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A quantum-mechanical treatment of the degree of polarization of photofragment fluorescence in
the case where two dissociative electronic states of different symmetry with the same limit are ex-
cited coherently is presented. This results in an interference effect which depends both on the
photoabsorption probability amplitudes in the different excited states as well as on the phase
differences of their vibrational wave functions at large distances. Oscillations of the polarization
ratio as a function of the photon energy are predicted. Applications to some simple cases involv-
ing a diatomic molecule initially in a 'S state are presented. The case of Ca, is discussed. The
role of fine (or hyperfine) structure, and in particular the case of unresolved fluorescence is treated.
The classical model in terms of oscillating electric dipole moments properly averaged over the ini-
tial orientations of the molecule is presented and allows the interpretation of the quantum results.

I. INTRODUCTION

Following the van Brunt and Zare pioneering theoreti-
cal paper! on polarization of the light emitted by pho-
tofragments, a wealth of experimental and theoretical
work in this area has been performed.’~ 2

Consider, for instance, a diatomic molecule 4B in a
ground 'S state excited to a dissociative 'I continuum
leading to A*('P)+B('S) atomic fragments. Since
A==1 for a II state, the excited atomic fragment 4 *( 1p)
can only be populated in the magnetic sublevels m; ==*1,
the internuclear vector being the quantization axis. For
an incident linearly polarized light, photodissociation not
only produces alignment of the fragments but also popu-
lates the atomic m; =*1 magnetic sublevels in a coherent
superposition.®® This results in a degree of polarization
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(where I and I, refer to the incident polarization direc-
tion), which is very different from the value obtained ig-
noring the induced coherence.!

In this paper we shall show that other coherences may
be produced in the populations of the magnetic sublevels
with different |m; | values. Consider, for example, the
case discussed above, namely a 4*('P)+ B('S) dissocia-
tion limit. Two molecular singlet states 'IT and 'S are
correlated to this limit. They can both be reached by op-
tical excitation from a 'S ground state and their excitation
should necessarily be coherent. Since the 'II state pro-
duces only m; ==+1 levels of the 4*(!P) fragments (in a
coherent superposition, of course), and the 'S state pro-
duces A4 *('P) fragments with m; =0, there will be an ad-
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ditional coherence between the m; =0 and the m; =1
magnetic sublevels. We therefore expect a change on the
polarization degree of the fragment fluorescence due to
such coherent excitation. This effect will be particular im-
portant if the photoabsorption cross sections for the II
and X states are of comparable strength. We shall also
show that it depends on the asymptotic relative phases of
the continuum final vibrational wave functions. Since
both the excitation amplitudes and phases depend on the
excess energy, we predict a dependence of the polarization
degree with the photon energy.

There is another issue concerning the degree of polar-
ization of photofragments which is addressed in this pa-
per, namely the effect of unresolved fine (or hyperfine)
structure. In a recent paper,IO Singer, Freed, and Band
have calculated the degree of polarization for fluorescence
from atomic fragments produced in excited fine-structure
states for a variety of systems. In their treatment it is as-
sumed that the fluorescence from individual fine-structure
levels can be detected. We present here the case of un-
resolved fine- or hyperfine-structure emission and we
show that the polarization degree is modified.

This paper will be organized as follows. In Sec. II we
present the general quantum-mechanical formalism in the
axial-recoil approximation together with a classical picture
in terms of oscillating electric dipole moments. We con-
sider the case where the fluorescence lifetime is much
longer than the dissociation lifetime so that effects due to
short times emission following photodissociation are negli-
gible. In Sec. III the results for some simple cases involv-
ing a diatomic molecule initially in a '3 state are given.
In Sec. IV we discuss these results and we provide their
classical interpretation. Finally Sec. V is devoted to the
conclusions.
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II. QUANTUM-MECHANICAL TREATMENT
OF THE POLARIZATION
OF THE FRAGMENT FLUORESCENCE

A. General formulation

Polarization of the light emitted by photodissociation
fragments was first considered by van Brunt and Zare.!
In their treatment the atomic fragment is assumed to be
formed by photodissociation in an incoherent superposi-
tion of the magnetic sublevels. The calculation is then
performed in two steps: (i) evaluating the parallel and
perpendicular polarization intensities for each possible
orientation of the internuclear axis in space and (ii)
averaging the intensities over the angular distribution of
the internuclear axis after photodissociation (the fluores-
cence is assumed to be much slower than dissociation, so
that the photon is emitted well after the dissociation is
completed).

Vigué et al.® have shown that in many cases the atomic
fragments are formed in a coherent superposition of the
magnetic sublevels. The result is a polarization degree
which can be very different from the one obtained with
the assumption of incoherent superposition. For instance,
the latter will give (in the axial-recoil limit, i.e., when dis-
sociation proceeds fast as compared with the rotational
period of the molecule)

P=(3(cos’y) —1)/({cos’y ) +3), )

where y is the angle between the absorbing and emitting
transition dipole moments in the molecular frame and { )
denotes the average over all possible initial orientations of
the molecule. This result is well known in the theory of
luminescence and can be obtained by a simple semiclassi-
cal model in terms of absorbing and emitting linear oscil-
lators.!*  According to (2) the degree of polarization
should be between — 1 and + 1.

