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Role of potential structure in nonadiabatic collisions
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The role of structure in crossing potential-energy curves upon nonadiabatic collisions is probed

by means of functional sensitivity analysis. The inelastic transition X[He++Ne(3p )]- X[He++Ne(3p 4s)] modeled by a crossing of the corresponding diabatic potential-energy
curves ( V]] and V») is used as an illustration. The functional derivatives 6o. ]q(E) /6 V» (R),
6o.]2(E)/6V»(R), and 6o. ]2(E)/6V]2(R) of the corresponding nonadiabatic collision cross section
o. ]q are calculated using the exponential distorted-wave approximation. These functional deriva-

tives offer a quantitative measure of the importance of different regions of the potential [V"(R)
and Vzz(R)] and coupling [V,z(R)] functions to the nonadiabatic collision cross section cr, z. The
prominent Gaussian-like feature of the 6o. ]~(E ) /6 V [2 (R) curve in the crossing point region
(R -R*) is found to be in qualitative accord with the 6(R —R ) function idealization of the
Landau-Zener-Stueckelberg (LZS) theory. Similarly, the most prominent feature of the
6a. ]2(E)/6V]i(R) and 6o. ]2(E)/6V»(R) curves occurs in the vicinity of the crossing point region
where they mimic the d6(R —R *)/dR behavior predicted by the LZS theory. The breadths of all

three functional derivative curves identify a much broader region of potential function importance
than the loosely defined avoided-crossing region. The region of significance is also found to in-

crease with an increase in the total energy. This considerable sensitivity away from the crossing
point along with the quantum interference structure of the functional sensitivity curves and the

dynamical dependence of these sensitivities offer new insights and bring out the limitations of the
intuitive pictures rooted in the LZS theory of curve crossing.

I. INTRODUCTION

An analysis of the role played by structure in a scatter-
ing potential V upon a cross section o. may be examined
by a functional expansion

o[V+5V]=o.[V]+ f dR', 5V(R')

+O(5V) + '

Here R' denotes generic coordinate space variables. For
infinitesimal variations, we may limit ourselves to first or-
der in the variation 6 V, whereby

5o. = f dR'5V(R')
5V(R' (2)

The first-order functional derivative 6o. /6V(R') serves the
role of a weight function in Eq. (2) projecting out those
regions of the potential of significance to the cross section.
The values of R' for which 5o /5V(R') is large imply re-
gions of importance in the potential, while for R' values
where 5cr/5V(R') is small, the sensitivity of the cross sec-
tion will be negligible. An important point to note is that
this assessment does not require an explicit variation
5V(R') but rather just an examination of the functional
sensitivity 5o/5V(R'). A formal development of this
technique may be found in earlier work ' and this paper
focuses on an application to nonadiabatic collisions.

The treatment of nonadiabatic collisions requires ob-
taining more than one potential energy curve (surface) and
the corresponding nonadiabatic coupling elements The
concept of curve crossings is central to most schemes at-

tempting to explain electronic energy transfer in molecu-
lar collisions. A study of the contributions made by
different regions of these curves and the coupling matrix
elements on nonadiabatic collision cross sections is of
clear physical importance. Such a study could also isolate
regions where the potential-energy curves and coupling
elements need to be calculated accurately and others
where a less accurate determination would suffice for a
particular system.

The Landau-Zener-Stueckelberg (LZS) theory of curve
crossings has been utilized fruitfully in this context and its
limitations have been explored by various workers. ' The
principal feature of this theory is the complete determina-
tion of the transition probability by the slope of the curves
and the magnitude of the coupling between the states, at
the point of the crossing alone. The corollary to this hy-
pothesis is the irrelevance of further information on these
curves and the coupling matrix element away from the
crossing point. Insights about the validity of the assump-
tions of the Landau-Zener-Stueckelberg theory will be ob-
tained as an adjunct of our analysis.

In Sec. II, we outline the formal apparatus for study-
ing two state curve-crossing functional sensitivities.
The inelastic transition X[He++Ne(3p )]~ 2[He+
+Ne(3p 4s)] has been modeled by the crossing of corre-
sponding diabatic curves ' and will be used as a simple
application in Sec. III.

