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Based on a fundamental and simple treatment, selected calculations are performed of differential
and total cross sections of multiphoton free-free transitions. The emphasis is on high values of the
radiation field intensity such that the amplitude vo of the classical electron oscillatory velocity is

equal or larger than the incoming velocity v;. A variety of new information is obtained which gives a
useful insight into various aspects of both the current theory and the physics of multiphoton free-free
transitions. The calculations concern the following: (i) total cross sections in parallel and perpendicu-
lar geometry for both multiphoton emissions and absorptions, (ii) the breakdown of a known sum

rule, (iii) the comparison of exactly calculated total cross sections with those based on widely used
simplifications, and (iv) the investigation of the role of the range of scattering potential. Under par-
ticular conditions, the classical aspects of the elementary process (the interaction with the field) are
found to affect the collision event and its characteristic parameters in a very peculiar way. The most
interesting and new results are obtained when vo & v; and vo~~v;.

I. INTRODUCTION

This paper addresses the high-intensity aspects of multi-
photon free-free transitions (MFFT), i.e., of the process in
which, during the scattering of a charged particle by a
structureless potential, an arbitrary number of photons is
exchanged with a strong assisting laser field. Since the
pioneering papers by Bunkin and Fedorov' and Kroll and
Watson, a lot of work has been devoted to MFFT.
While many theoretical treatments of the MFFT have
been worked out, the few available experiments so far
have been necessarily concerned with only limited aspects
of the process. Detailed and updated accounts of the
subject may be found now in several places, so we confine
ourselves to quote some of them for the interested
reader.

As stated, this paper is concerned with the high-
intensity limit of MFFT. There are several reasons for
addressing this problem.

(1) In spite of the several theoretical papers available in
the literature on the subject, the high-intensity behavior of
the relevant parameters of the process (cross sections,
mean-exchanged energy, etc. ) is poorly understood. Most
of the available practical information is given by estimates
based on the asymptotic behavior of some special func-
tions appearing in the theory. As it will be shown below,
such estimates are of rather low reliability and have
missed the new information which will be reported here.
On the other hand, the first calculations considering the
high-intensity domain have just sampled (and stopped at)
the onset of an unexpected behavior of the MFFT cross
sections. Doubts on the use of Volkov waves' and/or
computational limitations" are likely to have been respon-
sible for such incomplete investigation of this relevant as-
pect.

(2) Very intense lasers are now becoming available in
pure research laboratories (up to 10' W/cm ), making
real the possibility of investigating high-field effects also in
MFFT.

(3) Finally, MFFT is one of the fundamental processes
in laser plasma interactions, and efforts aimed at establish-
ing a more accurate knowledge of the behavior of impor-
tant parameters, required in applications, are expected to
be useful.

In particular, we consider the scattering of electrons in
the presence of a laser, taken as a single-mode homogene-
ous field, in the dipole approximation (model of an ideal
laser). Of this process we calculate di6'erential and total
cross sections versus different quantities, including the
field intensity. Concerning the scattering potential, the
choice of a screened Coulomb potential offers in a simple
way the possibility to get information on the role of the
range of the potential when a strong radiation field inter-
feres with the collision. Actual calculations are per-
formed in first Born approximation, this being at the mo-
ment the only viable approximation allowing one to carry
out a comprehensive set of calculations on different as-
pects of the process with a moderate use of computer
time.

As far as the use of the ideal laser model is concerned,
it is perhaps appropriate to mention that the present-day
very intense lasers are likely to be poorly described by this
model. Nevertheless, the understanding of MFFT in a
strong laser field within the model of an ideal laser
remains of obvious interest not only in its own right, but
also as a necessary starting point for further improved and
refined descriptions. The dipole approximation is adopt-
ed, so this amounts to saying that the typical velocities of
the process must be smaller than the velocity of light.
Accordingly, a nonrelativistic quantum treatment fits our
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II. DIFFERENTIAL AND TOTAL CROSS SECTIONS

The differential cross section (DCS) of the transition
from the initial momentum k; to k~, for an electron scat-
tered by a static potential V(r) in the presence of a strong
ideal laser is given by the now familiar result'

= Q [k/(n)/ k] J(k(n))
n

t'

d(7
(2.1)

where

k/(n) =k;(I+2nm/k; )' (2.2)

is the scattered electron momentum, with exchange of n
photons (n & 0 absorbed, n ~ 0 emitted). J„(A,) is the
Bessel function of the first kind, whose argument

A(n) =ED.Q(n)/m, Q(n) =k/(n) —k; (2.3)

represents the coupling strength between the field and the
scattered particle; in it, Ep and ~ are, respectively, the
amplitude and the frequency of the field, assumed —as
stated —to be homogeneous, single mode, purely
coherent, linearly polarized, and taken in the dipole ap-
proximation as

E(t)=Epsin(cot) . (2.4)

needs. The choice of the field parameters is such to obey
the constraints of the dipole approximation. The present
calculations, however, clearly call for a fully relativistic
treatment, as a next step.

