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Correlation in atomic scattering
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Correlation due to the Coulomb interactions between electrons in many-electron targets colliding
with charged particles is formulated, and various approximate probability amplitudes are evaluated.
In the limit that the electron-electron, 1/r;, , correlation interactions are ignored or approximated by
central potentials, the independent-electron approximation is obtained. Two types of correlations, or
corrections to the independent-electron approximation due to 1/r;, terms, are identified: namely,
static and scattering correlation. Static correlation is that contained in the asymptotic, e.g. , bound-

state, wave functions. Scattering correlation, arising from correlation in the scattering operator, is

new and is considered in some detail. Expressions for a scattering correlation amplitude, static corre-
lation or rearrangement amplitude, and independent-electron or direct amplitude are derived at high

collision velocity and compared. At high velocities the direct and rearrangement amplitudes dom-

inate. At very high velocities, v, the rearrangement amplitude falls off less rapidly with v than the
direct amplitude which, however, is dominant as electron-electron correlation tends to zero. Com-

parisons with experimental observations are discussed.

I. INTRODUCTION

The many-body and many-electron problem is central
to basic understanding in various areas of physics, chem-
istry, and biology. In atomic physics there is an advan-
tage in studying the many-body problem since the two-
body and parts of the three-body problem are well under-
stood. A generally useful concept in the study of the
many-body problem is correlation, the problem of how
particles depend on one another. This interdependence
may be understood as deviation from an independent-
particle picture. In atomic physics the physical cause of
correlation in the many-electron problem is usually the
Coulomb interaction between electrons. It is this problem
of correlation applied to atomic collisions that is con-
sidered in this paper.

The many-electron problem may be studied directly in
atomic physics by considering multiple-electron transi-
tions. Over the past several years there have been a num-
ber of experimental studies' ' of two-electron transitions
in simple targets. These include studies of double ioniza-
tion of helium' by various projectiles, including most
recently an experiment' with antiprotons at CERN (Euro-
pean Organization for Nuclear Research) by Andersen
and co-workers. Multiple ionization in molecular hydro-
gen has been observed' ' by Edwards and co-workers
for both electron and proton impact. Simultaneous ion-
ization and electron capture, first investigated' by
Horsdal-Pedersen and Larsen, has now been studied'
for various projectiles. The independent-electron approxi-
mation has generally provided a useful, conceptual ap-
proach for understanding' ' these observations, al-
though the need for including correlations is becoming
evident especially at high collision velocities.
Analysis ' ' of the experimental results above has been
done using direct (uncorrelated) and rearrangement (sim-
ply correlated) mechanisms. This analysis follows stud-

ies, ' ' begun earlier, of multiple inner-shell ionization
at moderately high velocities where it was shown that the
uncorrelated independent-electron picture could be used.
Other studies of outer-shell multiple ionization have
shown that correlation can play a dominant role as well.

In this paper we address the problem of correlation in
atomic collisions, giving a common foundation for the ex-
amples listed above. We start with the uncorrelated
independent-particle picture, or direct mechanism, '

and add correlation. It is useful, we believe, to recognize
two kinds of correlation: static and scattering correlation.
Static correlation is correlation carried in the asymptotic,
e.g. , bound-state, wave functions. It is this static correla-
tion that gives rise to the rearrangement mechanisms' as
well as most multiple ionization in outer shells at high
collision velocities. Scattering correlation is correlation
intrinsic to the scattering process itself, i.e. , correlation
occurring during the collision. Since our development of
scattering correlation is new, we devote extra attention to
it in this paper.

In Sec. II we begin with a formulation of the many-
electron scat tering problem in terms of the evolution
operator, U(t, to), in the impact-parameter picture. Static
and scattering correlation terms are generally defined after
Eq. (11) as specific corrections to the independent-electron
approximation. The independent-electron approximation
then is rederived detailing approximations for further con-
sideration. A simple expression for the direct mechanism
is given. Then static and scattering correlation terms are
considered. In the subsection on static correlation (Sec.
IV A) a simple expression for the rearrangement mecha-
nism is presented. A general expression for scattering
correlation for two electrons is reduced to an approximate
form at high velocities. A simple closed-form expression
valid for large impact parameters is derived. In Sec. IV B
a two-electron example is considered and the correlated
and uncorrelated contributions to the total probability
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amplitude are compared and discussed. Finally, some of
the physical and mathematical features and some of the
limitations of this approach are considered.

II. FORMULATION

The Hamiltonian for scattering of neutral atom of nu-
clear charge Z~ by a particle of charge Zp and mass M is
(using atomic umts)

ZpZy. ~ Zp
2M 8, , lR —rjl

nate to the jth electron. The
l

rt, —r~ l

' electron-
electron interaction gives rise to spatial electron-electron
correlations present in the unperturbed (static) atomic
Hamiltonian Ho.

