(A. &0), and

v,

Vo

0
J'

E

CO+

0 dO', (15a)

whence Vo-1 and

a

V, = —f co+(0')dO'= —g ai f coi+(0')dO',
2 co QO

(1sb)

V, = — J co (0')dO'= g ai f coi (0')d0',

Blank spaces denotes zeros in the above matrix. For
sufficiently small

~
ai. ~, one can write co = gi ai coi,

where cu~ is the value of co on the trajectory E~. Then,
expanding Eq. (10) to first order in co, and neglecting ex-
plicit mention of the convergence factor, one has

y(0)=Re g QIie E3(0)e
A, &0

(13)
where coiy=(lp+imp) coi I'sh.all also need coi3 np co3-— .
Then the solution, to first order, for n i and n2 is

The E~ are normalized so that EzSEz ——i for A, ~O and
E~SE&———i for A, &0, where

0 1

9
mo cod 0', n2 —— Io.cod 0' .

Also coi (0+ 2m ) =exp(i2n Qi )coi(0), whence

—1 0
0 1

—1 0
0 1

—1 0

(14)

i 277.(, Q~+ V)
co3+(0+2vr) =e coi+(0),

i 2nQ&co/3(0+2vr)=e co33(0)

and so, using Eqs. (3b) and (17),

(17)

V~i = '—g ai f coi~(0')d0'= '—g ai J coi~d0'+ f coq~d0'+ J coi~d0'+
9—4n. 8—6n

— ga3 f coigd0'(1+e ' +e + . )v'2 „e—z

1 1 8+2m

where I have used the convergence factor to justify the
summation of the phase factors. The integrals

J pe+2 lp coid0' and Je+2 mp coid0 are known as the
Chao integrals; the above derivation places them in a new
light and offers new insights into their properties. ' For
example, let us calculate y(Bn/By) to zeroth order. ' To
do so, we And ni, n2, and n3 on two trajectories that
differ only by energy, say mc Ay, at a given azimuth, and
divide the difference by Ay/y. Let the trajectories be
g&aqE3 and g& (ai+5aq)E~, then we have

only the coefficient a&, not the normal modes E&, or co&.

Then

g 6a),E3 ——

~y/yo

(20)

where yomc is the average electron energy. Using the
orthonormality relations for the E~,

Bn
&

Ba~
y = g y mp coqdO'

~y e & ay
(19)

with a similar expression for y(Bn&/By ), while y(Bn, /By)
vanishes, to this order. Note that the derivative affects

—iE5i(0), k&0by
yo

6ag= '

iEfg(0), A, (0
yo

(21a)
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or

—iE fg(8), A) 0

By , By
(21b)
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0

cog /+2
cpa+ /+2

where E5& is the fifth component of E~. Then
VA'

Bn&

{9

=2 Im
' g E~q(8) f mp ceqd8', (22)

A() 0)
X VOA de

VA'

(24)

and similarly for y(Bnq/By), which is Chao s expression
for y(Bn/By), and we see now that it is a derivative after
all. ' As in Eq. (18), the range of integration in Eq. (22)
can be reduced to (8,8+2~), and the above expressions
also diverge when either Q~+v or Q~ —v equals an in-
teger: a "first-order spin resonance" occurs and.:a and
y(Bn/By) are ill defined. Expansion of the 8-ordered
product to various powers in u yields successively
higher-order contributions to the expression for n, thence
y(Bn/By ).

The foregoing elucidates a property of spin resonances
which does not seem to have been generally appreciated:
it is generally felt that zeroth-order resonances are caused
by the behavior of no, while first-order resonances are
caused by the behavior of y(Bn/By). From above, it is
clear that the resonances, at all orders, are caused by the
behavior of n.