Most of the calculations are for a geometry in which
the (linear) laser polarization is parallel to the beam of the
incoming particles. An important role is found to be
played in such geometry by the ratio vp/v;, with vp the
amplitude of the classical oscillatory velocity of an elec-
tron in a plane-wave field, and v; the initial particle veloci-
ty. Ratios vp/v; equal or larger than unity identify the
high-intensity domain and are characteristic of the new
results reported here. Unless stated otherwise, atomic
units will be used.

pertinent T matrix and that
~

EO.Q(n)
~

& neo .
In this paper we shall choose the values of the parame-

ters such as to allow us to use the FBA; accordingly
der(n)/dQ is given by (2.5). With the screened Coulomb
potential

V(r)=(1/r) exp( —r/ro),

(2.5) gives

(2.7a)

dQ
= [2r o/[ I+ r og (ti)] ) (2.7b)

Large values of the range of the scattering potential
(ro » 1) are expected to be only partially representative of
the pure Coulomb case. In fact, the limit of infinitely
long range in a screened Coulomb potential is a delicate
problem in field-free collisions and by no means does it
become easier when a strong radiation field is present. ' '"
Because of it, the pure Coulomb limit will not concern us
here. %'e have a specific reason as well for this attitude
here. As discussed in Ref. 12, one of the ways to correct
the pathological (and unphysical) behavior of the pure
Coulomb potential in theoretical treatments consists in in-
troducing some cutoff in its range of action. It may be ac-
complished by means of an exponential screening, like in
Eq. (2.7a), or just by an abrupt cutoff'. The analysis
shows' that provided sufficiently large screening radii are
taken, the differently screened potentials yield results
which are not distinguished by a typical Coulomb scatter-
ing experiment, in which forward scattering in a very nar-
row cone around the incoming direction is not observed.
This conclusion implies also that in a very narrow cone of
forward scattering there may be a large difference between
the behavior and/or the results pertinent to the pure
Coulomb potential and that of its screened versions. In
the analysis given below, parts of the results are found to
be peculiarly controlled by the behavior of the differential
cross section at small scattering angles. Though the angu-
lar regions of interest here are considerably larger than
those discussed in Ref. 12, the findings of the analysis of
the Coulomb scattering suggest considering this part of
our results as only partially representative of the Coulomb
potential. Altogether, the results reported here are con-
sidered appropriate to a finite-range potential.

By (2.1), the total cross section (TCS) follows as
In (2.1), do(n)/dA has the structure of the field-free
DCS. If the first Born approximation (FBA) for the
scattering potential is used, it is calculated off the energy
shell, at an incident energy c; =k; /2 and final momentum
k/(n) [Eq. (2.2)], and is given by

o'= g o „=g [k/(n)/k;] f dQ J„(A,(n))
n n

(2.8)

do(n)
dQ

2=(4ir )
' f d r exp[iQ(n ) r] V(r) (2.5)

so that do(0)/dQ is the FBA DCS for the field-free case.
In the low-frequency limit do(n)/d 0 [in Eq. (2. 1.)] stands
for the exact DCS or for any other suitable approximation
going beyond the FBA, calculated on the energy shell at
the shifted momenta

ap ——Ep/~ 2 (2.9)

or, alternatively, the amplitude of the classical oscillatory
velocity

Two classical parameters are found to play a key role in
the problem under consideration. These are the ampli-
tude of the classical oscillations an electron undergoes in
the plane-wave field (2.4)

q, (n)=k, —ncoEp/[EO. Q(n)], a =i,f (2.6) vp ——Ep/~ . (2.10)

provided a smooth energy dependence is exhibited by the The basic particle-field coupling parameter (2.3) may be
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expressed through ao or vo as

A, (n) =ap. Q(n) (&.3')

and

A(n)=vp Q(n)/cp . (&.3")

As it will be shown below, the most significant interplay
between the (nonresonant) field and the collision process
is found to occur when ao & ro and vo & v;, provided some
other specific conditions are met. In other words, the
field-dependent parameters ao and vo must be comparable
with the characteristic parameters of the collision such as
ro and v;. In the FBA, it occurs generally for field inten-
sities equal or larger than 10' W/cm for ~=1 eV, which
are well within the laboratory availability and the experi-
mental state of the art. Below we shall concentrate main-
ly on just these domains.

We conclude this section by pointing out that the cross
sections are derived within quantum-mechanical methods
with, however, the laser field treated as an external classi-
cal field. The fact that the above classical parameters will
be found to play an important role, together with the fac-
tored structure of the cross sections, suggests an interest-
ing mixed picture of the laser-assisted scattering process.

