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The role of structure in crossing potential-energy curves upon nonadiabatic collisions is probed
by means of functional sensitivity analysis. The inelastic transition ?Z[He* 4 Ne(3p®)]
—23[He" +Ne(3p°4s)] modeled by a crossing of the corresponding diabatic potential-energy
curves (V;; and V,,) is used as an illustration. The functional derivatives 80 ,(E)/8V1(R),
801,(E)/8V 1 (R), and 80 ,(E)/8V ,(R) of the corresponding nonadiabatic collision cross section
o, are calculated using the exponential distorted-wave approximation. These functional deriva-
tives offer a quantitative measure of the importance of different regions of the potential [V;(R)
and V,,(R)] and coupling [V ,(R)] functions to the nonadiabatic collision cross section o,. The
prominent Gaussian-like feature of the 80 ,(E)/8V,(R) curve in the crossing point region
(R~R?*) is found to be in qualitative accord with the 8(R —R*) function idealization of the
Landau-Zener-Stueckelberg (LZS) theory. Similarly, the most prominent feature of the
80 1,(E)/8V1(R) and 80 ,(E)/8V,(R) curves occurs in the vicinity of the crossing point region
where they mimic the d8(R —R *)/dR behavior predicted by the LZS theory. The breadths of all
three functional derivative curves identify a much broader region of potential function importance
than the loosely defined avoided-crossing region. The region of significance is also found to in-
crease with an increase in the total energy. This considerable sensitivity away from the crossing
point along with the quantum interference structure of the functional sensitivity curves and the
dynamical dependence of these sensitivities offer new insights and bring out the limitations of the
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intuitive pictures rooted in the LZS theory of curve crossing.

I. INTRODUCTION

An analysis of the role played by structure in a scatter-
ing potential ¥ upon a cross section ¢ may be examined
by a functional expansion:'

So

[ R’
5V(R’)6V( )

o[V +8V1=a[V]+ [ dR’

+OBV?+ - . (1)

Here R’ denotes generic coordinate space variables. For
infinitesimal variations, we may limit ourselves to first or-
der in the variation 8V, whereby
, . b0

so= [ dR'SVIR) 5o @)
The first-order functional derivative 60 /8V (R’) serves the
role of a weight function in Eq. (2) projecting out those
regions of the potential of significance to the cross section.
The values of R’ for which 6o /8V (R') is large imply re-
gions of importance in the potential, while for R’ values
where 60 /8V (R') is small, the sensitivity of the cross sec-
tion will be negligible. An important point to note is that
this assessment does not require an explicit variation
8V (R') but rather just an examination of the functional
sensitivity 80 /8V(R’). A formal development of this
technique may be found in earlier work®? and this paper
focuses on an application to nonadiabatic collisions.

The treatment of nonadiabatic collisions requires ob-
taining more than one potential energy curve (surface) and
the corresponding nonadiabatic coupling elements.*> The
concept of curve crossings is central to most schemes at-
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tempting to explain electronic energy transfer in molecu-
lar collisions.® A study of the contributions made by
different regions of these curves and the coupling matrix
elements on nonadiabatic collision cross sections is of
clear physical importance. Such a study could also isolate
regions where the potential-energy curves and coupling
elements need to be calculated accurately and others
where a less accurate determination would suffice for a
particular system.

The Landau-Zener-Stueckelberg’ (LZS) theory of curve
crossings has been utilized fruitfully in this context and its
limitations have been explored by various workers.*® The
principal feature of this theory is the complete determina-
tion of the transition probability by the slope of the curves
and the magnitude of the coupling between the states, at
the point of the crossing alone. The corollary to this hy-
pothesis is the irrelevance of further information on these
curves and the coupling matrix element away from the
crossing point. Insights about the validity of the assump-
tions of the Landau-Zener-Stueckelberg theory will be ob-
tained as an adjunct of our analysis.

In Sec. II, we outline the formal apparatus for study-
ing two state curve-crossing functional sensitivities.
The inelastic transition 2Z[He™ + Ne(3p®]—2Z[He*
+Ne(3p34s)] has been modeled by the crossing of corre-
sponding diabatic curves®!? and will be used as a simple
application in Sec. III.