On the other hand, when m; = 11 coherence effects are
included, Vigué et al.® have calculated a maximum of
P=0.78 for a 'l state dissociating into a 'P excited atom.
A general quantum-mechanical treatment to deal with
those problems has been presented.” The photon excita-
tion, dissociation, and fluorescence decay were treated to-
gether both for a direct-photodissociation process as well
as for predissociation. We shall follow here the same gen-
eral treatment. We thus describe the molecular system by
three sets of eigenstates: | 4;) for the initial state, | 4;)
for the final state after photon decay, and | Ay) for the
excited dissociative state. The process we are interested in
corresponds to the excitation of the | 44 ) state by photon
absorption (with wave vector k; and polarization e;), from
an initial state | 4;) and then decay by photon emission
(with wave vector k; and polarization ey):

k;,e; kpep
| 4;) — | Ag) — | Af) . (3)

The partial-differential cross section for this process is
given by’ (in esu)
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do
~ kjkf
42~ 3 ik |3

f Af Aq

(A4;|D-e; | A4){Aq | D-ef | 4/) |?
E—E;+ily ’

4)

where E,; is the energy of the dissociative state, while T’y
is the radiative linewidth of the emitting state. In Eq. (4),
E is the total energy E =E; +#k;c. Each one of the wave
functions can be decomposed [in Hund’s case (a)] as

X 4(R)
R

| A)=® 4(r,R) la) , (5)
where ® 4 is the electronic part, X 4 is the vibrational
wavefunction, while |a) is the rotational and spin angu-
lar momentum part. Similarly, the dipole operator D can

be decomposed in radial and angular parts. We shall
write
r
D-e;=er e }:erDi . (6)

We then have for the matrix elements in (2)

(4;|D-e;| A4)= [ dR X;{(R)X4(R)
X [ drr’®;(r,R)®y(r,R)
xf{a; | D;|ag) , (7a)
(44 |D-es| A7) = [ dR X4(RX/(R)
X [ drr*®,(r,R)®s(r,R)

X{aq | D} |ag) . (7b)

B. Direct dissociation

Equation (7b) can be simplified in the case of direct dis-
sociation where fragmentation is fast compared to the ra-
diative lifetime.” This amounts to considering the situa-
tion where emission occurring during dissociation is negli-
gible. This is opposite to the case corresponding to ring-
ing effects.!*~17 In this case, the main contribution to
(7b) comes from the asymptotic region (the emission
occurs at large R) and the electronic integral can be re-
placed by its atomic value /2;. We then have

(Ag |Deef | Ap) =R Xy |Xs)r aq | D} |as) . (8)

The sum over all the intermediate states A4, in Eq. (4)
implies a sum over all electronic states accessible, a sum
over the rotational states as well as the integral over the
kinetic energy €, since the intermediate states are dissoci-
ative. Let us consider the integral over g, first.

Using (8) and the asymptotic form of the continuum vi-
brational wave functions

[ x)

. Qu/m#)*[sin(kR +@)/k '], 9

0

LI

where k =(2uey)!/2/#, one obtains’
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(4, |D-e | A44){ Aq | D-€} | Af)
E—E;+ily

fow dEd

where E{" is the internal energy of the excited atomic
fragments. We have also denoted by 7o the radial part
of the molecular-transition dipole moment

[ dr r?®:(r,R)®4(r,R) .

We now turn to the sum over the final states A, in Eq.
(4), which implies an integral over the relative kinetic en-
ergy €7. Introducing Eq. (10) into Eq. (4), we shall have

.integrals of the form

1
f dey a0y, @ty _ - :
[E—(Ef—l-—Eda )+lrd][E—(8f+Ed? )—iT4]

(11

We need now to specify the electronic states d of the
excited atomic fragments. Except for the very particular
case of electronic and nuclear spin equal to zero, the
atomic states is a multiplet (fine or hyperfine structure).
We then have a sum over d and d’' of Eq. (11) with

J

df =17'k}k,»e4
dQy

F(at)

X aq | D* |a;i)8;,;,e

where j;,j; are the angular momentum quantum num-
bers characterizing the multiplets.
Using the density-matrix formalism?

d

0

g —@gq)
——=47%k; S pagiayDagage ¢ 18, (14)
dQy agay
where
+
pad,,ad:e2<adr, | Di k a; ) (ai | D,' | ay >

XAX g | Romot | Xi XX | Romor | Xa? (15)
is the excitation matrix and
K} R

¥
awa‘j[:ﬁ(d,} |D/* |af)(af ‘ (Df) \ad'> (16)

D,
is the detection matrix. The numerical factor introduced

in Dy,,q, is a normalization factor such that integration
over all possible transitions, directions, and polarizations
of the emitted photon gives 1.
In Eq. (14) the product

_ i(pgr—@g)

pad,,ad :padr,ade ¢ ¢ de'jd 17
can be interpreted as the fragment-excitation matrix ob-
tained by evolution during the dissociation (the phase-shift
term) and the spin coupling (the §;,; term) of the
molecular-excitation matrix p,, Using Eq. (17), Eq.