Namely, that of a process made up by two parts: the col-
lisional part, which is described quantum mechanically,
and the electron-laser interaction part, which result al-
most entirely classical. The requirement for the two parts
to interfere and affect significantly each other is that their
characteristic parameters be of comparable values. (It
may be observed that the resonant interaction cases, not
considered here, are no exception. )

III. CALCULATIONS: RESULTS AND COMMENTS

Below we report and comment on the results of our cal-
culations. Unless specified otherwise, calculations are per-
formed for an electron beam with an energy of 3.675 a.u.
(100 eV) scattered by a Coulomb potential with a screen-
ing radius of 50 a.u. in the presence of a laser field, linear-
ly polarized, parallel to the direction of the incoming par-
ticles. The energy of the laser photon is 0.043 a.u. (1.17
eV). The most frequently considered photon multiplicities
are n =1, 5, and 10.

A. Enhancements and oscillations in the total
cross sections. Parallel geometry (Eo~~v; )

Using the numerical values quoted above and the for-
mula (2.8) we have calculated total cross sections in paral-
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FICx. 1. Total cross sections (TCS) (in ~ao units) vs the field intensity (in W/cm') for one, five, and ten photons absorbed. The in-

cident particle energy is 100 eV, the field polarization is parallel to the incoming particle momentum, and the scattering potential is
Yukawa type, with unitary charge and screening radius ro=50ao (ao is the Bohr radius). Energy of the field photon fico=1. 17 eV.
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lel geometry for the channels when during the scattering
one, five, and ten field photons are absorbed. The results
are presented in Fig. 1 as functions of the field intensity.
The maximum value of the intensity is checked to be
within the limits of validity of our theoretical model (non-
relativistic treatment, dipole approximation). Of course,
by decreasing the laser frequency one could accordingly
decrease the field intensity, without changing the general
behavior.

The behavior of the reported TCS may be clearly divid-
ed into three different parts (i. ) A perturbative I" behav-
ior is shown at (relatively) low intensities, (ii) at intermedi-
ate intensities, the TCS increase in a much slower way,
thus showing a kind of saturation (with the exception of
n =1, and n =0 not reported here), and (iii) for higher in-
tensities, approximately at values when Uo approaches U;,
the TCS show again a fast increasing behavior up to a
maximum, after which a rather regular (in the average,
decreasing) oscillatory behavior establishes. It is remark-
able that the perturbative behavior for n = 1 is found to
hold up to very high values of the intensity and that the
corresponding TCS is largely the dominant one among
n&0. As discussed by us elsewhere, " it is largely due to
the strong averaging effect of the integration over the solid
angle required to arrive at the total cross section.

A useful support to the numerical results of Fig. 1 may

A (n ) =A, ~ sin (8/2) + n (A q+ A 3+ ) cos8, (3.1)

where 0 is the scattering angle and

A, i ———4(vo/v;)(e;/co), (3.2)

be obtained with the help of some sirnplifications of the
exact formulas, yielding approximate analytical expres-
sions of the high intensity TCS in parallel geometry. To
this end, as an instance, we report in Figs. 2 and 3 the
differential cross section for n =1 at two values of the in-
tensity. Figure 2 is at 1.5&10' W/cm, the intensity at
which the TCS for n =1 reaches the first maximum. Fig-
ure 3 is at 8)&10' W/cm and corresponds to the first
minimum of the same TCS. The plotted DCS are also for
different values of the potential screening parameter
(which will be of interest below). Apart from the wild os-
cillatory behavior, similar to that known from different
treatments, ' at ro ——50 a.u. (at which the TCS of Fig. 1

are calculated) the DCS show a remarkable feature, which
is profitably used below. Namely, the DCS are highly
peaked in forward directions.

In order to perform a "peaking approximation" to be
used to arrive at a simple analytical expression of the
TCS, we observe that in the parallel geometry the particle
field coupling A, (n) may be expanded as
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FIG. 2. Dift'erential cross sections (DCS) (in ap sr ' units) vs the scattering angle (in degrees) for one photon absorbed, at a field in-
tensity of I=1.2&10' W/cm and various potential ranges rp=50ap (solid line), rp=10ap (dashed line), and rp= lap (dot-dashed
line). Other parameters as in Fig. 1.
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~2=UO/ Ui ~

A 3 = —( 1 l4)( vp lv;
)(neo�/e,

)

(3.3) (3.5a) as

(3.4) do(0) zJ„(nvp/v; ) (3.5b)
According to (3.1)—(3.4) for neo«E; and small scatter-
ing angles, the DCS corresponding to the exchange of n
photons can be approximated as

for energetic electrons and/or moderately long-range po-
tentials, the TCS may be approximately taken as

J„[vp(n —9 E;/cp)/v, ] .
do(n) (3.5) cr„=cr(0)J„(nvp/vi ) . (3.6)

When 8 «ncv/E;, a suitable approximation to the DCS
is instead

dO

dA,
n

d~(n)
J„(nvp/v;) . (3.5a)