II. THEORY

The assumption of only two electronic states along with
a partial-wave expansion of the scattering functions for
both states leads to the following coupled radial equations
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for the Ith partial wave'®!!

d‘j:z +kt—Un(R)— M R)
=Up(RXAXR),  (3a)
e T
=Uy(RXi{(R),  (3b)
where
U21=U12=—2}‘S‘V12 ,
k,2=—2#—[E —Vilw)], i=1,2
and V,(R) is the usual diabatic matrix element between

the electronic wave functions for the two states.!! In Eq.
(3), u is the collisional reduced mass, R is the internuclear
distance, and the radial scattering wave functions for the
electronic states 1 and 2 are Yi(R) and X5(R), respective-
ly.

The numerical solution of the coupled Egs. (3) with
the boundary condition R — «

XH(R)~ k172 [5 exp | —i [k,R —
; L

furnishes the elements of the scattering matrix S ! and the
integral scattering cross section o ;; is given by

UU.—_%IEOQI_}_I){SU—S,HZ- )

At the energies involved here (~25-75 eV) a viable ap-
proximation is computationally convenient. The exponen-
tial distorted-wave (EDW) approximation has been found
to be very useful in this context*®"!? and is the method
we have chosen for the present investigation. However,
the general functional sensitivity approach is not limited
to any particular dynamical approximation.

In the EDW approximation, the S matrix at a fixed an-
gular momentum is given by

|

1125

§1=exp(iﬁl)exp( ——iﬁ’)exp(z’g’) , (6)

where 7' a diagonal matrix of phase shifts and the
nonzero elements of the distorted-wave matrix B’ are
given by

B}, =Blz_—/i[k k2]'/2f dRw;(k\R)V 15(R)w;(k,R)

(7

and w;(k;R) is a distorted-wave (DW) function obtained
by solving Eq. (3) without the off-diagonal coupling ele-
ment.

The effect of variations in V;(R), ¥ (R), or V{3(R) on

012 may now be ascertained by calculating
50‘12/5V11 (R),50‘12/8V22(R), and 80’12/5V12(R), respec-
tively. The functional derivative 80 ,/8V;;(R) is given by
8012 27
— = (2/ +1)R.
8Vi;(R) Kk} }7: +
8exp[—iB'l1
By —— | . 8
LB =5, "R) ®)
This may be simplified by drawing upon'?
Sexp[—lB T2 (R)
x""®o-11,, , 9)
5V;(R) =[QX 12

where @ is the unitary transformation matrix that diago-
nalizes B/,

Q0 'B'9=d, (10)
X N =Pyt Z (an
ViR _ | o1 5B'
P, _— R 12

Q S8Vi;(R) Q mn 12

and
exp( —idym ) —exp( —id,,)

Zyn = . 13
m dmm_dnn ( )

The partial-wave index [ is implicitly understood to label
all the matrices defined above.

Thus, in evaluating the functional sensitivities
601,/8V;;(R) we need to evaluate the corresponding
derivatives 8B4, /8 Vij(R). To obtain these derivatives, we
directly differentiate the expression in Eq. (7),

8B, 2(R")
o Ji 172 ’ oVt , 4
VLR~ 7 (k,k,) f dR'w;(k,R’ ) 8V12< 7y WitkaR") (14a)
:i;i%(k,kz)l/zw,(k,R)w,<k2R) , (14b)
8B, i*li . dw,(kR")
— - ’ k ’
VR~ 2 Kk J7dr sV (&) VR wikR (15)
and
8B, 4 s Sw;(k,R")
5V (R) P (kik,) f dR'w;(k1R")V (R )W (16)
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The functional derivatives of the wave functions dw;(k;R’)/8V;;(R) are obtained by solving their governing equation

2
i;—l—([—j:z—]l—f—kiz—U,-(R’)
dR’ R’

Sw;(k;R")
8V (R)

=3ﬁg‘—5<R _Rwi(kR") . (17)

Using a Green’s function approach®?® to solving this equation combined with Egs. (15) and (16) yields

_83112 _éﬁi(k k)12 w] (ki R)w; (kiR
8Vi(R)  # 7 k;
LUIT(k,'R)
k;

where wf is the irregular distorted wave function. The
functional sensitivities 80 2/86V;(R) and 601,/8V2:(R)
may now be obtained by using Egs. (18) and (9) in Eq. (8).
The expression for the functional sensitivity 80 1,/8V12(R)
is obtained by using Eq. (14b) in conjunction with Egs. (9)
and (8). The evaluation of these quantities in the present
calculations is facilitated by using Langer’s uniform
asymptotic expansion'*!®> for the radial wave function
w;(k;R) and w/(k;R).