It is now assumed that the internuclear motion may be
separated from the electronic motion and that the inter-
nuclear motion may be treated classically, so that the in-
ternuclear trajectory R(t) is well defined. The resulting
equation for the electron motion is now time dependent,
namely,
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is now explicitly time dependent since V depends on R
which is explicitly time dependent, the evolution operator
U is not simply given by exp[ —iH, ~(t —to)], but rather by
a more complicated expression containing time ordering,
namely, Eq. (10) below.

In order to recover standard results, including the semi-
classical Coulomb approximation (SCA) result, it is
useful to work in the intermediate presentation, where one
takes full advantage of the fact that the eigenfunctions of
Ho are known (or nearly known). In the intermediate
representation, the evolution operator U (t, to ) is
governed by

i Ut(t, to)= Vt(t)Ut(t, to), (8)
dt

ZT

Ho= gj= I
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2
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Here R is the internuclear coordinate and rj the coordi-

where

Vt(t) =e ' V (t)e (9)

Equation (8) may be formally solved to yield (with T as
the time-ordering operator)

U(t, to)=T exp —i Vt(t~)dt~
fp

=1+(—1) f dt) Vt(t))+( —i) f dtpVt(tp) f dt&Vt(ti)

+( i) f dt3V&(t3—) f dt&Vz(t&) f dt) Vp(t))+
1p Ep

(10)

namely, Dyson's equation.
The probability amplitude for scattering from the

asymptotic initial state P; to the asymptotic final state Py
is given by

a ' =
& 0'y l 0 & = & 4i l

U(+ ~ —~ )
l 4 & .

From this basic expression we identify two kinds of corre-
lation: static correlation coming from correlation in the
asymptotic states Pj and P;, and scattering correlation
arising from correlation in the evolution operator U. In
this paper a quantity is generally defined to be uncorrelat-
ed if that quantity is determined from a single sum of un-
correlated single-electron Hamiltonians even though the
quantity obeys the Pauli exclusion principle and appropri-

ate symmetry requirements such as rotational symmetry
(conserving total angular momentum) and parity. Corre-
lation is the difference between the exact and uncorrelated
quantities. Usually static correlation corresponds to devi-
ations from a product wave function for P and scattering
correlation corresponds to deviation of the evolution
operator U from a product of single-particle operators.
As we explain in Sec. IV, both types of correlation arise
physically from the electron-electron Coulomb interac-
tion, often called the correlation interaction in atomic
physics. An explicit expression for scattering correlation
valid to first order in the correlation interaction is given
by Eq. (29) in Sec. IV. Simple examples of static correla-
tion and scattering correlation are discussed in Sec. V.
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III. INDEPENDENT-ELECTRON A.PPROXIMATION

Since we define correlation as the deviation from the
independent-electron approximation, we now review

briefly the independent-electron approximation for atomic
scattering. In the independent-electron approxima-
tion, the probability amplitude for a multielectron
transition in an ion-atom collision is simply a product of
independent single-electron transition probabilities ampli-
tudes. The independent-electron approximation is exact
under the following conditions.

(i) The projectile is a point charge.
(ii) The internuclear motion is separated from the elec-

tronic motion and treated as elastic classical scattering.
(iii) The

I
rk —r, I

' electron-electron interactions are
approximated by single-electron potentials.

Condition (i) is fully satisfied in collisions of atoms with
electrons or bare ions. Condition (ii) is well satisfied for
incident heavy ions and may be satisfied for high-velocity
incident electrons"' whose de Broglie wavelength is small
compared to atomic distances. Constraints due to condi-
tion (iii), which corresponds to ignoring the effects of
electron-electron correlations during the collision, are con-
sidered in further detail in Sec. IV. The Pauli exclusion
principle is usually included in the definition of an
independent-particle model in the static many-body prob-
lem. However, in the scattering problem, electron identity
can be dificult to include and is often ignored in practice.
This important question of Pauli exclusion effects in sum-
ming over final states in many-electron (n & 3) targets has
been well addressed by Reading and Ford, and is there-
fore bypassed here, except to note that there are some sys-
tems in which these exclusion effects play no role. Atten-
tion here is therefore focused on condition (iii), namely,
the question of scattering correlations.