Let us now consider the calculation of the higher-order
terms. To do so, I write

VA

r

V, (8+2m)=exp 2m. Ne+i v+ g m~gq V) (8),

Vp (8+2vr) =exp 2m. Ne+i g mggg Vp (8), (25)

V i (8+2~)

=exp 2n. Ne+i —v+ g m~g~

where A' equals A when incremented by unity in the A,th
slot. Equation (24) is now applied recursively: given V;,
i =1,0, —1, as a function of |9, at some order, multiply by
e' (c0q J) and integrate over 8 to get V, at the next or-
der. We have already seen the zeroth- and first-order
solutions. As with the first-order integrals, I exploit the
periodicities of co~ and V; to reduce the range of integra-
tion to one circumference, i.e., (8,8+2m. ), and obtain so-
called "resonance denominators" exp[i2m(v+gz mqgq)]—1. Then, at Nth order,

Vo — lim
@~0+ N =0 distinct

combinations
k]p ~ y Ag

Vo
A

VA

(23)

where A=(m&, m ~, m2, m q, m3, m 3), whence

VA(8)
exp 2m. Ne+i v+ g mqgq

where A—:(A~, A ~, Aq, A 2, A3, A 3) is a six-component
index and Aq is the number of indexes A, ~, . . . , A,~ which
take the value k( =+1,+2, +3). Thus the permutations
A, )

——1,A.2
——3,X3———1, and A, ) ———1,X2 ——1,A.3 ——3 both

contribute to A=(1,1,0,0, 1,0). Then, using Eqs. (9) or
(10),

I

lim [ V~ (8)]=— 1 1

e~o+ v'2 exp [i2m (v+ Q, +Q2 )]—1

)& g f e' cvg3V) + — Vp d8', (26)

with similar relations for Vo and V &,
' For example,

for A =(1,0, 1,0,0,0),

f d8' coi3(8') f d8"co2+(8")
exp i2m. v+ 2

—I e {9'

d8' A@23(8') f d8"co, +(8")
exp i2m' v+ ~

—1 e 0'
(27)

To use Eq. (26) in a numerical program, however, still involves a lot of work, viz. , an integral for each value of 8. How-
ever,

V) (8+68)=V( (8)+68, = V) (8)+68+ e' cpg3V) + — Vp
8 2

(28)

similarly for Vp (8+68) and V
&
(8+58). Hence separate integrals for each value of 8 are unnecessary: one calculates

only V; (0) by integration; other values of V; (8) are found by proceeding in small steps 68 around the ring.
There is one further problem with the evaluation of the above integrals, associated with the limit a~0+. In most

cases one can safely set a=0 in the above expressions, but problems arise with Vo whenever m& ——m &, mz ——m 2, and
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m3 ——m 3, in which case g~ m~Q~ ——0. Such terms are always present in the perturbation series, even when the motion
is nonresonant. In these cases the denominator is

exp 2~ Ne+i g mqQ~ —1 =exp(2vrNe) —I ~0 as e~O+ .

These terms are called "periodic terms" because their integrands are periodic (neglecting the e ' factor). It is shown
in Appendix A that they are finite. However, for any given periodic term, V0 is a sum of several integrals, and they are
individually divergent. At second order, for A = (1,1,0,0,0,0),

VD ———— f dg' e' 'cot (0') f dg"e' "co t+(0")
I

gg' e'~'~
&

t9' gg"e' co] 0" ~ dO' e' co&+ 9' dO"e' co
oo oo QO

~ f dg' e'e'~, (g') f dg"e' co) (0")

1

2 J
'

e "cui (0')dg' J e'e cu t~(0")dg"

+ f' e' co, ~(0')dg' J e' co i (0")dg"

f + eE co (0')dg'
2 exp{2vr[e i(v —Q)—)]I —I

X e' co )~(0")dg"
exp{2~[e~i (v —Q, )]]—1 e

+ Eg
(

g&stt)d Ols
exp{2n[e~i (v~Q&)]I —1 e exp{2vr[e i (v+Q—~)]I —I e

which is clearly finite as a~0+. However, application of the algorithm yields
(29)

yA dg' e' co, (0') dg"e' co, (0")
4~&

$
~~[&+~ [&—gl ]] ge —1

dg' e' co (0') dg"e' co (0")
2vr[e —i (v —Ql )] g

e co &+ gl
e

dgl Ee (0/) dg/I Eg (0/I )

T

(30)

Delicate cancellations therefore occur, and a way must be found to avoid a spurious infinity as @~0+. In general, the
integrand of a contribution to a periodic term is of the form e' (coq V& +co&+ V, ), and is of O(1), for each value of A, ,
but the sum is small, of O(e). Numerically this is a serious problem. I deal with it as follows: I calculate two sets of
functions V;, one with e=O and the other not, say V; (0,0) and V; (g, e). Here e is set to a constant value; in numerical
work I do not take the limit e~O+. Only the former terms are used to evaluate Eq. (2). At a periodic term, I use not
Eq. (24), but set