III. RESULTS AND DISCUSSION

We have applied the method outlined in the previous
section to examine the role of the potentials for the
curve-crossing transition *S[Het + Ne(3p%]—2Z[He* +
Ne(3p34s)] modeled by Smith and Olson.!®® The diabat-
ic curves are shown in Fig. 1 and are parametrized by the
functional forms
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FIG. 1. The diabatic potentials Vi i(R) and Vx:(R) for

He* + Ne of Ref. 10(a), from which the present calculations
were made. The corresponding adiabatic curves E;(R) and
E>(R) are displayed in the inset. The domain of the inset corre-
sponds to the boxed area of the main figure. Potential and cross-
ing parameters are collected in Table I.

)
J Wik ROU (R i (k;R VR’

fR‘” w (k;R"U 1o (Rw (k;RR" |, i,j=1,2;i%] (18)

Vii(R)=a;R ~'exp(—R /a,) , (19)

Vy(R)=(a ;R ~'—az)exp(—R /a,;)+16.8 eV, (20)
and

Vi(R)=a4sexp(—R /as) . 21

The various parameters are those of Ref. 10(a) and are
reproduced in Table I for convenience. The EDW calcu-
lations for the cross sections agree well with the DW [Ref.
10(a)] and the uniform WKB (UWKB) results'®® as
shown in Table II. Results for functional sensitivities for
E =0.919 and 2.606 a.u. are presented in Figs. 2 and 3,
respectively. In viewing these curves, both their magni-
tude and sign are physically significant. A large magni-
tude implies a significant region of the potential and the
+ (—) sign indicates whether an increase in the potential
in that region will produce a concomitant increase (de-
crease) in the cross section.

All the sensitivities rapidly damp to zero in the non-
classical short-range region and display oscillatory struc-
ture for large internuclear distances with de Broglie wave-
lengths of w/ky, w/k, and 2u/(k;—k;) for
80’12/5V11(R), 80’12/8V22(R), and 50‘]2/8V12(R), respec-
tively. The short-range lack of potential sensitivity is
physically reasonable and its origin in Eq. (14) and (18) is
quite evident through the behavior of w;(k;R) for R —0
and reflects the vanishingly small probability of finding
the projectile in the classically forbidden region. The
most prominent feature of these sensitivities is that their
maximum amplitude is in the vicinity of the crossing
point (R*=2.02 a.u.) where 80,/8V3(R) displays a
Gaussian-like feature, and both &8c,/8V;(R) and
8012/8V(R) change sign in going from R <R* to
R > R*. It is also seen that the sign reversal of the latter

TABLE I. He™ + Ne potential parameters from Ref. 10(a).
All values are in atomic units.

a 21.1
as 0.678
as 12.1
as 0.170
as 0.667
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TABLE II. Total inelastic cross sections. All values are in

atomic units.

Energy This calculation DW [Ref. 10(a)] UWKB [Ref. 10(b)]

0919 0.820 0.874
1.0 0.842 0.873
1.5 0.818 0.844
2.0 0.765 0.779
2.6 0.709 0.719
2.606 0.706 0.729
1/
o012 k,
—_— —_— (21+1)Blzw1( 1R)W[(k2R)
8Vy(R) — # | ki ;
and
8013 8mu | k2 , w; (k;R)w;
~— — 2l +1)B
8Vi(R) 7| k3 2,( +0%n k;

wi(k;R)

ki

Before we begin our analysis of Eqgs. (23) and (24) to un-
derstand the sensitivity maps of Figs. 2—4 we note the fol-
lowing features of the diabatic curves of Fig. 1. For
R <R* (the crossing point is R*) we have
V11(R)> V5 (R) while the reverse is true for R > R*. As
we increase /, the turning points for the corresponding
effective potentials [Uj;(R)+(I +1/2)*/R?] will keep
moving to the right. These observations imply that while
for lower values of / the turning point for V;;(R) will
occur for a larger R value than that for V,,(R) as we in-
crease /, the two turning points will begin to come closer
to each other with minimum distance between the two at
a value /* that places the two turning points at or ex-
tremely close to the crossing point itself. As we go to /
values higher than /*, the two turning points will begin to
diverge from each other and the crossing point. For
sufficiently large /, the two turning points will be so far
from the crossing point that the probability for transition
from one curve to another will be vanishingly small lead-
ing to the truncation of the series in Eq. (5). In order to
facilitate the discussion below we recall that the regular
wave function w(k;R) starts out with vanishing ampli-
tude in the nonclassical region and achieves its maximum
amplitude immediately to the rxght of the turning point.
The irregular wave function w; (k R) on the other hand,
goes to infinity in the nonclassical region. For large R
values, the regular and irregular wave functions behave as
sin(k;R —Im/2+7,) and cos(k;R —Il7/2+7), respective-
|