(14) reduces to the usual form?!

g

27{/((1,‘ JD, !ad><ad |D; |af>

pg—eq)
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<Xi lﬁmol !Xd )ei(‘i’f"Pi)
E—(ef+Ef)+iTy

) (10)

f

squared (d =d’) and cross (ds4d’) terms. For d =d’, the
integral (11) gives the result obtained in Ref. 9, i.e., w/Ty
with I'; being the radiative linewidth of the atomic frag-
ment emitting state T'® which is the same for all the
components of the multiplet.'8

On the other hand, for dd’ and the kinetic energy
larger than the multiplet splitting AE =E; — E4, one ob-
tains:

(T3 4 iAE /2)

. (12)
(AE/2)2+(F(31))2

Now in most cases the splitting AE is much larger than
the radiative linewidth and therefore the cross terms can
be neglected. In other words, the spin recoupling occurs
in a time scale much shorter than photon emission and
much longer than dissociation.'®

Under these conditions, the differential partial cross
section Eq. (4) reduces to

RZ
i 2 2 (a; |D[|ad>(ad lDf Iaf)<)(,- !ﬁmol\Xd>()(dr|7€m01[)(i)(af|Df|a,1v>
f d,d

, (13)

do
— =4 2k,»T(~$). (18)
aa, TP

C. Excitation of the molecule

1. Expressions of the excitation matrix p
for a X initial state

The laboratory Z axis is chosen parallel to the incident
polarization vector e;. For parallel —Z2 and perpendic-
ular £—II transitions, for example, the matrix elements
pa,a can be easily calculated using Wigner-Eckart

theorem with the result:

p1,1=%(5in20)M%1 =p_1,-1, (19a)
Pl,—1=P—-1,1=—P1,1 (19b)
po.o=(cos’0)M% , (19¢)
1 .
pPo,1=— 7—2-(51n0)(c050)M;M[1
=—pPo0,—1=—P-1,0=P1,0 » (19d)

where the M, are the transition dipole-moment matrix
elements

MA=<Xg)|-/’/iA|XA> > (20)

with JM, being the electronic transition dipole moments
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IT levels are degenerate in the dissociation continua. Thus
they can be excited by the same photon.

taking into account both the radial (#2,,) as well as the
angular momentum part.2! Actually the angular depen-
dence of p;,; and pg,o corresponds to the usual anisotropy
for absorption in the case of parallel and perpendicular
transitions.”? The angle 6 is the polar angle specifying the
direction of the internuclear axes with respect to the labo-
ratory Z axis (see Fig. 1).

The matrix elements p;, _; and p_,; are responsible for
the “coherence effect” calculated by Vigué et al.®® The

2. Physical interpretation

The physical interpretation of the excitation process can
be easily provided by a classical transition dipole-moment
vector M defined by

M=(¥, | M|¥,), 21

coherence elements po,1, p1,0, Po,—1, and p_1,0, on the oth-
er hand, are responsible for interference between dissocia-
tions through electronic states with different symmetry (=
and II dissociative states). The study of the effect induced
by such coherence matrix elements on the degree of polar-
ization of photofragment fluorescence constitutes the ma-
jor aim of this paper. It is important to note at this point
that the coherences may exist here only because the = and

1
(cosO)M s | 2)_\/—5.(

where |W;) is the ground-state initial wave function,

|W,) is the wave function of the excited state produced

by the photon absorption, and M is the transition
dipole-operator vector with modulus equal to the transi-
tion amplitude (M% cos’0+M% sin?0)!/? and directed
along the electronic position vector T. In our case of
lingearly polarized light in the Z direction, | ¥, ) is given
by

sinMp( |[ILA=+1)— |I[,A=—1))

Vq)=
| Ya [(cos’0)M § + (sin*0)M f1'/*

Notice that this wave function is equivalent to the excita-
tion matrix p defined in Eq. (19).
Introducing Eq. (22) into Eq. (21) we obtain

M=(cosO)MsZ+ (sin@)MpX . (23)

We notice that M lies on the plane defined by Z and 2
(see Fig. 2) as demonstrated by Vigué et al.® and which is
a consequence of the axial symmetry of the molecule.

The limiting cases Ms =0 or M ;=0 give the expected
results [(cos@)MsZ and (sin@)MpX, respectively] for
parallel and perpendicular transitions. For Ms=My,
one gets M parallel to (cosf)Z+(sinf)X=2Z, i.e., the re-

sult for an isotropic system (an atom, for instance).

D. Evolution of the system while dissociating

1. Axial-recoil approximation

In the axial-recoil approximation it is assumed that dis-

FIG. 1. Molecular (xyz) and laboratory (XYZ) reference sys-
tems. The incident polarization vector is along Z while the dia-
tomic internuclear axis is along z. 6 and & are the polar angles
specifying the orientation of the molecule.