Next, expanding the squared momentum transfer in the
small quantity neo/k;,

Q (n)=2Ic; I2(1+ ncpjk; ) sin (0/2)

+ [(ncplk; ) cos8]/21,

we note, first, that for n &0 it does not vanish in the for-
ward scattering, and, second, that for moderately long
ranges (say, rp &50 a.u. ), dcr(n)jdQ may be taken as a
function weakly dependent on n. Accordingly, rewriting

Needless to say that (3.5) and (3.6) are only demanded to
reproduce some limiting qualitative behavior of the cross
sections. Nevertheless, the agreement between exact nu-
merical calculations and analytical predictions is satisfac-
tory and provides further insight into the results. In fact,
Eq. (3.6) accounts for the following: (i) for the enhance-
ment occurring in TCS, Fig. 1, around vp=v; (it is well
known that J„(x) has its maximum at n =x ), (ii) for the
harmoniclike oscillations and their n-proportional fre-
quency, Fig. 1, and (iii) for the insensitivity on rp of the
positions of the maxima and minima. This last feature
may be seen by the large argument expansion of the
Bessel function

J„(nvpjv; ) =2[cos (nvp/v; nrr/2 rr/4—)]j[(vpj—v; )mn ] .

(3.7)
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FIG. 3. Dift'erential cross sections (DCS) (in ao sr ' units) vs the scattering angle (in degrees) for one photon absorbed at field inten-
sity of 1=8&10"W/cm'. Other parameters as in Fig. 2.
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%e note that the finding that the behavior of the TCS un-
der some circumstances is very sensitive to the condition

(n, =0)= A, ~ sin (0/2) && A, 2 cosO

is likely to restrict to weak fields the validity of the ap-
proximate treatment for deriving the average number n of
exchanged photons in MFFT, in which use is made of the
expansion of J„(A(n)) in powers of neo around A(0). ' On
the contrary, it well explains the resonantlike enhance-
ment of n in the region U0=U; as found in Ref. 17. Fur-
ther, the limitation

~Eo Q~ &neo

necessary for deriving the Kroll and Watson result [Eq.
(2.2) to all orders in the scattering potential with the shift-
ed momenta (2.6)] makes the latter not suited for long-
range potentials, energetic collisions, and TCS in the
parallel geometry.

B. Total cross sections versus intensity and the range
of the scattering potential

Figures 4 and 5 report calculations of the TCS for ab-
sorption of n = 1 (Fig. 4) and n =5 (Fig. 5) photons versus
the field intensity and for different values of the screening
radius of the scattering potential (ra=50, 10, and 1 a.u. ).
The main features of the reported calculations are (i) de-
creasing the screening radius of V(r) from 50 to 10 a.u.
the cross sections decrease, but the overall behavior
remains. The oscillations too are maintained, though with
reduced amplitude. (ii) Decreasing further ro up to 1 a.u. ,
the TCS decrease further and any structure disappears.
For several orders of magnitude of intensity, the TCS

keep almost constant or slowly changing. Nothing partic-
ular happens at U0 =u;; now the TCS are insensitive to U0,
which is thus found to play no role. Looking back at the
DCS of Figs. 2 and 3 we see that for r0 ——1 a.u. the small
angle scattering has no particularly larger cross section as
compared to those of scattering at large angles; according-
ly for short-range potentials the peaking approximation is
not allowed. The numerical calculations simply remind
us that the physical situation with short-range potential is
quite different as compared to that of relatively long-range
ones. As a rich structure in the field-assisted TCS is
found only for particular ranges of the potential and for
intensity values such that U0 & v;, we consider such a
structure as the outcome of an interplay between the role
of the scattering potential and the effect of strong-assisting
radiation field.

C. Breakdown of a known sum rule

One of the most interesting and known results concern-
ing the MFFT is the sum rule

dO dO

dQ „dQ
do (0)

dO
(3.8)

Equation (3.8) implies that under particular conditions the
differential cross sections in the presence of a laser field
summed over all the multiphoton exchanges equal the
field-free cross section for the same scattering process,
taken at the same scattering angle and initial energy. The
physical content of Eq. (3.8) is that the field does not
change the number of particles scattered at a given angle,
its effects being restricted to broadening and separating
out the initially monochromatic energy distribution of
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FIG. 4. Total cross sections (TCS) (in ~ao units) vs the field intensity (in W/cm ) for one photon absorbed and various potential
ranges ro =50ao (solid line), ro =10ao'(dashed line), and ro ——lao (dot-dashed line). Other parameters as in Fig. 1.
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FIG. 5. Total cross sections (TCS) (in vrao units) vs the field intensity (in W/cm') for five photons absorbed. Other parameters as in
Fig. 4.

scattered particles. Basically the conditions leading to
(3.8) are believed to be the same as those which led us to
obtain Eq. (3.5b), namely, e; »neo and der(n)/deal an in-
sensitive function of n. However, as we have just shown
above and in more detail discussed elsewhere' it is true
only when vo « u;. Instead when u0 =v; a significant
breakdown may occur in the sense that a cross section
larger than the field-free one is obtained. To the discus-
sion given previously, we wish to add a number of new
considerations and results.