VD (00)= V0 (g, e)= g e' '— V, (0', e) ~ — V, (0', e) dg'
2rrNe ~ e v'2 V2

—g f e' [cog V) (0', e)~cog~ V, (g, e)]dg'
2~Re v'2

&
e

0

[cog V, (0',0) ~cog~ V, (0', 0)]d0'
2vrXe v'2

&
e

—g f {coq [e' V, (0', e) —V, (0',0)]~cop~[e' V )(0',e) —V, (0',0)]Idg' .
2~No v'2

&
o

(31)
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Now, by integrating the difference, not the individual in-
tegrands themselves, I obtain O(e) terms throughout, and
the numerical accuracy of the final result is much im-
proved. The introduction of V+i(8', 0) in Eq. (31) is per-
missible because

g J [coi V, (8',0)+cup+ V t(8', 0)]d8'=0, (32)

since it is the @~0+ value of the numerator of a periodic
term, and by definition vanishes. In numerical work e is
set to a fixed user-specified value, typically
e= 10 —10 . This procedure does introduce "contam-
ination" into Vo (8,0) from Vo (8,e), because I do not
take the limit @~0+,but this only happens in the period-
ic terms and is not large. It is shown in Appendix 8
that the final result does not depend strongly on the value
of e.

There are two items left before one can evaluate the
equilibrium degree of polarization, viz. , the calculation of
y(Bn/By ) and the ensemble averages. To obtain
y(Bn/By) to Nth order, I follow the procedure described
above for zeroth order: I calculate n to (%+1)th order
on two orbital trajectories that differ only by energy
mc Ay at a given azimuth, and divide the difference by
Ay /y. At zeroth order, we saw that this amounted sim-
ply to replacing a& in the first-order expression for n by
+iE&q. Similarly, to obtain y(Bn/By) to higher order, I
replace, in each term in the series for n, one of the
coefficients az by iE» (8—) if k&0, or iE5& (8) if A. &0,
doing so for all possible replacements in each term. For
example, the term a~a2V~ (8) in n, i.e., A=(1,0,0,0,0),
yields the terms i [a i E—

&z (8)+a zE q i (8)] V i (8) in
y(Bn/By), and the term a, a i Vo (8), i.e.,
A=(1, 1,0 0 0,0), yields i [a iE5 ) (8)—a )Eg( (8)]Vo (8).
Notice that this is merely the rule for differentiating a
product.

I have not so far specified the numerical values used for
the coefficien a~. In fact, it is not necessary to select a
large sample of values and to average over them explicitly.
Note that one is not really interested in n and y(Bn/By)
on specific orbital trajectories in Eq. (2), one is only in-
terested in ensemble averages of various functions of these
quantities. Let us therefore consider the ensemble average
at this point. It affects only the coefficients a~, not the
functions V; . Since a ~

——a~, only A. &0 is needed. I as-
sume, as is standard, that in equilibrium the phase of a~
is uniformly distributed in the range [0,2~), while the
probability density of finding

l
a i l

in the range
( Aq, Aq+6Aq) is proportional to A&exp( —2 2z/2o i2),

where g~ is one of the beam emittances. This means
that, in the perturbation series for b.n, (n.v), etc. in Eq.
(2), the ensemble averages are taken by replacing the
coefficients a~ . aq by their averages (a~ . ai ).
This means that I do not specify numerical values for the
a~ on individual trajectories at all; I only need the mo-
ments (

l
ai

l
) = ((a&a z) ), N =1,2, . . . , since

etc. Using the
above equilibrium probability density function, it then
suffices to know only o.