[

sociation occurs in a time scale much faster than the rota-
tion of the molecular internuclear axis. Thus the direc-
tion of the internuclear axis remains the same during the
whole process: absorption of a photon, dissociation, emis-
sion of fluorescence. This implies that the rotation of the
molecular axis is not coupled to the electronic angular
momentum.

Quantum mechanically, Eq. (14) gives the differential
cross section for the process from an initial molecular
state iJi,Mi), where J; is the total angular momentum
and M; its space-fixed component. If the molecule is ini-
tially randomly oriented one has to sum over M; Eq. (14).
In addition, the sums over a4, ag, and ay imply sums
over Jy, My, Jo, My, Jr, and My. In the limit of axial
recoil,?? the matrix elements {a; | D;|ag),
(ag | D} |ays), etc., as well as the phases @4 are indepen-
dent of the total angular momentum J;. Under these
conditions the above-mentioned summation can be carried
out with the result that they no longer depend on the ini-
tial total angular momentum J;. This is equivalent to

0

FIG. 2. Classical oscillating dipole M induced by the photon
excitation. The dipole is in the plane ZZ defined by the internu-
clear axis and the incident polarization vector.
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stating that the overall rotation of the molecule is neglect-
ed in this approximation. Therefore, the calculations can
be conducted for fixed molecular orientations specified by
polar angles 6 and .

2. Anisotropy of the photofragments angular distribution

In the axial-recoil approximation, the angular distribu-
tion of the photoejected fragments is given by the proba-
bility of exciting the molecule with a given orientation of
the internuclear axis with respect to the laboratory frame

o(0)=mk; Tr(p)=mk; Tr(p) , (24)
which using Egs. (17) and (19) gives the expected angular
distribution

o(0)=mk;(M%} sin?0+M% cos?0) . (25)

We notice from Eq. (25) that ¢(8) is sensitive only to
the population terms of the density-matrix p and ignores

all coherence terms pjg, p1—1, etc. Equation (25) can now
be written in the usual form
g(8)=oo[1+BP,(cosO)] , (26)
with
M3 —M3
322-_“—22 I; 27)
Ms +2M1
giving the well-known limits B=2 for 2—ZX transition,
B=—1 for a S—II transition. It is interesting to note
that in the very particular case |My|=|Msz|, B=0,

and the angular distribution is isotropic.

0, (—1)

2L—25+m+m! [(2j+1)(2j +1)]'2

M. GLASS-MAUJEAN AND J. ALBERTO BESWICK 36

3. Evolution

The effect of the evolution of the system during dissoci-
ation is expressed in Eq. (19) by the transition from the
molecular-excitation matrix p to the fragment-excitation
matrix g through the dephasing between different dissoci-
ative channels as well as the spin coupling at very large
interfragment distance.

Coming back to the classical picture of the oscillating
dipole given in Sec. II C2, the dephasing between the dis-
sociative channels corresponds to a dephasing between the
M, and M, oscillating components

Me'@'—Ms(cosBle " **'2 4 My(sin@)e " % , (28
which amounts to considering two oscillating dipoles
M, =M ;(sin8)X + M5 (cos8) cos(ps — )2
and
M, =M5(cos8) sin(ps —@n)Z
dephased by 7/2.

4. Spin coupling

In the case of fine (or hyperfine) structure we assume
the splitting to be much smaller than the excess energy
and larger than the radiative linewidth. This means that
the coupling of the spin to the angular momentum occurs
in a time scale much shorter than the fluorescence emis-
sion and much longer than the dissociation of the mole-
cule. Under these conditions the excitation matrix

Pim jrm? I the atomic basis set | jm;) is given by
J J

L s j |l s

pjm.,j‘mf: Z
J J ’

mpmy

Py m}

(28 +1)

, (29)

my ms —m; | \m; mg —mj

where () are 3-j symbols. It should be noticed that we only need the terms of Eq. (29) with j =j".
The effect of the coupling with the spin on the classical oscillating dipole is to make the dipole precess around the

atomic angular momentum j vector (see Fig. 3).

E. Fluorescence emission from the fragment

In the uncoupled atomic basis set | Lmy ) the detection-matrix elements D

D =(k}R}e?/4nT™) 3

Lm ,Lm'
L 0.9'=0,+1

L1 L

<1lo o o

Ly 1 L
qu

: 20
Lm) ,Lm 3T€ given by

(—1)%e*)_ye_g(2L+1)(2L;+1)

L, 1 L

, ) (30)
myg —gq

—my

’
—my

where e; (g=0,1t1) are the spherical components of the polarization vector, i.e.,

_ 1 )
eg=e;, et =+ —=l(extie,),

V2

where x,y,z are the Cartesian components in the molecular frame.

In the coupled atomic basis set | jm; ) on the other hand, the detection-matrix elements D,

kjRYe?

S—Ly—j—j+m]
L= (e*)_ge_g(—1)" /
Jmj,jm; 4Trr(at) X 2 q9 q

9,9

: 20
., are given b
jm;jm] 3T€ & y
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X (2L 4+ 1)(2L s+ D[(2j+ 1)(2j'+ ]2

1k

2k +1 ,
X ( +)_q —q' u

where { |} are 6-j symbols.