First, we note that for moderately long-range potentials,
instead of (3.8), using (3.5), one has

comments below Eq. (3.5a)]. Further, the sum rule is ex-
pected to be largely recovered because the n =0 channel
will provide the by-large dominating contribution. Some
typical results are shown in Fig. 6. Thus the conclusion
is that, all the other conditions being the same, only po-

138

136

Jp [9 ( vp/v; )( E; /co ) ]+ g J„(nvp/v; )

n

(3.9)
C3

56

5 4 ~ % & \ W % 'W A & % % %

for 0 & n co/c.;, v0 =u;, parallel geometry, and small
scattering angles. Equation (3.9) clearly shows that the
field-assisted cross section is larger than the field-free one,
the latter being provided practically by the n =0 term
only. Equation (3.9) says also that for weak fields
(vp « v;), the expression in braces is approximately equal
to unity.

For short-range potentials, Eq. (3.9) does not hold be-
cause the peaking approximation is not allowed. Never-
theless, the sum rule breaks down, though the departure
from the field-free result is expected to be not very
significant.

One may wonder about what happens for very-long-
range potentials (hundreds of a.u. ), when the peaking ap-
proximation is certainly valid. In this case too Eq. (3.9)
does not hold, because now der(n)/deal is a sensitive func-
tion of n and cannot be taken out of the sum [see also the

28 (c)

26

101 3
1

014 1o15 16 1O"

INTENSITY (W cm )

FIG. 6. Total cross sections (TCS) (in 10'm.ao units) vs the
field intensity (in W/cm'), summed over all the multiphoton ex-
changes, for various incident particle energies (a) 100, (b) 250,
and (c) 500 eV. The potential range is ro = 500ao. Dashed lines,
field-free TCS.
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o = g cr„=oo 1+ g J„(nvo/v;)
n n

(n&pj

(3.10)

The sum over n entering Eq. (3.10) gives, for Uo & v; (see
the Appendix)

o =era[1+(vo/2v; )F(—', , 1;2;vo/U )], (3.11)

where F is the hypergeometric function. Though meant
to give only indications on the qualitative behavior of a.

[F(—,', 1;2;x) diverges at x~1] Eq. (3.11) correctly shows

the fast increasing of the summed TCS when Up ap-
proaches U;.

tentials of moderately long range lead to field-assisted
cross sections larger than the field-free ones.

At the conditions at which Eq. (3.9) is valid, an approx-
imate expression for the complete TCS is given by

J„(x)=1/~
i
x

i
(3.12a)

This asymptotic expression is generally found to give large
overestimates, besides, of course, missing the oscillatory
structure. The departure from the exact results becomes
even stronger for short-range potentials (Fig. 8), for which
the exact TCS do not exhibit the complication of the oscil-
latory structure.

The agreement between estimates based on the proper
asymptotic expressions of the Bessel functions and the ex-
act calculation is apparently not improved if use is made
of the method worked out in Ref. 19. To discuss briefly
this point, we rewrite the integral of Eq. (2.8) in a
different form (for parallel geometry)

f dQ J„'(X(n)) =4~ f "dx F(x, r))J„'(yx),
4n dA,

(3.13)

D. Exact total cross sections versus estimates

J„(x)=2[cos (x —nor/2 —vr/4)]/n
~

x
~

(3.12)

with, as a rule, the additional simplification of approxi-
mating the fastly oscillating cos ( ) by its mean value —,'.
Figures 7 and 8 compare TCS calculated exactly and us-
ing

For estimates of the cross sections in the high-intensity
domain, the following asymptotic expression of the
squared Bessel functions has been widely used:

with

g=kf/k; =(1+2nco/k; )'

y =Epk, /co

F(x,r))=do(n)/dfl .

According to Ref. 19, if the range of integration with
respect to x in (3.13) includes the point x =0 (as our case
does for absorption), a large factor containing in@»1
will additionally appear as compared with the result ob-
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FICx. 7. Total cross sections (TCS) (in m.ao units) vs the field intensity (in W/cm ) calculated by the exact formula (2. 1) (solid lines)
and by using the large argument expansion of the Bessel function entering it (dashed lines), for (a) one and (b) five photons absorbed.
Other parameters as in Fig. 1.
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of Figs. 4 and 5. In perpendicular geometry all the terms
of the expansion (3.1) have the same angular dependence,
so that a result like (3.6) cannot be arrived at. On the
other hand, the exact numerical evaluation of the TCS
shows that nothing particular happens at Uo U;. Thus, as
in the case of short-range potentials in parallel geometry,
in the perpendicular geometry the classical parameter Uo

is found not to play a particularly significant role.