80 ,(E) —8mu
8Vy(R) ~  #

3
kl !

—lsin[(k, +k;)R]S (21 +1)B!,

1

J.7 wl (kiR U (R wi (k;R" AR’

k 172
—2-] lcos[ k,—k,)R]S (21 +1)B},
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two curves are the opposite of each other.

To understand these features, we replace the exponen-
tial approximation for S’ in Eq. (8) by its lowest-order
DW expansion in view of the small magnitude of B,

(found numerically to be much less than unity). With this
approximation
8o 12 2 OB 112
— (2l +1)Bl,———— 22
5V(R) = %; PRy R) 22
and using Egs. (14) and (18) we obtain
(23)

k:R) '
( S wikiROU (R i (k;R R’

, hj=1,2i#j . (4

f
ly.

The prominent Gaussian-like feature of
8012(E)/8V12(R) in Figs. 2—-4 is now easily understood.
At each I, the R dependence of Eq. (23) comes from the
product of the regular wave functions w;(k;R) and
wi(k,R). The maximum amplitude of these functions is
very close to the turning point. For / =I/*, the turning
points of both ¥;(R) and V,,(R) will be at or very close
to R~R*, and both w;(k;R) and w;(k,R) will be in
phase with each other with their maxima nearly coincid-
ing at R~R*. This explains the Gaussian-like feature of
80 12(E)/8V2(R) with its maximum at R~R?*. The
width of this Gaussian-like feature at a particular total en-
ergy E will be determined by how rapidly the two wave
functions go out of phase as a function of R. As we in-
crease E, the two wave functions will become more and
more coherent and will remain in phase over a larger
range of R values thereby leading to an increase in the
width of the Gaussian-like feature centered at R ~R*.
Also, since B, decreases with an increase in E, the ampli-
tude of 80 1,(E)/8V2(R) will tend to be smaller with an
increase in E. Furthermore, since the outermost turning
point shifts to lower R values with an increase in E,
801,(E)/8V12(R) will be nonzero for smaller R values as
we increase E. All these features are seen in Figs. 2—4.

As we go to larger R values, we may replace w;(kR)
and w;(k,R) by their asymptotic forms in Eq. (23) leading

to
1
sin® 5 ]

Il
) +m

sin
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( ) E = 0919 o.u. E = 0.919 o.u.
11.91 a 41 om 4
[.2]
o sm 1 o027t 1
x
=
T ss3 1 oar}
3
N 234} i1 o0.07 1
[
®
& -oes 1 -o0.03
—_
~4.04 1 -013 1
(b) E = 0.919 a.u. E = 0.919 o.u.
18.55 0.13 1
L2]
o 1387 .08 1
x
=
e 99 0.03 1
]
2
N 5 -0.02 1
[
®
8 -0.17 -0.07
(S
-4.85 -0.12
169 187 205 223 241 259 277 290 303 316 329 342
R (o) R (o.u.)
= 0.919 o.u.
(C) E a.u
‘2-63 L
49.39 P
=
s 36.15
&
[
‘5 229 1
©
©
9.67 1
-3.57

190 229 268 307 346 385
R (o.u)

FIG. 2. Sensitivity profiles for (a) 8 12(E)/8V11(R), (b) 8012(E)/8V1:(R), and (¢) 80 12(E)/8V12(R) at E =0.919 a.u. as a function
of the internuclear distance R. The maximum sensitivity for V', and the derivative nature of the profile for ¥, and V>, in the vicinity
of the crossing point is in qualitative agreement with the predictions of the Landau-Zener-Stueckelberg theory. However, the width
and the prominent features away from the crossing point expose its limitation. Details of the large-R behavior of 80 12(E)/8V11(R) and
80 12(E)/8V22(R) are amplified separately to the right. The large-R oscillatory structure of 8o 12(E)/8V11(R), 8012(E)/8V12(R), and
80 12(E)/8V12(R) with wavelengths of 7 /k\, m/k,, and 27 /(k| —k;) are in agreement with asymptotic analysis.
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In both Figs. 2(c) and 3(c) we observe a sinusoidal behavior with wavelength 27/(k; —k,) with no evidence for the
high-frequency term 27 /(k| +k,). The more coherent cosine terms apparently have a larger magnitude.
The large R behavior of 80 1,(E)/8V;(R) is given by