Equation (32) together with Eq. (29) constitute, when
introduced in Egs. (17) and (18), the general expressions
in the axial-recoil approximation leading to the fluores-
cence cross sections for a given orientation of the mole-
cule specified by the polar angles 6 and ®. Since usually
the molecules are initially randomly oriented an average
over 6 and ® should be performed.

III. RESULTS FOR THE CASES WHERE THE
INITIAL STATE IS '3

A. AB('Z)+hv— AB*('Z,'I1)— A*('P)+B('S)
— A('S)+B('S)+hv

From Egs. (18), (19), and (30), it is obtained
dO‘/dﬁf=47T2ki(3Q/87T)[2pl,1ex2 +p0,0e,2
+2V2pq, 1e,ex cos(gps —n)] ,

(33)

where Q is the branching ratio for the particular transition
which is studied and @35 and @y the vibrational phases for
the two dissociative continua AB*(Z,II). In Eq. (33)
ex,e,,e; denote the components of the polarization vector
on the molecular frame. In order to calculate the polar-
ization ratio we need the intensities parallel and perpen-
dicular to the space-fixed Z axis. We then use the trans-
formation

X cosf@cos® cosfsin® — sinf X
$1=| —sin® cos® 0 Y (34)
% sin@cos® sinfsin®  cosd 7

between the space-fixed components eyeyez and the
molecular-frame components e,e,e, with 6 and P being
the polar angles specifying the direction of the molecular
axis with respect to the space-fixed system. The parallel
polarization is then ej=ez defined in our case by the po-

FIG. 3. Precession of the oscillating dipoles M; around the
atomic angular moment J induced by the spin-orbit coupling.

J

2
L1 L
00 0
ikl L okllL L ok
m —u| i ios[|v oL (32)

[
larization of the incident photon and the perpendicular
polarization can be arbitrarily set to e; =ey. We obtain

30

P [(sin*6)M} +(cos*OIM3

(dO'/dﬁf)||=47T2k,-

+2(cos?0)(sin’0)M s M

X cos(ps—@n)] (35a)

(sin%0)(cos20)(cos’d)

&y —ar2e |32
(do /df ) =4mk; |32

X[Mp+M3% —2MsMy cos(gs—@p)] .
(35b)

Equations (35) provide the intensities for parallel and per-
pendicular polarizations when the molecule has a well-
defined orientation 6,». We need now to average Egs.
(35) over 6 and ®. The final result is

do =412k .ﬁ L
dd, |, |87 |15
X[8M} +3M3% +4MsMy cos(gps —@n)] ,
(36a)
do | _,o (30| 1
dQ; |, 87 | 15
XMy +M%—2MsMy cos(ps—@n)] -
(36b)

The sum over all polarizations and all possible direc-
tions €} s is known to be equal to the sum over each polar-
ization ey,ey,ez observed transversally affected by a 87/3
geometrical factor. Thus

o=8n/3)(do/dQs)+2da/d0))]

2
-_—4—;T~k,-(2M%1 +M3)Q (37)

which is the expected photodissociation cross section mul-
tiplied by the branching ratio Q of the observed transition.
The polarization ratio will then be

(da/dﬁf)“—(dff/dﬁf)l
(do/dQy)+(da/dOy),
_ TMt+2M§ +6MsMy cos(gs —@n)

P=

= 3 3 . (38)
IMp+4Ms +2MsMy COS((PE—<PH)
From Eq. (38) it is now easy to obtain
P=4 for My=0, (39a)
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P=7 for M5=0, (39b)

which are the previously published results for 'S—!3 and
'3 M1 transitions,® respectively.
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B. AB('2)4+hv— AB*('Z,'TI)— A *(*P)+B(2S)
— A(S)+B(S)+hv

From Egs. (18), (19), and (32), we now have for the two
components j=1 and j=3

(do/d )1 p =47k, §% [po.o+2011)(e2 +e2+ed)t (40a)
(do /df) =42k, |22 | |pool14+3e2)d 4+ 2pya(1 4 3e2) + —= (ps—eu) (40b)
0/dQys)j_3,=4mk; 3y | P00 +3e/ )5 +5p1,1(1+3ex)+ 305 PLoexez coslgs —@n
Since el +e?+e?=1, it is clear from Eq. (40a) that the P=32 for M;=0, (45a)
emission from the j=1 level is isotropic as expected for
R P=2Z for M5=0, (45b)

an incident linear polarization which can only produce
alignment and not optical orientation.

Performing as in Sec. III A the average over all possible
orientations of the molecule we obtain
(dO'/dﬁf);\j:1/2=(d0'/dﬂf)u_

1
=7

4, |30
== ki |5 (ZMH+iM3), (@4la)
N 4?2 30
(dU/dQ/)” :%— 3 ki 87
X[EM5 + EM,
—f—l—“st.Mn COS((pzi(p“)] ’ (41b)
A 472 3Q
(da/dﬂf)lj:% 3 ki s,
X[EM5 + EMi
—lz—st.M“ COS(@Z—(p[])] . (410)
If the emissions from j=1 and j=3 are resolved, the

polarization ratio is Py, =0 for the j= emission and

6M%+21M3 + 18MsMy cos(@s — @)

P = oM 4TM A+ 6M My cos(gz —n) “

for the j=2 emission. From Eq. (42) one obtains
P=23 for Mp=0, (43a)
=2 for M3=0, (43b)

which have been given by Singer et al.'”