II. THEORY

The assumption of only two electronic states along with
a partial-wave expansion of the scattering functions for
both states leads to the following coupled radial equations
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for the Ith partial wave' "
i (I —1)

dR
+k( —U(((R) — X((R)

R

= U(z(R)Xz(R),

d i (i —1) (

dR
+k z —Uzz(R ) — Xz(R )

R

= Uz((R)XI(R),

where

2pU21=U&2= ~i2 ~

k; = [E —V;;(oo)], i =1,22p

(3a)

(3b)

S'= exp(iq')exp( —iB')exp(iq'), (6)

where g' a diagonal matrix of phase shifts and the
nonzero elements of the distorted-wave matrix B ' are
given by

Bz( =BIz = [k(kz] f dRw((k(R) V(z(R)w((kzR)
g2 0

(7)

and w((k;R) is a distorted-wave (DW) function obtained
by solving Eq. (3) without the off-diagonal coupling ele-
ment.

The effect of variations in V(((R), Vzz(R), or V&z(R) on
0.

~2 may now be ascertained by calculating
5o (z/5V(((R), 5o (z/5V22(R), and 60 (z/5V(z(R), respec-
tively. The functional derivative 5o (z/5V((R) is given by

and V(z(R) is the usual diabatic matrix element between
the electronic wave functions for the two states. " In Eq.
(3), p is the collisional reduced mass, R is the internuclear
distance, and the radial scattering wave functions for the
electronic states 1 and 2 are X((R) and Xz(R), respective-
ly.

The numerical solution of the coupled Eqs. (3) with
the boundary condition R ~ ao

XJ'(R )-k; ' 5;(exp —i k(R—

z g (2l + 1)Re
5VJ(R k (

5 exp[ —iB ](z
X exp[iB '] (z

5V( R

This may be simplified by drawing upon'

Iexp[ ( ](z v; IR)

5V((R)

where Q is the unitary transformation matrix that diago-
nalizes B',

—S exp i kR—
V (4) Q 'B'Q =d, (10)

o.;(= g (2l+1)
~

5;~ —S;,'
i

(5)

furnishes the elements of the scattering matrix S', and the
integral scattering cross section o.

;~ is given by

and

V;(Rj 1
mn

5B'
5V((R)

V; (R) V . (R)
&mn =Pm„Zmn

(12)

At the energies involved here (-25—75 eV) a viable ap-
proximation is computationally convenient. The exponen-
tial distorted-wave (EDW) approximation has been found
to be very useful in this context "" and is the method
we have chosen for the present investigation. However,
the general functional sensitivity approach is not limited
to any particular dynamical approximation.

In the EDW approximation, the S matrix at a fixed an-
gular momentum is given by

exp( —id ) —exp( id„„)—
mn-

dmm —dnn
(13)

The partial-wave index l is implicitly understood to label
all the matrices defined above.

Thus, in evaluating the functional sensitivities
5o (z/5 V((R ) we need to evaluate the corresponding
derivatives 5B(z/5V((R). To obtain these derivatives, we
directly differentiate the expression in Eq. (7),

5B(z 4p, „5V(z(R')
, (k(kz)' f dR'w((k(R') w((kzR')

5V(z R 0 5V(z R
(14a)

(k, kz)' w((k, R)w((kzR), (14b)

and

5B',2 4 5w((k, R ')~ (k(k ) dR ' V(z(R ')w((kzR '),
5V(i(R) gz 0 5V„(R) (15)

4p, ~z „, 5w((kzR ')
z

(k(kz)' f dR'w (k (R')(V (R(z')
5Vzz(R')

(16)
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The functional derivatives of the wave functions 5w~(k;R )/5V;, (R) are obtained by solving their governing equation

d2

dR'
5m~(k, R')

+k; —U;;(R') = 5(R —R')wi(k;R') .
5V;;(R)

Using a Green's function approach I' to solving this equation combined with Eqs. (15) and (16) yields

4p, i~ w( (k;R)wl(k;R) R
( k 1 k2 ) f LO) ( k; R '

) U ) 2 (R '
)u) ( ( k& R '

)dR '

0

wI (k;R)
+ tU& (k;R')U&z(R')wr(kiR')dR', i j =1,2;i&j

j R
(18)

where m~ is the irregular distorted wave function. The
functional sensitivities 5o ~2/5V~~(R) and 5o ~2/5V2q(R)
may now be obtained by using Eqs. (18) and (9) in Eq. (8).
The expression for the functional sensitivity 5o. ~q/5V~2(R)
is obtained by using Eq. (14b) in conjunction with Eqs. (9)
and (8). The evaluation of these quantities in the present
calculations is facilitated by using Lan ger's uniform
asymptotic expansion' ' for the radial wave function
w~(k;R) and w~ (k;R).