F. Total cross sections with photon absorption
versus total cross sections with emission

Up to now all the reported calculations have been
confined to collision events followed by photon absorp-
tions. For completeness and further insight into the phys-
ics of the elementary process, in Figs. 10—12 we report
TCS for photon emission as well and compare them with
those for photon absorption (in parallel geometry). The
comparison shows expected similarities but instructive
differences as well. The cross sections for absorption and
emission of one photon are largely the same both in abso-
lute values and in shape. The differences between emis-
sions and absorptions are better seen in the TCS of high
multiplicity. The perturbative portions of the TCS with
emission and absorption of high multiplicity as well are

largely the same.
For multiphoton exchanges, starting from the onset of

the nonperturbative behavior up to the first peak, emis-
sions have larger TCS than absorptions. In this interval
of intensities the shapes of the two TCS too are different.
The TCS for emission shows steady increase, while that
for absorption shows a kind of saturation.

The physical interpretation of these different behaviors
is straightforward, and is based on the consideration that
the electrons are simultaneously undergoing a translation-
al motion at U; and an oscillatory motion parallel to U;, at
a velocity of amplitude Uo. At intensities for which still
U; & vo photon emissions are favored because the lowering
of the electron translational velocity favors the matching
of v; with Uo and thus a "resonance" condition. At the
same intensities, photon absorptions are saturated, be-
cause such processes, increasing the electron velocity v;,
only worsen the matching condition.

The same interpretation helps to understand the slightly
reversed (though less marked) behavior occurring in the
oscillatory parts of the TCS, past the first peak (Fig. 12).
We observe that this situation is strongly reminiscent of a
well-known classical process occurring in plasma physics,
namely, that of two-stream instability, which is frequently
viewed also as a kind of Cerenkov effect.
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FIG. 10. Total cross sections (TCS) (in ~ao units) vs the field intensity (in W/cm ) for absorption (dashed lines) and emission (solid
lines) of one, five and ten photons. Other parameters as in Fig. 1.
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IV. AN APPROXIMATE EIKONAL TREATMENT
OF FREE-FREE TRANSITIONS

All of the reported results are based on the first Born
formulas exactly calculated. Besides, an effort has been
made to single out from the FBA formulas the dominat-
ing features to be able to have a check of the numerical
results. As we believe, altogether it has helped to have a
fuller insight into the results exhibiting several interesting
physical aspects.

We have considered relatively energetic collisions to be
allowed to use the FBA. Nevertheless, we are aware of
the limit of the Born approximation, especially from a
quantitative point of view. Qualitatively, instead, the re-
ported results should be confirmed also by more accurate
theoretical treatments. In this sense, the merits of the
FBA are in that it allows us to get a first comprehensive
picture of many physical aspects in a relatively simple and
unified way. Unfortunately, more rigorous treatments are
much more dificult to handle and to date they may serve
only for giving limited answers to single questions.

It is of interest to consider here the eikonal approxima-
tion to the problem at hand here. ' ' We wish to show
that performing reasonable simplifications and considering
some special cases, from the exact eikonal cross section
one may obtain expressions clearly reproducing the same

physical contents as those discussed above.
We find it convenient to start with the general expres-

sion for the eikonal total cross section in the form derived
by Gersten and Mittleman [formula (3.4) of Ref. 20];
namely, changing slightly the original notation

cr =4 d b 2m 'da sin
0

X g J„(nuo/u;)

X exp( —ina )X„(b,u, ) (4. 1)

with

(4.3)

Y„(b,v;)=(2u;) ' J V(b, z) exp( —in za/i)duz (4.2)

quantities strictly related to the eikonal phase-shift func-
tions. In fact, n =0 gives

Xo(b, v;)=(2u;) ' f V(b, z)dz,

the field-free eikonal phase-shift function, while 7„with
n&0 multiplied by [J„(nuo/v;) exp( —ina)] give the con-
tributions due to the field. Accordingly, Eq. (4.1) is
rewritten as



36 HIGH-INTENSITY MULTIPHOTON FREE-FREE TRANSITIONS 1167

10'

I

t lt I
I 1

~ %/~

~ ~

~ ~

~ ~

l
l g ]'

'l

ri

l

10

INTENSITY ( 10 N cm )

FIG. 12. Total cross sections (TCS) (in ~ao units) vs the field intensity (in W/cm ). Details of Fig. 10 concerning the oscillatory
structure. Dotted line, absorption of five photons; dot-dashed line, emission of five photons; dashed line, absorption of ten photons;

o =4 f d b f (2') 'da sin
0

X Xp+ g J„(nu, /u, )
n

[n~O]

&( exp( ina)X„(—b, u, ) (4.4)