&,
o.z, and o.3. Consequently, it is

not necessary to calculate either n or y(Bn/By) per se, or
to select a sample of orbital trajectories; one only needs

IV. RESULTS

Some years ago, Chao wrote a numerical program
called SLIM to calculate the equilibrium degree of polar-
ization in a high-energy electron storage ring. The polar-
ization is evaluated using no and Chao's expression for
y(Bn/By), which, as we saw in Sec. III, are the zeroth-
order terms in the series for n and y(Bn/By), respectively.
This program has been extended to include higher-order
terms in n and y(Bn/By), using the formalism developed
in Sec. III, and the new program is called SMILE. The
calculation of the orbital motion is the same as in SLIM.
The orbital trajectory is stored as a six-component column
vector, say y(8). Since only linear dynamics is treated,
the evolution of this column vector around the ring is de-
scribed by so-called "transfer matrices, " i.e., y {8')
=M(8', 8)y(8), where M is a 6X6 matrix. Arbitrary
linear dynamical effects can be treated: it is not necessary
to assume the equilibrium closed orbit lies in a plane, and
the accelerator does not need to have any particular sym-
metry. Effects of closed orbit distortion due to magnet
misalignments are also included. All of these features are
retained in SMILE. In SLIM, these 6)&6 matrices are ex-
tended in size to 8 g 8 and two extra components are add-
ed to the column vector of the trajectory. They are the
first-order terms in the series for n, i.e., y sLIM ( 8)

T=(r, ,p), r p2r2p3,3,n, pn), where ni and n2 are calcu-
lated only to first order in the orbital motion. These extra
components are used to calculate Chao's expression for
y(Bn/By). In SMILF. I do not use 8X8 matrices; instead
I return, to 6&&6 matrices which afFect only the orbital
motion. I store the spin information in separate arrays. I
use V&, Vo, and V, instead of n&, nz, and n3 and since
V i ———V~, I in fact do not need V ~. It then suffices
to store four quantities for each index A: Re( Vi ),
Im( Vi ), Re( Vo ), and Im( Vo ), hence (S:—spin array)

ri(8)
S=

p3(8)

Re( Vi )

Im(Vi )

Re(VO )

Im(VO )

(33)

the functions V; (8), Esz(8), and the emittances o.i.
The only terms a~, a~„V; in the expression for

(
l
v

l

b n) in the numerator of Eq. (2) which survive the
ensemble average are those for which the coefficients a~
come in complex conjugate pairs: A must be of the form
(Ai Ai A»A2 A3 A3) As for &

I
v

l

'b y.
(2), note that in calculating y(Bn/By), one coefficient a~
is replaced by +-iE», hence A has almost the same form
as above, but with one "unpaired" coefFicient, e.g. ,
A = (1,0,0,0,0,0) or A =(1,1,2,3,0,0), which contribute to
the zeroth an-d sixth-order terms in y(Bn/By), respec-
tively. The evaluation of (

l

v
l

(n.v) ) and
(

l
v

l l
y(Bn/By)

l ), which appear in the denominator
of Eq. (2), is more laborious, but similar. I first multiply
two 0-ordered expansions, then take an ensemble average
over the resulting products of coefficients a&.
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As explained in Sec. III, there are in fact two spin arrays,
one for @=0 and the other for e&0, where e is the con-
vergence factor. Various symmetries of the V; are de-
scribed in Appendix B, which reduce the number of in-
dependent indexes A. The expressions for the spin pre-
cession vectors Qo and co are the same as in sLIM. First-
order spin integrals are obtained by integrating around the
ring, starting from a user-specified origin, using the
zeroth-order expression for n, which is coded explicitly.
Given these integrals, I integrate around the ring again to
get the second-order integrals. Because the algorithm is
recursive, repetition of this procedure yields all the
higher-order spin integrals, up to a user-specified max-
imum order.

Figure 1 displays the result of calculation up to second
order for a simple accelerator model. ' The dashed and
solid curves show the zeroth- and second-order results, re-
spectively. The orbital tunes are Q i ——2. 182,
Q2 ——1.718, and Q3 ——0.046, where the oscillations are
horizontal, vertical, and longitudinal, respectively. We
see one zeroth-order, three first-order, and eight second-
order resonances. They are listed in Table I in order of
increasing energy. It is seen that the resonances
v=2Q3+8 and v=10—