III. RESULTS AND DISCUSSION
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We have applied the method outlined in the previous
section to examine the role of the potentials for the
curve-crossing transition 2[He+ + Ne(3p )]~ 2[He++
Ne(3p 4s)] modeled by Smith and Olson. ' " The diabat-
ic curves are shown in Fig. 1 and are parametrized by the
functional forms

V~(R) =a ~R 'exp( —R /aq), (19)

and

Vp2(R) =(a iR ' —a3)exp( —R /ap)+ 16.8 eV, (20)

V&2(R ) =a4exp( —R /a & ) . (21)

The various parameters are those of Ref. 10(a) and are
reproduced in Table I for convenience. The EDW calcu-
lations for the cross sections agree well with the DW [Ref.
10(a)] and the uniform WKB (UWKB) results' ' ' as
shown in Table II. Results for functional sensitivities for
E =0.919 and 2.606 a.u. are presented in Figs. 2 and 3,
respectively. In viewing these curves, both their magni-
tude and sign are physically significant. A large magni-
tude implies a significant region of the potential and the
+ ( —) sign indicates whether an increase in the potential
in that region will produce a concomitant increase (de-
crease) in the cross section.

All the sensitivities rapidly damp to zero in the non-
classical short-range region and display oscillatory struc-
ture for large internuclear distances with de Broglie wave-
lengths of m./k ~, n/kq and 2~/(k ~

—kq ) for
5o~2/5V~t(R), 5a ~2/5Vzq(R), and 5o ~q/5V&z(R), respec-
tively. The short-range lack of potential sensitivity is
physically reasonable and its origin in Eq. (14) and (18) is
quite evident through the behavior of tel(k;R) for R~0
and reflects the vanishingly small probability of finding
the projectile in the classically forbidden region. The
most prominent feature of these sensitivities is that their
maximum amplitude is in the vicinity of the crossing
point (R *=2.02 a.u. ) where 5o ~q/5 V~2(R) displays a
Gaussian-like feature, and both 5o ~2/5 V~ ~ (R ) and
5cr ~2/5 V22(R ) change sign in going from R & R * to
R &R . It is also seen that the sign reversal of the latter

1 AO 1.80 2.20 2.60 3.00 3.40
R (o.u. )

TABLE I. He+ + Ne potential parameters from Ref. 10(a).
All values are in atomic units.

FICx. 1. The diabatic potentials Vl 1 (R ) and Vq~ (R ) for
He+ + Ne of Ref. 10(a), from which the present calculations
were made. The corresponding adiabatic curves El (R ) and
E2(R) are displayed in the inset. The domain of the inset corre-
sponds to the boxed area of the main figure. Potential and cross-
ing parameters are collected in Table I.

al
Q2

a5

21, 1

0.678
12.1

0.170
0.667
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Energy This calculation DW [Ref. 10(a)] UWKB [Ref. 10(b)]

0.919
1.0
1.5
2.0
2.6
2.606

0.820
0.842
0.818
0.765
0.709
0.706

0.874

0.729

0.873
0.844
0.779
0.719

TABLE II. Total inelastic cross sections. All values are in
atomic units.

two curves are the opposite of each other.
To understand these features, we replace the exponen-

tial approximation for S in Eq. (8) by its lowest-order
Dw expansion in view of the small magnitude of BI2
(found numerically to be much less than unity). With this
approximation

&]2 2w g (2l +1)BIp (22)
5V; R lj

and using Eqs. (14) and (18) we obtain

' 1/2
& I2 8mP k2 I

5V;, (R) g (2l + 1)B)zwi(k)R)wi(k2R) (23)

and

&~]2 8+P
' 1/2

w~ (k;R)wi(k;R)g (21 +1)BIp f w((k;R')UI2(R')w((kiR')dR'
5V;;(R) A' k, k; 0

wf(k;R)
+ 'k' f "wi (k;R')U I(2R') w(ik RJ')dR', i,J =1,2;i&J

R
(24)