(4.6)

i~plying ~=vo/v &1 and using the result N 5732 1 of
Ref. 22, the sum over n in (4.5) is performed to give

g cos(na)J„(nup/v ) =(Up/2v;) cosp[1 —(up/v;) cosp]
n =1

=27„(b,u; } g -cos(na)J„(nup/v;) .
n =1

With the constraint

(4.5)

Now, we assume that the scattering potential is such
that 7„ is weakly dependent on n. Generally, even in
strong-field contexts, only small n count, so that the as-
sumption of weak n dependence for g„ is reasonable for
finite-range potentials and high energies [see below, Eq.
(4.15)). Thus we can take X„out of the infinite sum over
n in (4.4) either letting n =0 or, alternatively, taking some
average value of n, say n,

J„(nvp/u; ) exp( ina)X„(b, u; )—
n

(n~oj

(4.7)

with /3 defined by the equation

p (up/v;) sinp=a .— (4.8)

During the integration over a, when cosp= 1, Eq. (4.7}be-
comes very large if additionally vo=v;. In such a case,
the contributions to the eikonal phase-shift function due
to the field are strongly enhanced, in agreement with our
previous findings, and the total cross section is expected
to be considerably modified.

We now make the assumption that the field-free eikonal
phase-shift function Xo is much larger than the contribu-
tions due to the field, and expand, accordingly, the sine
function of Eq (4.4). It gives
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o =oFF+8u; g J (nuo/u')
n =1

d b cos 2+p P b,v;, 4.9

o o =(oFF)o+ g J (&uolu )iTo(&)
n

(n~p)

(4.1 1)

(o FF)o ——4 f d bXp(b, u; ) (4.12)

and

op(n)=4 I d b ~X„(b,u;)
~

(4.13)

Further, if for the n values which count crp(n) is a weak
function of n, Eq. (4.11) may be rewritten as

rrp =(0'FF)p 1+ g J„(iiup/u; )

n

(n~pj

(4.14)

The approximate cross sections derived in this section
have their origin in the eikonal treatment, but show large-
ly the same behavior as their FBA counterparts (3.5),
(3.6), (3.9), and (3.10); accordingly, they express largely
the same physical contents (breakdown of the sum rule,
favorable conditions for enhancement of the cross sections
at up=u;, oscillatory behavior at uo & u;, and so on).

For the potential considered in our calculations,

V(r)=V(b, z)=r 'exp[ —[(b +z )' ]lrpI,
we have

X„(b,u;)=(u;) 'Kp(b(n pi lu; +I/rp)'~ ), (4.15)

where Kp(z) is the zero-order cylindrical function of an
imaginary argument and use has been made of the in-
tegral (3.962.2) of Ref. 23. The argument of Ko clearly
shows when the n dependence may be neglected and
which is the role of the range of the potential. With a
choice of the parameters convenient to the approximation
adopted, and considering that contributions with small n

dominate in the total cross section, we may conclude that

with o.FF the field-free cross section, and gp and 7, given,
respectively, by (4.3) and (4.2). This result, which is very
similar to Eq. (3.13) of Ref. 20, is rich in information con-
cerning the behavior of the cross section and this informa-
tion is in close qualitative agreement with the findings of
our previous sections. With the constraint (4.6) and let-
ting again n~n in X„, the summation in (4.9) is per-
formed with the aid of the relation N. 5.7.31.1 of Ref. 22
(an alternative expression is derived in the Appendix), and
we have the expression

o =o FF+4u; i X„i[( I —up/u; )'i —1] ' J d b cos(2Xp)

(uplu; ( 1 ) . (4. 10)

Finally, assuming sufficiently high initial velocities and
weak potentials, we approximate the sine appearing in Eq.
(4.1) by its argument and readily obtain formulas very
similar to the FBA ones (as it should be). In fact, we
have

in (4.15) the n dependence is negligible. So, within an
eikonal treatment of strong-field free-free transitions, we
have ended, qualitatively, with the same conclusions ar-
rived at in the first Born approximation. Quantitatively,
the actual results may well be different. It is worth noting
the fact that in the eikonal treatment some dominating
features have emerged almost immediately, while in the
case of the first Born approximation an inspection of the
pertinent formulas has been required coupled to prelimi-
nary calculations of the DCS. It is due to the peculiar
features of the eikonal approximation itself.

V. CONCLUDING REMARKS

In this work, based on a basic and simple treatment
(first Born approximation and ideal laser model), we have
performed a comprehensive set of numerical high-
intensity calculations, which have produced a variety of
new information, believed to prompt other, more accurate
investigations.

In particular, we have found the following: (i) the be-
havior of the total cross section versus intensity may
significantly depend on the range of the scattering poten-
tial, (ii) for moderately long-range potentials, in parallel
geometry k; //Ep, the total cross sections show an
enhancement by orders of magnitude when vp =v;, and an
oscillatory behavior when up & u;, and (iii) near up=u;,
scattering events with absorption have a cross section of
different form as compared to that of scattering with emis-
sion. A physical explanation has been provided to this re-
sult.