Q&
—Q2, at about 3.565 GeV, are

rather close together, as are the resonances
v Qf +Q3+6 and v= 10—Qz —Q3, near 3.63 GeV.
One of the difficulties in this field has been the calculation
of overlapping higher-order resonances: one usually con-
siders only cases where the resonances are well separated.
To illustrate that the present algorithm does not suffer
from this limitation, Q3 was increased to 0.050 and the
calculation was repeated. The result is displayed in Fig.
2. The resonances v=2Q3+8 and v=10—Q, —Qz over-
lap and only one distinct resonance is seen at 3.57 GeV.
Similarly, at 3.63 GeV, the resonances v=g, +Q3+6
and v=10—Qz —Q3 also merge into one. No change in
the algorithm is required to calculate the polarization in
the vicinity of these overlapping resonances. Figure 3
shows an example of experimental data. The orbital
tunes are labeled v, v~, and v„denoting horizontal, verti-
cal, and longitudinal oscillations with respect to the equi-
librium closed orbit. The polarization is measured in
units of P,„=8/(5&3)=92.4%. [Strictly, the polariza-
tion can exceed this value, but usually P & 8/(5&3).] A
detailed theoretical comparison with this experiment is
not yet available, but it is seen that the graphs in Figs. 1

and 2 are qualitatively similar to the experimental result.

TABLE I. List of spin resonances in Fig. l.

Energy (GeV)

3.525
3.546
3.565
3.570
3.585
3.605
3.625
3.629
3.650
3.670
3.685
3.730

Spin resonance

v=8
v=g3+8
v=2Q, +8
v= 10—Qi —Q2
v=gl —Q3+6
v=gi+6
v=Q, +Q3+6
v= 10—Qz —Q3
v=10 —Q2
v=10—Q2+ Qq
v=2gi+4
v= gl —Qp+ 8

V. CONCLUSIONS

I have developed an algorithm to evaluate the polariza-
tion in a high-energy electron storage ring to a higher de-
gree of approximation than has hitherto been possible.
This algorithm offers a number of attractive features: it is
able to handle all modes of orbital motion simultaneously,
in principle to arbitrary orders, it is not restricted to ac-
celerators of any particular energy range or geometry, and
is able to deal with overlapping resonances without requir-
ing special precautions. Numerically, the algorithm treats
only linear orbital dynamics and preliminary results have
been presented, including a calculation of overlapping res-
onances.

I began by presenting a formal solution for the spin
quantization axis n, using a 0-ordered exponential, and
then showed how to evaluate this solution to various or-
ders. Naively, one might expect that n must be calculated
on a large sample of orbital trajectories to obtain the
derivative y(Bn/By) and the ensemble average, but I for-
mulated the algorithm in such a way that this was un-
necessary. Instead I found a more accurate method by
employing the symmetries of the coefficients a& and the
properties of the ensemble average, and also presented a
simple rule to obtain y(Bn/By) from n without explicit
numerical differentiation. I also used symmetry to classi-
fy the spin integrals V; . There are many such integrals,
at any order, and the combinatorics of classifying them is
in general complicated. In particular, I showed that
different permutations of modes, which yield the same in-
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FIG. 1. Graph of polarization vs energy. See text for details.
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FIG. 3. Graph of experimental data of polarization vs energy (from Ref. 7). P,„=92.4%. The curve through the data is a guide

for the eye, not a theoretical calculation.

dex A, need not be stored separately: only the sum total
of modes is required, not the individual permutations.
This reduces the number of integrals, hence the computer
storage requirements. By using symmetry, I was able to
develop a recursive technique for obtaining the higher-
order integrals. Thus the same numerical code can be
used to all orders: new subroutines do not have to be
written for each new order of calculation. Some subtleties
were encountered concerning the possible existence of sec-
ular terms in the series for a. I proved the absence of
such terms and the finiteness of the periodic terms, to a11

orders. However, naive evaluation of the 0-ordered ex-
ponential then led to numerically unstable calculations,
but I was also able to avoid them.

This algorithm is applicable to all storage rings where
the Derbenev-Kondratenko ' formula is applicable, i.e.,
where synchrotron radiation is the dominant source of
perturbation of the electron motion, in particular of spin
Aip. Numerically, it is applicable to the same systems for
which suM (Ref. 5) can be used: it is not restricted, in
principle, to any particular energy range, or to accelera-
tors of any particular geometry. As in sLIM, symplectic
orbital transfer matrices are used, and so one can deal

I

1 e e(9) 8( @92
Vo = —— d8~ e 'coq (0~) 18qe 'co q+(82)