Before we begin our analysis of Eqs. (23) and (24) to un-
derstand the sensitivity maps of Figs. 2 —4 we note the fol-
lowing features of the diabatic curves of Fig. 1. For
R (R ' (the crossing point is R ') we have

V|I�(R)

) V2q(R) while the reverse is true for R )R *. As
we increase l, the turning points for the corresponding
effective potentials [UJJ(R)+(1+ 1/2) /R ] will keep
moving to the right. These observations imply that while
for lower values of I the turning point for Vil(R) will
occur for a larger R value than that for V22(R) as we in-
crease l, the two turning points will begin to come closer
to each other with minimum distance between the two at
a value l that places the two turning points at or ex-
tremely close to the crossing point itself. As we go to l
values higher than l, the two turning points will begin to
diverge from each other and the crossing point. For
sufticiently large l, the two turning points will be so far
from the crossing point that the probability for transition
from one curve to another will be vanishingly small lead-
ing to the truncation of the series in Eq. (5). In order to
facilitate the discussion below we recall that the regular
wave function wI(k;R) starts out with vanishing ampli-
tude in the nonclassical region and achieves its maximum
amplitude immediately to the right of the turning point.
The irregular wave function wI (k;R) on the other hand,
goes to infinity in the nonclassical region. For large R
values, the regular and irregular wave functions behave as
sin(k;R —lm/2+re~) and cos(k;R —ln/2+pl), respective-

I

I

ly.
The prominent Gaussian-like feature of

5o 12(E)/5 VI2(R ) in Figs. 2—4 is now easily understood.
At each l, the R dependence of Eq. (23) comes from the
product of the regular wave functions wI(k~R) and
wi(k2R). The maximum amplitude of these functions is
very close to the turning point. For l =l*, the turning
points of both V~ I(R) and Vqz(R) will be at or very close
to R =R*, and both wl(k|R) and wr(k2R) will be in
phase with each other with their maxima nearly coincid-
ing at R =R . This explains the Gaussian-like feature of
5o I2(E) /5 Vl2 (R ) with its maximum at R =R '. The
width of this Gaussian-like feature at a particular total en-
ergy E will be determined by how rapidly the two wave
functions go out of phase as a function of R. As we in-
crease E, the two wave functions will become more and
more coherent and will remain in phase over a larger
range of R values thereby leading to an increase in the
width of the Gaussian-like feature centered at R =R *.
Also, since BI2 decreases with an increase in E, the ampli-
tude of 5o.~q(E)/5V~2(R) will tend to be smaller with an
increase in E. Furthermore, since the outermost turning
point shifts to lower R values with an increase in E,
5o &2(E)/5V|2(R) will be nonzero for smaller R values as
we increase E. All these features are seen in Figs. 2—4.

As we go to larger R values, we may replace wi(kIR)
and wi(k2R) by their asymptotic forms in Eq. (23) leading
to

5cr, 2(E)
5V„(R)

8~P k2

fi kI

1/2

.cos[(k) —k~)R] g (21+1)B,2 sin ]

1
2 2

r

——sin[(k, +k2)R] g (21+ l)B l2 sin +g( —1
1

2
I 2

J

(25)
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K ~ 0.919 O.u. E ~ 0.919 o.u.
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003

-0.07

4.85 "

1.69 ).87 2.05 2.23 2.41 2.59

R (o.u.)

II.'I 2

U R

2.77 2.90 3.03 3.16 3~ 3.42

R (a.u.)