Being based on the first Born approximation, the re-
ported results are expected to be only qualitatively
correct. However, as most of the results have a rather
transparent physical interpretation, they are expected to
hold in an essential way also beyond the FBA. Accord-
ingly, it is hoped that comprehensive and more rigorous
calculations will soon become available on the same sub-
ject.

A basic feature underlying most of the obtained results
is the interplay between the classical and the quantum as-
pects of the elementary process. This interplay is formal-
ly expressed by the factored structure of the differential
cross sections, Eq. (2.1). Several numerical results and
some specific analytical expressions say that the classical
aspects of the process manifest themselves only when the
large majority of the particles interact efficiently with the
field (parallel geometry and moderately long-range poten-
tials). When it happens, the classical parameters entering
the theoretical treatment are found to play a key role and
the scattering parameters strongly affected. When instead
only few electrons, for one reason or another (short-range
potentials and/or perpendicular geometry), interact
strongly with the field, no peaking approximation is al-
lowed, the classical aspects of the process are smeared out
by the integration over the angles and practically lost.

The emphasis of the calculations has been on the high-
intensity domains. As stated in the Introduction, for such
domains the ideal laser model is likely to be a rather poor
representation of a real intense laser. Nevertheless, the re-
ported information is believed to be significant because,
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first, the ideal laser model is a fundamental model, on
which the great majority of theoretical predictions is usu-
ally based; second, it serves as a necessary starting point
for more refined and realistic treatments.

we have

S(x)=(2/sr) f i d8f(8),
0

where

(A2)

ACKNOWLEDGMENTS

APPENDIX

In this appendix we evaluate the sum

S(x)= g J„(nx) .
n =1

Using the integral representation of the squared Bessel
function

J„(nx)=(2/sr) f ~ d8 J2„(2nx cos8),
0

(A 1)
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f(8)= g J2„(2nx cos8)
n=1

=(x cos 8)/[2(l —x cos 8)] (A3)

implying, as a limit, x & 1.
Integration of f(8) in (A2) gives

S(x)=(x /4)F( —'„1;2;x ), (A5)

with F the hypergeometric function. (A5) is used in the
main text [Eq. (3.11)]. An alternative expression may be
found in Ref. 22, N. 5.7.31.1, and is used in Eq. (4.10).
All the formulas used in this appendix can be found in
Ref. 23.

provided that

x cos8& [1+(1—x cos 8)] ' exp[ —(1—x cos )' ],
(A4)

F. V. Bunkin and M. V. Fedorov, Zh. Eksp. Teor. Fiz. 49, 31
(1965) [Sov. Phys. —JETP 22, 844 (1966)].

2N. M. Kroll and K. M. Watson, Phys. Rev. A 8, 804 (1973).
A. Weingartshofer, J. K. Holmes, J. Sabbagh, and S. L. Chin, J.

Phys. B 16, 1805 (1983).
4L. Langhans, J. Phys. B 11, 2361 (1978).
~D. Andrick and H. Bader, J. Phys. B 17, 4549 (1984).
6M. H. Mittleman, Introduction to the Theory of Laser Atom In-

teractions (Plenum, New York, 1982).
7L. Rosenberg, Adv. At. Mol. Phys. 18, 1 (1982).
F. Ehlotzky, Can. J. Phys. 63, 907 (1985).
G. Ferrante, in Fundamental Processes in Atomic Collisions

Physics, edited by H. Kleinpoppen, H. O. Lutz, and J. S.
Briggs (Plenum, New York, 1985), p. 343.
H. Brehme, Phys. Rev. C 3, 837 (1971).
R. Daniele, G. Ferrante, and R. Zangara, Nuovo Cimento D 2,
1509 (1983).

' J. Taylor, Scattering Theory (Wiley, New York, 1972), Sec.
14-1.

' J. Banerji and M. H. Mittleman, Phys. Rev. A 26, 3706 (1982).
L. Rosenberg, Phys. Rev. A 20, 457 (1979).
R. Shakeshaft, Phys. Rev. A 28, 667 (1983).
M. H. Mittleman, Phys. Rev. A 21, 79 (1980).
S. Bivona, R. Zangara, and G. Ferrante, Phys. Lett. 110A, 375
(1985).

' R. Daniele, G. Ferrante, F. Morales, and F. Trombetta, J.
Phys. B 19, L133 (1986).

'9R. V. Karapetyan and M. V. Fedorov, Sov. J. Quantum Elec-
tron. 7, 1260 (1977).
J. I. Gersten and M. H. Mittleman, Phys. Rev. A 12, 1840
(1975).

'G. Ferrante, C. Leone, and L. Lo Cascio, J. Phys. B 12, 2319
(1979}.
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Spe-
cial Functions, Integrals and Series (in Russian) (Nauka, Mos-
cow, 1983).

23I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series,
and Products (Academic, New York, 1973).