OO OQ

with arbitrary linear coupling between horizontal, vertical,
and longitudinal displacements from the equilibrium
closed orbit.
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APPENDIX A:
FINITENESS OF THE PERIODIC TERMS

In Sec. III I showed that the periodic terms are finite at
second order. Here I prove that they are finite at all or-
ders. The proof is inductive, hence I assume that finite-
ness has been established up to the (N —2)th order, where
N is even. At second order, a periodic term is of the form

+ f 182 e 'co ~+(82) f d9~e 'cog (8~) (Al)

and we saw in Sec. III that

~e g e(9f 18& e' 'coq (8~) f ' 182e' 'co &+(Oz) + f 102 e' 'cg q+(Oz) f ' 10&e' 'co~ (9&)
OO i

gf d| le ~k —(91) f '
192e ~ —k+(~2)

Qo OO

(A2)

and that, although the left-hand-side terms are individually divergent, the right-hand side is finite as e~O+, which es-
tablished the finiteness of the second-order periodic terms. The above result assumed linear orbital dynamics because I
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decomposed co into a linear combination g&azcoz. It is not necessary to do this, hence I shall not assume linear dynam-
ics in the following proof. I need only to assume that the motion is nonresonant, i.e.,

U~integer, g mzgz&integer, v+ g mz gz ~integer, (Qz =dg—z, /dg) (A3)
X=1,2, 3 A, = 1, 2, 3

~0 0 eO 02
Vo~ f dg& e' 'co (0&) f ' dgze' 'co+(gz) + f dgz e' 'co+(gz) f ' dg&e' 'co (0&)

00

d 0]e 'co 01 f d Oze '~ (0, )

for any nonzero integers mz. Recall, from Sec. III, co+ ——ro (lo+imo) and co3 ——co no. Then, at second order,

(A4)

which is finite, by Eq. (A3). At Nth order, neglecting overall constants,

~0
Vo g f dg~ e 'co+(0&) f '

dgz e' 'co+ 3(gz) f ' dgze' ' ~+(0~)
allowed spin
combinations

(A5)

To avoid cumbersome notation, co+ 3 denotes co+,co, or cg3, I suppress the factors of 3/2 associated with co+/&2 and
/3/2, and indicate a sum over "allowed spin combinations. " Integrating an individual term on the right-hand side of

Eq. (AS) by parts, one finds

0 e01 01 eO,f dg) e '~+(0)) f dgz e 're+ 3(gz)

01f dg'e' co+(0')
01 F02f dgz e 'co+ 3(gz)

d02
02 ~O eO 02 eO ON -1

d01e ~+ 01 ~+,3 02 d03 e &+ 3 03 ' dOX ~+
00

f dge 'co+(0)) d02 e co+ 3 02
00

0 @02 02 e01
d02 e ~+ 3 02 dOle ~+ Ol

eO N —1

d03 e 'co+ 3 03 dO~e ~+ 0~ (A6)

Repeating the integration by parts,

eO N —1

d01 e 'co+ 01 d02 e 'co+ 3 02 . dO~e co+ 0~

f dg, e' 'co+(0)) f dgz[e' '~+- 3(gz) ]—00

02
d 02 e Q)+ 3 02 d Ole 'co+ 01

OO

d03 e 'co+ 3 03

0 «N —1
0N —2 N —2

O2 @01+ + f dg~ ~
e ~+ 3(0+ })f dg~ z ~

—~+ 3(0+ z) f dg~e ~+(0~)

x f dg~e "co~(0~)
OO

0 eON 0N «N —1

02 @01f dg~ ~ ~+(0~) f dg~ i ~
—

~+,3(ON 1) f dgie ~+(Oi)— (A7)

The last term on the rhs differs from the lhs merely by a relabeling of indexes, so, summing over all indexes, with ap-
propriate factors of &2,

01 N —1+ f' dg& e 'co+(0&) f dgz e 'co+3(gz). f dg&e ~+(0~)
allowed spin
combinations

1

2
allowed spin
combtnatlons

[rhs of Eq. (A7) without the last term] . (A8)
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Vo ——

A. ], . . . , A,~ allowed spin
combinations

a~la~2 a~% VoA

and because the coefficients a~ are arbitrary, I have in fact
established the finiteness of each term Vo in the above
sum, including, in particular, the periodic terms.