02.63
(c) E ~ 0.919 o.u.
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36.&5 ~

La&

22.91
e

9.67

-3.57

&.90 2.29 2.68 3.07 3.46 3.d5

R (o.u. )

FIG. 2. Sensitivity profiles for (a) 6o.~2(E)/6V»(R), (b) 6o.~2(E)/6V22(R), and (c) 6o &2(E)/6V&z(R) at E =p.9]9 a.u. as a function
of the internuclear distance R. The maximum sensitivity for V&z and the derivative nature of the profile for V» and V22 in the vicinity
of the crossing point is in qualitative agreement with the predictions of the Landau-Zener-Stueckelberg theory. However, the width
and the prominent features away from the crossing point expose its limitation. Details of the large-R behavior of 5o.~2(E)/6V~&(R) and
6o. I&(E)/6V2z(R) are amplified separately to the right. The large-R oscillatory structure of 6o &z(E)/5V»(R), 5o.&z(E)/5V22(R), and
5o &2(E)/6V&2(R) with wavelengths of ~/k&, a/k2, and 2~/(k& —kz) are in agreement with asymptotic analysis.
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sin(2k&R) g (21+1)(B'&2) cos(2gI lrr—)
I

In both Figs. 2(c) and 3(c) we observe a sinusoidal behavior with wavelength 2'/(k~ —k2) with no evidence for the
high-frequency term 2~/(k~+kq). The more coherent cosine terms apparently have a larger magnitude.

The large R behavior of 5a&2(E)/5V;;(R) is given by
' 1/25a ]2(E) —gers kz

5V (R) g~ k3

+cos(2k&R) g (21+1)(BI2)sin(2gI l~—), i =1,2
1

(26)

SN7 ~
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FIG. 3. Same as Fig. 2, except E =2.606 a.u.
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67 00

E = 0.919 a.u.

E = 1700 au.

53 00

39.00

LLJ

25.00
0

1 1.00

-3.00

1.69 1.87 2.05 2.23 2.41 2.59

R (o.u. )

FIG. 4. Sensitivity profiles for 6o. &z(E)/6V&z(R) at diferent
incident kinetic energies. The width of the Gaussian centered
at the crossing point R* is seen to be much larger than the
avoided crossing region of Fig. 1 and its increase for higher E
values underscores the limitation of intuitive pictures rooted in

the LZS theory.

where we have used the asymptotic expansion for the
wave functions. The sinusoidal behavior with wave-
length 2~/k; is seen in Figs. 2 and 3. The low-frequency
modulating amplitude evident in these figures is not re-
tained in the DW asymptotic form of Eq. (26). Recalling
that the sensitivities act as a weight function in the in-
tegrand of Eq. (2) our findings imply that a broad varia-
tion 6V(R ) in the asymptotic region would significantly
affect o.

&2 if it had the proper high-frequency com-
ponents (i.e. , a simple Gaussian-like broad variation will
elicit essentially a null response). This conclusion ap-
plies to the variations of V», V22, and V&2.

From the behavior of the wave functions, it is evident
that the major contribution to the dominant features of
the R dependence of 5o ~q(E)/5V;;(R) for a particular l
value comes from the vicinity of the turning point for this
l. Conversely, it may therefore be argued that the R
dependence near the crossing point is controlled by a clus-
ter of 1 values centered around 1* (since for 1 = l*, both of
the turning points are either at or very close to the cross-
ing point). The leading contributions to the R dependence
of 5o.~q(E)/6V;;(R) in the vicinity of the crossing point is
then provided by the second integral

~I (k;R) I wI (k;R ') U, z(R ')tU&(kiR')dR',
R

i,j =1,2;i&j (27)

in Eq. (24) since the first integral will be over a small in-
terval just about the turning point. Since w& (k, R) is al-
ways positive, the sign of the leading R behavior is con-
trolled by the integral f „w~ (k;R ') U~q(R ')mI(k R ')dR '.
The leading R dependence of 5cr, ~(E ) /6 V» (R ) and
5cr~q(E)/6V»(R) may then be analyzed by examining

SIz
~
Lzs=2exp( —g/v~)[1 —exp( —g/v~)], (28a)

where

dV»
dR

V (R*)

d V22

dR R

(28b)

and v~ is the radial velocity at R * given by

2 1(l +1)
—,'pv( =E—Vii(R*)— (29)

2p R w2

Because of the factor (21+1), dominant contributions to
Eq. (5) come from large values of i. Hence, following
Bates and Lewis, ' by replacing the summation in Eq. (5)
by an integral, we can obtain the LZS functional sensitivi-
ties

and

LZS

5V)p(R)
LZS

5Vii(R)

2Vip(R *)
05(R —R *),

Ap

d5(R —R*)
(bp)~ dR

(30)