Equations (43) as compared with Eq. (39) demonstrate
the effect of depolarization due to fine structure.

If on the contrary the two fine- (or hyperfine-) structure
components are unresolved, we get

P 6M% +21M% + 18M s My cos(@s — @)
 32M% +6TM} +6Ms My cos(@s — @)

(44)

which for the limiting cases My =0 or M =0 provides
the new results

which are lower than those obtained in the fine-structure
resolved case [see Eq. (43)], as expected since the j=1
component is unpolarized. We should also notice from
Egs. (45) and (39) the somewhat striking result that the
polarization of the fluorescence is drastically reduced even
if all the components of the fine (or hyperfine) structure
are simultaneously detected.

It is also useful to note that Eq. (44) can be obtained
directly from the individual polarization P3,, given in Eq.
(42) using the statistical weight of the two components
j=+and j=3.

C. Other cases involving a 4 *(D) fragment

In this section we consider two cases where the excited
atomic fragment is in a singlet or a doublet D state. We
there have from an initial 'S state

AB('Z)+hv— AB*('S,'T1)— A *("2D)+ B(!/23)
— A(M2P) 4+ B(M2S)=hv' .
The results for these two cases are summarized in Tables

I and II.

IV. INTERPRETATION AND DISCUSSION

In Sec. III we have applied the general formalism to
photodissociation processes involving the coherent excita-
tion of 'S and Il dissociative states. In particular, for
the case

AB('S)+ hv— AB*(13,11)
—A*('P)+B(!S)— A('S)+B('S)+hv ,

we have obtained the polarization rate given in Eq. (38),
where M's and M| are the transition dipole-moment am-
plitudes for excitation of the '= and 'IT dissociative states,
while ¢s and @q are the quantum-mechanical dephasings
accumulated during the dissociation.

A. Interpretation in terms of classical
oscillating dipoles

It is possible to obtain the polarization ratio Eq. (38)
using the classical model of the oscillating dipole. The
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TABLE 1. Parallel and perpendicular fluorescence cross sections for the 'D—'P and 2D—2P fragment transitions in units of
4k (3Q /8m).

ol ol
Ip_tp —-M Mi+—"=MsM — ’*M M — —=MsM —
T s+Mua+—= 5‘/3 sM i cos(@s — @) 15 i+ fl 5‘/3 sMp cos(@s —@n)
33 14 83 43
D5, —2P ——Mi+—Mh——MsM — 2L ——M —=M:M -
5/2 372 125 s+ 25 =55 M=Mu cos(pz — @) 125 §:+ i+ 125 M=Mu cos(@sz — @)
64 14V73 43 V3
2Dy, —>2P — M3 ——M MsM — —_—M —M —M M —
32 3/2,1/2 375 s+ 25 =375 M:Mn cos(ps — @) 375 i+ 50 fi + 375 M= n cos(@z —@n)
163 38V3 106 19v3
’D —2p 163 5 23 M — M —— MM -
3/2,5/2 3/2,1/2 375 2+ 25 f— 375 ———MsMy cos(pz—@n) 375 M§:+ soMn + == 375 sMi cos(@s — @)

electric dipole induced by the photon absorption M, as M, =[M,—Ms cos(ps—@m)](sind)(cosh)
given in Eq. (23), has components along both the molecu- a . ~

lar Z and X axes. These components are dephased during X[(cos®)X +(sin®)Y]

dissociation according to Eq. (28) in the axial-recoil ap- +[My sin26+ M;;(cosze)cos(tpy_—q)n)]i (46a)
proximation, i.e., if the molecule does not rotate while dis-

sociating. The fluorescence emission can be interpreted as  and
the emission of these M oscillating dipoles. The actual o . .
calculation proceeds as follows. Since the parallel and M, = — sin(gz —@n)M3(sinf)(cosO)

perpendicular fluorescence intensities refer to the laborato- X [(cos® X +(sin<1>)?] (46b)
ry frame, M has to be given in that reference system. Us-
ing Eq. (34) into Eq. (28) we obtain from which we obtain

Iy o< ( (M- 2V + (M- Z)?) = (M} sin*0+ M} cos*6+2M 1M 5 (sin?0)(cos?6) cos(@s — @) )
1
=‘1§[8M%r+3M§+4M>:Mn cos(@z —¢n)] (47)

and

o ~

I o (M- X0+ (M- X)2) = ([M} + M3} —2M M5 cos(@s —@n)](sin?0)(cos?0)(cos ®) )

=T15—[Mf|+M§;—2MnM; cos(ps—en)] - (48)

It is now straightforward to obtain Eq. (38) from Egs. We shall consider now some particular cases. When
(47) and (48). It is clear from Egs. (46) that the cross M =0, i.e., for a pure parallel £— X transition, the os-
term in Eqs. (47) and (48) involving the phase difference  cillating dipole is created along Z where it remains dur-
(ps—en) arises from M,, the oscillating dipole which  ing the dissociation. Since the excitation probability is
components along X and Z remain in phase i.e, the proportional to cos’d there is a preferential angular dis-
remaining coherence of the initial dipole. tribution of the excited molecules and hence of the excit-

TABLE II. Polarization ratios for the 'D—'P and 2D —2P fragment fluorescence. Py and Ps are the values obtained for excitation
of pure Il and X states, respectively.