APPENDIX B:
SYMMETRIES OF THE SPIN INTEGRALS

The rhs of Eq. (A8) is finite as e~O+ because it consists
of a finite sum of terms, each of which consists of prod-
ucts of integrals of lower than Xth order, hence assumed
finite as a~0+. It then follows by induction on X that
Vo is finite to all orders. In particular, if the orbital dy-
namics is linear, all the periodic terms I Vo, Ai =A i, Aq
—A z A3 —A 3 I are finite.

To be more precise, it seems that I have proved only
the finiteness of the sum of all terms which contribute to
Vo at any given order, hence the preceding statement does
not follow, but note that

V i= —Vi = — g ga), , ai~V,
N=0 A

= —g gai*, ai~ (Vi )*
N=0 A

= —g gai, . . . a~~(V) )*,
N=O A

(B2)

where the last step is justified because I sum over all
values of A. Since the coefficients are arbitrary, it follows
that V i = —(V, )*, and by similar manipulations that
Vti =( Vo )*. Let us now consider the periodic terms as a
special case. These are integrals Vo for which A=A.
From above, we immediately see that Vo =( Vo )* for a
periodic term, hence it is real at any order. This is
demonstrated below, where I show the values of the
second-order periodic terms for the model used in Sec.
IV, obtained using the program SMILE described in Sec.
IV, for the data point at 3.6 GeV. The program prints
the values of the V; at 0=0, the user-specified origin of
azimuth around the accelerator. For @=10,the period-
ic terms are

The integrals V; have certain symmetries which 1imit
the number of independent integrals. Here I describe
these symmetries, and show in particular that all the
periodic terms (see Sec. III) are real. Note, from the
definitions given in Sec. III, that V l

———Vl, and that
Vo is real. Also reca11 that

Vo(110 0 00) = —0.067 97+i0.1618X10-16

V' ' "' ' ' = —933.4 —i0. 1811X 100

Vo(0 0 0 011)= —0.2535X10-5—10.5266X 10-20

(B3)

V; = 1im
0+ N =0 distinct

combinations
k ]

a~ a~ V;
A (Bl)

I omit explicit mention of the convergence factor below.
It is useful to introduce some notation: if
A —(Ai A i Ap A p A3 A 3), then define A
—( A i A i A p Ap A 3 A3 ). It then follows that

They are indeed real to high accuracy. Further, setting
@=10,keeping all other parameters fixed, the values
are

Vo" ' ' ' ' ———0.06795 —i0.3775X10
[o,o, l, l, o,o) 932.8 —i0.2435 X 10

Vo ' ' ' ' ' = —0 2534X 10 —l0. 5266X 10

(B4)

The value of e clearly does not significantly affect the
values of the integrals, which shows that this method of
calculating the periodic terms is numerically reliable.
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We shall see below that the behavior of n and y(Bn/By) de-
pends strongly, in general, on the value of v, hence on the
value of a, as stated in Sec. II and Ref. 3. In practice the spin
tune depends on the orbital trajectory, and so v is only the
spin tune on the equilibrium closed orbit.

'4Calculations of n and y(Bn/By) have been made with various
approximations in the orbital and spin motion, e.g. , Ref. 6,
which presents a calculation of some of the higher-order reso-
nances, taking into account only the longitudinal oscillations,
and neglecting certain terms in the Thomas-BMT equation
when solving for n.

'5Using Eqs. (5), (6), and (9), I can now prove that the solution
for n is not affected by a rotation of 10 and mo around no.
Define a new basis [lo,mt, no) such that

la+imp ——e —'~(lp+imo), where P is a constant. Then, using

Eq. (6), co'-+=e —+' ~+, co3 ——co3, where primed quantities refer
to the new basis, and, using Eq. (9), V+~ ——e —'~V+~ and

Vo = Vp. Since

n = Vono —Vi (1o —imo)/&2+ V i (1o+1 Illp)/&2,

it follows that n '=n.
' This is not the standard arrangement of coordinates and mo-

menta in textbooks on Hamiltonian mechanics, but it is the
usual practice in accelerator physics. It is also conventional in

accelerator physics to replace the longitudinal momentum
offset p3 by AE/Eo, the relative energy offset. I otherwise fo1-

low Golstein, Classica/ Mechanics, 2nd ed. (Addison-Wesley,
New York, 1981).