(3 &)

6aip Vip(R*) d6(R R*)
5V»(R) dR

(32)

the nature of this integral for l & l* and l ~ l*.
For I &1*, the turning point for Vqq(R) is to the left of

the turning point for V, , (R), with maximum positive
amplitudes of w& (k, R) and wI(k&R) in phase with
each other. This leads to the integral

f „w~t(k, R')U, ~(R')w&(k~R')dR' in Eq. (27) fori =1 be-

ing large and positive for I & l*, i.e., R & R *. In the same
vein, when l ~l* the maximum positive amplitude of
tvl"(k &R ) coincides with large negative portions of
wl(kzR) whereby the same integral is large but negative
for l & l*. Thus the positive leading behavior for R &R *

changes into a negative leading behavior for R &R *.
Since the obverse of the logic employed for analyzing the
behavior of f ~ w& (k&R')U&~(R')wl(k, R')dR' applies for

f z wI (kzR')U, ~(R')w~(k, R')dR ', the positive and nega-

tive regions are reversed in this case, producing the oppo-
site sign behavior of the main features of
6cr, ~(E) /5V~, (R) and 6o&z(E) ./5Vz&(R) as seen in Figs. 2

and 3.
Apart from the structures analyzed above, we also find

that while the sensitivity maps of 6o,~(E)/5VJ(R) at
different energies have similar gross features and identify
approximately the same region of potential-energy
curves as having a critical role in the collision process,
the functional sensitivities also display a considerable en-
ergy dependence and a general decrease in magnitude
with an increase in E. This is physically reasonable
since at higher energy the projectile is less sensitive to
structural features in the potential energy curves. Since
the crossing point region is of central importance in the
Landau-Zener-Stueckelberg theory of curve crossing, it
is useful to examine 5"unctional sensitivities of o.

~2 in the
framework of this theory. Towards this end, we substi-
tute the LZS expression for

~
SIz in Eq. (5)
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where

d V)i
dA

d V22

dR

[2Ep(2&x) —Ep(rx) ],2K

ki

mp Vt2(R '
)

A'Ap[E —Vii(R *)]

(33)

(34)

and E2(rx) is an exponential integral. '

From Figs. 2—4 it is apparent that the predictions of
the Landau-Zener-Stueckelberg theory are in qualitative
agreement with our results, with the obvious exception
that the 5-function idealization is untenable. However, in-
tutively one would expect from the assumptions of the
LZS theory that the appropriate region of significance
would be the loosely defined avoided-crossing region of
the corresponding adiabatic curves (see the inset of Fig.
1). Even if allowance is made for the broader avoided-
crossing region of the adiabatic curves (-0.1 a.u. ), it falls
short of the much broader region ( —0.4 a.u. ) of sensitivity
centered at 8 * seen in our results. The dynamical depen-
dence of these sensitivities is also unaccounted for by the
static intuitive picture rooted in the LZS theory.

In conclusion, we have presented a sensitivity method
for establishing the significant regions of potential func-
tions for two state nonadiabatic collision cross sections.
The results obtained for He+ + Ne offer a useful example

of the technique. The use of curve crossing to model
nonadiabatic transitions is quite common [see Ref. 18 for
a recent example] and the technique we have presented
should be helpful in assessing the requisite level of accura-
cy needed for various regions of the potential energy
curves and coupling matrix elements. While the impor-
tance of the broadly defined curve-crossing region is clear-
ly brought out by our investigation, it is also obvious that
the idealizations of the Landau-Zener-Stueckelberg theory
have serious limitations.

The method we have outlined, includes only two elec-
tronic states but the generalization to include more elec-
tronic states is straightforward. Such a generalization is
essential for treating intramultiplet transitions. The
modeling of the inelastic 2[He+ + Ne(3p )]~ X[He+
+Ne(3p 4s)] transition by two repulsive diabatic curves,
though effective and useful, perhaps masks other intrigu-
ing physical features of the functional sensitivity profiles
(6o,2(E)/5Vl(R)) and regions of potential significance
because of the simplicity of the curves themselves. Fi-
nally, a completely analogous theory may be developed
within the framework of the close-coupling method or
other desirable dynamic approaches.
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