20,0 E)  —gmy (k2 | sin(2k,R) S (2 +1)(B};)%cos(2n} — 1)
-~ 73 1 12 1=
8Vi(R) — # | ki l ;
+cos(2k,R) 3 (21 +1)(BY,)sin(2n} —17) |, i=1,2 (26)
)
(03 ) ) ‘E - £GOG o.u. E = 2.606 o.u.
157 4 0.036 p
.2}
o os3 1 o030 1
X
£ oo { o024
i -0es t 1 oo
%
S % {1 o012
-2.13 1 0.006
(b; ) ) 'E - 2'.606 a.u. E = 2.606 o.u.
3.08 1 0.080 J
[.2]
o 233 1 o070 1
X
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i 0.83 1 oo0s0 1
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38.10 1
290.94
3
S 217
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¥ e 1
3
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-2.70 1
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R (o.u.)

FIG. 3. Same as Fig. 2, except E =2.606 a.u.



1130

T T T

E = 0919 a.u.
1.700 o.u
"""" E = 2.606 o.u.

.
I
i

m

I

67.00 |

53.00

39.00 |

25.00

8012(E)/6V12(R)

11.00 |

-3.00

1.69 187 205 223 241 259
R (o.u.)

FIG. 4. Sensitivity profiles for 60 ,(E)/8V,(R) at different
incident kinetic energies. The width of the Gaussian centered
at the crossing point R* is seen to be much larger than the
avoided crossing region of Fig. 1 and its increase for higher E
values underscores the limitation of intuitive pictures rooted in
the LZS theory.

where we have used the asymptotic expansion for the
wave functions. The sinusoidal behavior with wave-
length 27 /k; is seen in Figs. 2 and 3. The low-frequency
modulating amplitude evident in these figures is not re-
tained in the DW asymptotic form of Eq. (26). Recalling
that the sensitivities act as a weight function in the in-
tegrand of Eq. (2) our findings imply that a broad varia-
tion 8V (R’) in the asymptotic region would significantly
affect o, if it had the proper high-frequency com-
ponents (i.e., a simple Gaussian-like broad variation will
elicit essentially a null response). This conclusion ap-
plies to the variations of V', V,,, and V,.

From the behavior of the wave functions, it is evident
that the major contribution to the dominant features of
the R dependence of 80,(E)/8V;(R) for a particular /
value comes from the vicinity of the turning point for this
I. Conversely, it may therefore be argued that the R
dependence near the crossing point is controlled by a clus-
ter of [ values centered around /* (since for / =/*, both of
the turning points are either at or very close to the cross-
ing point). The leading contributions to the R dependence
of 80 12(E)/8V;(R) in the vicinity of the crossing point is
then provided by the second integral

wi(kR) [ 7w (kRO (R hw(k;RdR"
i,j=1,2;i=j (27
in Eq. (24) since the first integral will be over a small in-
terval just about the turning point. Since w/(k;R) is al-
ways positive, the sign of the leading R behavior is con-
trolled by the integral [ ;w, (k;R")U,,(R")w,(k;R")dR".

The leading R dependence of 60 ,(E)/8V;(R) and
80 1,(E)/8V,;,(R) may then be analyzed by examining
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the nature of this integral for / </* and / > 1*.

For ! <I*, the turning point for ¥V,,(R) is to the left of
the turning point for V;;(R), with maximum positive
amplitudes of w,T(klR) and w;(k,R) in phase with
each other. This leads to the integral
f:wf(klR')Ulz(R')wl(sz ")dR"in Eq. (27) for i =1 be-
ing large and positive for / <[/*,i.e., R <R *. In the same
vein, when / >/* the maximum positive amplitude of
w;r(k,R) coincides with large negative portions of
w;(k,R) whereby the same integral is large but negative
for I > 1*. Thus the positive leading behavior for R <R *
changes into a negative leading behavior for R > R*.
Since the obverse of the logic employed for analyzing the
behavior of f;wf(k (RU,(Rw;(k,R")dR " applies for
f;w,T(sz’)Ulz(R "Jw;(k;R")dR’, the positive and nega-
tive regions are reversed in this case, producing the oppo-
site sign behavior of the main features of
80 1,(E)/8V | 1(R) and 60 ,(E)/8V 5 (R) as seen in Figs. 2
and 3.