P Py Ps

6M3 +15M b +6V3M s M, cos(@s —@n)

'D'P = 1=0.33 4 =0.27
22M % +45M i 42V 3M s My cos(ps —@u)
12M% +30M} —12V73 _

2Ds/»—2P3,, § +30Mii— 12 EMZM" coslgs —gu) —151—;0.27 %30.19
63M% +110M % — 4V 3M s My cos(ps —@u)
42M % +105M H — 42V 3M s My cos(ps — @)

D3 —P3pan i+ %; selh Sel RS 2 2k 4 2%—:50 24 ﬁ)—‘7’=~0 20
214M§ +435M i — 14\/3M2M|| COS((P:-@H)

2 _ ‘/" _
T S 114M % +285M 1 — 114V 3M s My cos(@s — @u) © 026 5 019

3
o

592M % + 1095M i — 38V 3M s My cos(@s — u)
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ed fragments along the Z laboratory axis. The oscillat-
ing dipgle has components cos@ and sinf cos® along the
Z and X axes, respectively. Therefore for a given orien-
tation of the molecule,

I« cos*0, I« cos’@sin’0cos’® ,

and after averaging over all possible orientations one ob-
tains the well-known result that the polarization ratio is
P=. This case is the only one where usual classical for-
mula [Eq. (2)] is valid with y =0.

When M5 =0, i.e., for a pure perpendicular =—II
transition, the oscillating dipole is created along X where
it remains if dissociation is fast, with a probability sin’6.
The emitting dipole must be along X too and has com-
ponents — sinf and cosf cos® along the Z and X labo-
ratory axes, respectively. The polarization ratio ob-
tained after averaging over all possible initial orienta-
tions of the internuclear axis is then P=7. We notice
that this value obtained quantum mechanically®® is actu-
ally a classical result. It is obvious that Eq. (2) cannot
apply to this case since the maximum possible value of P
using this equation is J. The reason for the failure of
the usual classical formula (2) is an abusive average over
the orientation of the initial dipole around the internu-
clear axis. In a correct classical treatment one should
realize that the initial oscillating dipole must lie in the
plane ZZ, which corresponds in quantum mechanics to a
coherent superposition of A=+1 states.®®

When the dephasing ¢s —¢y; is equal to 7 /2 the po-
larization ratio reduces to the result of a simple in-
coherent superposition of £ —2 and = —II photodissocia-
tion processes. In that case the two components M, and
M, (see Fig. 2) are oscillating in quadrature and they add
their intensities.

An interesting particular case is obtained for M| =My
and ¢s—¢@=0. We have already noted (see Sec. II D 2)
that this corresponds to an isotropic angular distribution
of the fragments. From Eq. (38) we have P=1 for this
case. This provides a particularly striking example of a
maximum of the polarization of the photofragment
fluorescence associated with a fully isotropic fragment dis-
tribution. The particular case considered here is very un-
realistic. It corresponds to the atomic case where the in-
duced oscillating dipole is along the Z axis (see Fig. 2).
The emitting dipole being along the laboratory Z axis the
polarization of the fluorescence is fully parallel to the in-
cident polarization (P=1).

B. Discussion of the results for the case

AB('2)+hv— AB*('=,'T1)—> A*('P)+B('S)
— AUS)+B('S)+hv

Equation (38) gives the polarization ratio P for the case
of an initial 'S state which after photon absorption disso-
ciates into A4 *(!P)+B('S) fragments. The polarization
ratio depends on the relative excitation amplitude
X=Ms /My of the two possible excited-dissociative paths,
and on the dephasing Ap=¢s—¢n of the vibrational
wave functions in these two states. In Fig. 4 we present
the limiting values of P (P, corresponding to Ap=0 and
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o s o 5 10 X
FIG. 4. Maximum P, and minimum P_ possible values of
the polarization ratio (see text) as a function of the relative exci-
tation amplitude X. The possible values of P lie necessarily in

the shaded area and depend on the relative phases of the vibra-
tional wave functions at large internuclear distances.

P_ to Ap=m) as a function of X. The possible values of
P lie necessarily between these two curves. It is seen that
P+ changes rapidly around X=0 which implies that a
small contribution of the X state to the photodissociation
through the II state can change appreciably the polariza-
tion ratio. Complementarily the slow approach to the
asymptote at large X means that the reverse is also true, a
small contribution of the IT state to a Z-state photodisso-
ciation process can induce a large change on P.