' The transformation of y from azimuth 0 to 0' can be described
by a 6)&6 matrix M(0, 0'). The normal modes Eq(t9) are
defined to be the eigenvectors of the matrix M(0+2m. , O). It
can be shown that when the motion is stable, the eigenvalues
of this matrix have unit magnitude and come in complex
conjugate pairs (see Ref. 16); M (0+ 277., 0)E~(0)
=exp(i2vrQq)Eq(8) and Q q =Qq. The Qq are called the
"tunes" of the normal modes.

The Chao integrals are normally associated only with

y(Bn/By), not with n. It has generally been believed that
y(Bn/By) is not a derivative of n because the properties of n
do not seem to have been clearly understood. The nature of
the derivative is explained later on in this paper, and also in
Ref. 3. We thus see the Chao integrals in a new context, and
also how to obtain the generalizations of these integrals to
higher orders.

' In the series for n, the number of vectors coq in any terms is
the same as the number of coefficients aq, but for y(Bn/By) a
term with N coefficients aq contains N + 1 vectors coq.

Strictly speaking, there are two possibilities here. One is that n
may be well defined but not expressible as a perturbation
series. The other is, of course, that n may be ill defined. It is
shown that in Refs. 4 and 10 that n is ill defined whenever in-

tegers mq exist such that v+g~mqQq is an integer. Since
v+Qq contains only one orbital tune, I call this a first-order
spin resonance. The case v is an integer, where no itself is ill

defined, is called a zeroth-order resonance. We may call

g~ ~
mq

~

the order of a resonance. However, the various
modes Eq have very different effects on n, and so it is possible
for third-order resonances to sometimes be stronger than
second-order resonances, depending on the orbital modes in-

volved, hence such a classification of spin resonances must be
used with care. The zeroth-order resonances (v is an integer)
are often called "integer" resonances, and the first- and
higher-order resonances are often called "linear" and "non-
linear" resonances, respectively. I shall not use these names; I
shall reserve the term "nonlinear spin resonances" for cases
when the orbital dynamics is nonlinear.

'Note that Vo apparently diverges as @~0+ whenever

gz mqQq is an integer, but this is not called a spin resonance
because the spin tune is not involved. If m

~
——m

m& ——m &, and m3 ——m 3, the infinity is spurious and Vp is in
fact finite. I shall deal with this problem below. Otherwise,
this condition implies an orbital resonance and the behavior of
n is academic. In deriving the condition for a spin resonance,
in Refs. 4 and 10, it is implicitly assumed the orbital motion is
stable.

The name periodic term is due to K. Yokoya (private com-
munication), in response to a proof I sent him of the cancella-
tion of the infinities in these terms. He warned that should
the series for n have a so-called "secular term, " in the jargon
of classical perturbation theory, i.e., a term linear, not oscilla-
tory, in (9, the infinities would fail to cancel. Both 1 and m
(the obvious generalizations of 10 and mo) have secular terms,
but he was able to prove that n does not, at second order.
The above name is chosen to emphasize that n has no secular
terms.

~30ne might ask if two sets of V; are really necessary. Initially,
h and y(Bn/By) were calculated using only V; (O, e), by set-
ting e to a fixed nonzero value, relying on the computer to
perform the cancellations, but K. Yokoya (private communica-
tion) showed this to be numerically unstable.
This is equivalent to the statement that, in equilibrium, the
coordinate and momentum offsets I r, pI have Gaussian distri-
bution centered on the equilibrium closed orbit.
The accelerator model consists of a tenfold symmetric lattice of
magnets with a circumference of 200 m and an rms closed or-
bit distortion of 0.67 mm. When changing the accelerator en-

ergy, the magnetic fields are all increased in proportion to the
energy so as to keep the same geometrical shape for all orbits.
The orbital tunes are thereby kept constant.
Results of calculation to higher order will be displayed else-
where. A VAX 750 computer was used, which required ap-
proximately two minutes of cpu time per point. In Fig. 1 the
energy was increased in steps of 1 MeV, hence there are 241
points per curve.
We saw in Sec. III that the zeroth-order expression for
y(Bn/By) contains first-order resonances, hence such reso-
nances appear even in a zeroth-order calculation of the polar-
ization.