Apart from the structures analyzed above, we also find
that while the sensitivity maps of 80 ,(E)/8V};(R) at
different energies have similar gross features and identify
approximately the same region of potential-energy
curves as having a critical role in the collision process,
the functional sensitivities also display a considerable en-
ergy dependence and a general decrease in magnitude
with an increase in E. This is physically reasonable
since at higher energy the projectile is less sensitive to
structural features in the potential energy curves. Since
the crossing point region is of central importance in the
Landau-Zener-Stueckelberg theory of curve crossing, it
is useful to examine Yunctional sensitivities of o |, in the
framework of this theory. Towards this end, we substi-
tute the LZS expression’ for | S%, |2 in Eq. (5)

| Sty [tzs=2exp(—&/v)[1—exp(—E/v))],  (28a)
where
VH(R*)
£=20 12 (28b)
fiolqv,  dVy
dR  dR |g_g»*
and v, is the radial velocity at R * given by
# 1(+1)
2
%,usz—Vn(R*)—EE R (29)

Because of the factor (2/ 4+ 1), dominant contributions to
Eq. (5) come from large values of /. Hence, following
Bates and Lewis,'® by replacing the summation in Eqg. (5)
by an integral, we can obtain the LZS functional sensitivi-
ties

dct#  2Vi(R*)

- Q8(R —R*
57 (R Ap ( ), (30)
Sot#S Vi, (R*) —R*
o3 _rn Qa'S(R R*) ’ 31)
5V 11(R) (Ap)? dR
and
dotfs VH(R*) d8(R —R*)

=— Q , (32)

SV n(R) (Ap)? dR
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where
dvy dVaxn
Ap= R ,
dR  dR |q_g+
) (33)
Q:k—Z[2E2(2'rx)—E2(Tx)] ,
1
VH(R*)
TV 1a( (34)

" FAplE — Vi (R*)]

and E,(7x) is an exponential integral.!”

From Figs. 2—4 it is apparent that the predictions of
the Landau-Zener-Stueckelberg theory are in qualitative
agreement with our results, with the obvious exception
that the §-function idealization is untenable. However, in-
tutively one would expect from the assumptions of the
LZS theory that the appropriate region of significance
would be the loosely defined avoided-crossing region of
the corresponding adiabatic curves (see the inset of Fig.
1). Even if allowance is made for the broader avoided-
crossing region of the adiabatic curves (~0.1 a.u.), it falls
short of the much broader region (~0.4 a.u.) of sensitivity
centered at R * seen in our results. The dynamical depen-
dence of these sensitivities is also unaccounted for by the
static intuitive picture rooted in the LZS theory.

In conclusion, we have presented a sensitivity method
for establishing the significant regions of potential func-
tions for two state nonadiabatic collision cross sections.
The results obtained for He™ + Ne offer a useful example

of the technique. The use of curve crossing to model
nonadiabatic transitions is quite common [see Ref. 18 for
a recent example] and the technique we have presented
should be helpful in assessing the requisite level of accura-
cy needed for various regions of the potential energy
curves and coupling matrix elements. While the impor-
tance of the broadly defined curve-crossing region is clear-
ly brought out by our investigation, it is also obvious that
the idealizations of the Landau-Zener-Stueckelberg theory
have serious limitations.

The method we have outlined, includes only two elec-
tronic states but the generalization to include more elec-
tronic states is straightforward. Such a generalization is
essential for treating intramultiplet transitions. The
modeling of the inelastic 2Z[He* + Ne(3p%]—23[He™*
+Ne(3p34s)] transition by two repulsive diabatic curves,
though effective and useful, perhaps masks other intrigu-
ing physical features of the functional sensitivity profiles
(80 1,(E)/8V;;(R)) and regions of potential significance
because of the simplicity of the curves themselves. Fi-
nally, a completely analogous theory may be developed
within the framework of the close-coupling method or
other desirable dynamic approaches.
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