In Fig. 5 we present a study of the possible relation be-
tween the polarization ratio P and the angular distribution
parameter 3 [see Eq. (27)]. Since 8 depends only on X2
while P depends both on X and Ag, for a given value of 3,
P can have a whole range of values between P, and P_.
This defines the shaded region in Fig. 5.

C. Application to Ca; photodissociation

The preceding study provides a possible explanation of
the observed polarization ratio in the case of photodissoci-
ation of Ca,. For excitation at A=406 nm Vigué et al®
measured P=0.6410.01.

The interpretation of this very large polarization ratio
was provided in terms of the single process

]

Y o 1 2 B

FIG. 5. Parametric dependence of the polarization ratio P vs
the anisotropy parameter 3 of the angular distribution of the
fragments. The solid curve represents P, and P_ superposed.
The heavy dashed curve represents the results for Ap=m/2 (see
text).
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Cay('2)+ hv—Cay(I1)—Ca('P)+ Ca('S) ,

for which the value P=1=0.78 is expected®® [see Eq.
(39)]. The difference between the theoretical and the ex-
perimental values was attributed to saturation and
fluorescence-trapping effects. An alternative explanation
can be provided by our study. If the relative population
os/on=X%/2 of the = and II states is as little as 3.5%
(X=0.26) then assuming (¢s—¢)=7, we obtain from
Eq. (38) P=0.64. In addition, the value of P observed for
excitations at A=413 nm, P=0.68, can be explained with
the same value for X and a phase difference
(¢s—@n)~ L7 /4, which is a reasonable variation accord-
ing to our numerical calculation on a similar case.? Ac-
tually, this interference effect between Il and Z dissocia-
tive states was suggested already in Ref. 9. The above
calculation shows that even a weak excitation of the =
continuum can significantly modify the polarization ratio.

D. Discussion of the results
for other cases

We have discussed the results obtained in Sec. III A for
the singlet P-excited atomic fragment. In Sec. III B we
have considered the case where the excited fragment is in
a 2P state. The results both for resolved or unresolved
fine-structure fluorescence components show that the spin
coupling induces a substantial depolarization and washes
out partially the interference effects. This is the result, as
discussed in Sec. II D, of the precession of the oscillating
dipole around the direction of the atomic electronic angu-
lar momentum J.

In Fig. 6 we present the limiting values of P as a func-
tion of X for this case. Comparison with Fig. 5 shows
clearly the depolarization effect of the spin coupling, the
maximum of P=1 in the singlet case is now reduced to
P=0.43.

For the cases discussed in Sec. III C which involve a
simplet or a doublet D-state excited fragment, the classical
picture does not keep the simple form presented above for
the P—S case. The identification of the emitting dipoles
with the M; dipoles (see Sec. II D 3) created by the photo-
dissociation does not hold anymore.

In any case, the final result cannot be but a lesser polar-
ization ratio. From Table I we deduce that the extrema
of the polarization ratio are 0.45>P >0.17 for a 'D and
0.36> P >0.037 for a *D.

V. CONCLUSIONS

In this paper we have presented a quite general treat-
ment of the coherence effects in the polarization of the
light emitted by atomic photofragments in the case where
fluorescence occurring at short internuclear distances is
negligible, i.e., when the fluorescence lifetime is much
longer than the dissociation time. One such coherence
effect is the previously studied®® interference between the
emission from the m; =+ A components issued from the
dissociation of a single A molecular state. In addition, we
have shown that the coherent excitation of the manifold of
electronic molecular states dissociating to the same atomic
state induces a new interference effect in the fluorescence

10 -5 0 5 10 X

FIG. 6. Same as Fig. 4 for the spin-doublet case. The dashed
curves represent the limiting values P+ of the polarization ratio
for the j:% resolved component. The solid lines correspond to
the unresolved case (see text).

polarization. As opposed to the former the latter depends
on the ratio of the photoabsorption amplitudes for excita-
tion of the different electronic states as well as on the rela-
tive phases of the corresponding vibrational dissociative
wave functions at large internuclear distances.

In general the photoabsorption amplitude ratios are
smooth functions of the excess energy. On the contrary,
the phase difference is more likely to vary rapidly with the
excess energy.”? We have shown that the interference
effect introduces a term in the expression for the fluores-
cence intensities that depends on the cosine of the phase
difference. Therefore, we predict an oscillating behavior
of the fluorescence polarization ratio as a function of the
photon energy.

We have considered different particular cases corre-
sponding to a diatomic molecule initially in a '= state.
We have shown that a small mixture of 'S and 'Il excited
continua may lead to a sensible change of the polarization
ratio. This effect may provide a possible explanation for
the observed polarization ratio of the fluorescence from
the Ca* fragments in the photodissociation of Ca,.?

We have studied the depolarization effect induced by
the spin-orbit coupling for the case where the dissociation
occurs in a time scale much shorter than the spin cou-
pling. We have shown that this operates even in the case
where the fine-structure components are unresolved. This
is also valid for the case of hyperfine structure if the split-
ting is larger than the natural width.

Finally it is worth noting that the coherent effects dis-
cussed in this work are not pure quantum effects as they
can be interpreted within a classical oscillating dipole
model if the averages over initial orientations are properly
performed.
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