Electron-electron correlation potentials appear in Eq.
(5) where Ho may be written as a sum of operators HJ
which reduce to single-particle operators when correla-
tions are ignored. Specifically, from Eq. (5),

Z2

Ho= g
j=1

p2

2 k,j
(k&j)

Z2
=— g H~() .
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Because
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is not a single-electron operator, the operators H o are not
single-electron operators. However, if the

Ik —rj U. p'j

k,j
(k &j)

then the Ho terms are indeed single-electron operators Ho

k,j
(k &j)

electron-electron interactions which give rise to correla-
tions are approximated by an average potential, i.e.,

= +exp i +—Hot Vjexp i +Hot
j k 1

=pe 'Vje '=+VI(t) .

J

(13)

That is, without electron-electron correlations, VI(t) is a
sum of single-particle operators VIJ(t), and as a conse-
quence the evolution operator reduces ' to a product of
evolution operators, i.e. ,

U(t, to) = T exp —i g VI(ti )dti
J

tl= Q T exp i —VI(t, )dt)
J 0

=U, (t, r, )= Q U, (t, r, ) .

J

(14)

The electrons evolved independently during the collision.
Finally, if Pauli exclusion is ignored, then the proba-

bility amplitude is a product of independent-electron am-
plitudes, namely,

~ ' =
& K q" & =

& 0 I

U 0' &
= g & W I UJ

I 0,
'

&
= g ~,',

(15)

where 4 represents the full electron wave function and P
the asymptotic wave function. Consequently, the transi-
tion probability

I

a 'f
I

is a product of independent-
electron probabilities in the independent-electron approxi-
mation, thus simplifying considerably the many-body
problem.

The direct mechanism' corresponds to the use of Eq.
(15) which leads to a binomial distribution of single-
electron probabilities, PJ(B)=

I

a' I, where B is the im-
pact parameter of the projectile. It is not necessary to use
perturbation theory to evaluate the single-particle proba-
bilities, Pj(B), since the independent-electron approxima-
tion does not depend on the strength of the interaction po-
tential V. However, it is often convenient and at high ve-
locities appropriate to use perturbation theory for the
P~(B). For a target with two electrons both undergoing
transitions we have from Eqs. (11) and (14) using first-
order perturbation theory:

&+2/2 I
Ui( —~ + ~ »2( —~ + ~ )

I
~ti'tl)2&
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I

Ui 41&&y2I U2
I
42& +1+2

—i f &gi
I
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I
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x —i f &&2I vI2
I
/2&dr (16)

and correlation disappears.
Now if electron-electron correlations are ignored, as

in Eq. (12), then [H 0,H~~ ]=0 since the H~z are
single-particle operators. Recalling from Eq. (4) that V
is a sum of single-particle potentials Vj, and noting that
[Ho, VJ]-5ii, then

—iHot iHQtVI(t)=e
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Since this amplitude is second order in the interaction po-
tential, it corresponds to a second Born amplitude ex-
pressed as a product of two first Born amplitudes. Fur-
ther reduction of this simple example is given in Sec. V.

IV. CORRELATION

Now let us consider correlation, i.e., corrections to the
independent-electron approximation due to the electron-
electron interactions. As we have noted after Eq. (11),
there are two types of correlation, namely, static and
scattering correlation.

A. Static correlation

Static correlation is that included in the asymptotic
wave functions, P; and Pf. Usually these asymptotic
wave functions are expressed as bound-state wave func-
tions of the target in the initial and final states, respective-
ly. Sometimes distortions due to the projectile are includ-
ed. In any case, the electron-electron correlation is that
of the target wave functions. This problem of correlation
in static atomic wave functions has received more atten-
tion than the more difficult problem of correlation in
atomic scattering. As a consequence, wave functions in-
cluding static correlation are available. It is these wave
functions, such as correlated Hartree-Fock wave func-
tions, which may be used for P; and Pf in the transition
amplitudes of Eq. (11).

Sometimes the asymptotic states P; and Pf are eigen-
functions of different asymptotic Hamiltonians because
the correlation in the initial and final asymptotic states are
different. For example, if an electron is removed from
helium, then the initial wave function of helium contains
electron-electron correlation, but the final wave function
may be uncorrelated asymptotically. Then P, and Pf are
nonorthogonal. This nonorthogonality can result in non-
vanishing matrix elements giving finite results for certain,
e.g. , multiple, transitions. Such calculations have been in
use for some time. As Bransden and Dalgarno have
pointed out, the physical cause for such transitions is the
electron-electron correlation interaction U. Since this
correlation effect is expressed in the asymptotic wave
functions, we regard it as a static correlation.

An example of such a static correlation effect is the
rearrangement' or shakeoff mechanism. Shakeoff is
caused by a change in correlation following removal of an
electron by the projectile leading to rearrangement in the
final state which results in the ionization of a subsequent
electron. A simple example can be easily obtained by in-

If we further approximate P; and Pf as product wave
functions, then the simple expression that results is

If first-order perturbation theory is used for a nth-order
effect, then ag is first order in the interaction potential
and (n —1)th order in the correlation interaction. This
amplitude is further discussed in Sec. IV.

B. Scattering correlation

In this section we consider the inhuence of the
electron-electron Coulomb interactions on the scattering
process itself. We start with a set of basic states,
which are eigenfunctions of the uncorrelated Hp and ex-
press the interaction operator of the projectile and the jth
electron as

(19)

where Vz is the limit of VI as the correlation potentials,
r; —r, ~

'
go to zero, corresponding to the

independent-electron approximation.
For simplicity we consider here a two-electron system.

It is straightforward to generalize the result to a system
with many electrons. For a two-electron system the un-
perturbed Hamiltonian from Eq. (5) is simply

2—Vi Z2 —V2 Z22

2
+
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—V2
2 Z2 +v2(r2)

r2

+[r12 vl(rl ) v2(r2)]

—:Hp+Hp+U (20)

where Hp and Hp are true one-electron operators and U is
a correlation potential, e.g. ,

~
r; —r~

~

The interaction potential, corresponding to Eq. (9), is

eluding nonorthogonal asymptotic wave functions in Eq.
(15) and assuming that the projectile interacts with only
one target electron. Then we have

a~ = Texp —i V,' t dt

(21)

where Vl~ corresponds to the interaction between the pro-
jectile and the jth electron. Since [H~v, v]&0, now the

+iHot
propagators e in VI do not factor into a product of
independent-electron propagators, and VI contains opera-
tors acting on electrons other than the jth electron. That

is, because [H~o, v]~0, it follows that Vl~ is a many-body
operator.

The many-body operator for scattering correlation VI
is the difference of the full operator of Eq. (20) and the
independent-electron operator with v =0 in Eq. (20).
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Next we proceed to expand Eq. (20) to first order in the
correlation potential U to obtain a first-order expression
for the scattering correlation operator VJ .

1. First-order operator

P( =—[Ho, v] (22a)

and

/32= [Hp, v) .— (22b)

These P commutators, discussed in Sec. V, may now be
iHpt

used to factor the e propagators using

In principle the full many-electron operator VIJ of Eq.
(21) may now be used in Eqs. (10) and (11) to evaluate
fully correlated scattering amplitudes. In practice this is
not easily done. However, if we consider cases where the
correlation potential U is weak, we may expand terms in
Eq. (10) in a perturbation series in v, and identify and
evaluate the resulting first-order scattering correlation.
We now proceed to expand the many-electron operator VI
into an uncorrelated part VzJ and a correlated part VIJ to
lowest order in v in the form of Eq. (19), i.e. ,
VJ = VJ'+ V,".

We begin our expansion by defining commutator opera-
tors, linear in U, that generate scattering correlation,
namely,

This is of the form of Eq. (19) with Vtj = —,'[pi, Vtj ]t .
Hence, the many-electron operator VI is written as a
sum of a one-electron operator Vtj (which produces no
correlations) and a many-electron scattering operator
given to first order by VIJ, which goes to zero as the
correlation v disappear.

The lowest-order efI'ect of the scattering correlation
operator on the evolution operator is easily seen by ex-
panding U in Eq. (10) to first order in the interaction po-
tential V~~(t) using Eq. (27c), namely,

U(t, tp)= T exp —i V (tt )(dt(
tp

t=1 i —Vt(t()dt(
'0

=1 i f—Vt(t()dt( ——f ' g [/3, , V,"(t, )]t(dt(
'0 2 0 j=l

= 1 i —VJ (t()dt( i V—t (t()dt(,1 p t

'0 tp
(28)

U —Uo= ——
J VJI tl t21dtl

J

where Vtc(t) = g, [pj, Vz~ (t)]t Since .only the last term

contributes to scattering correlations, one has an explicit
expression valid to first order in the correlation potential v

for scattering correlation, namely,

A+B A B —1/2[A Bj . (23)
t

i Vt—(t, )dt, ,
tn

(29)

VI(t) =e
—i /'2[H p, v jt —iH pt —j(Hp+ v)t=e e e

corresponding to the Baker-HausdorA theorem.
At this point only terms to first order in /3t are re-

tained. Since an nth-order commutator carries a factor of
t ' + ', this expansion is convergent, for short collision
times, as discussed further in Sec. V. Now, noting that
[Hp, Hp]=0, we have

j(Hp+Hp+v)t i (Hp+Hp+vjt
Vle

where Pf, Vt~, and v are defined by Eqs. (22), (26), and
(20), respectively. The right side of Eq. (29) expresses the
lowest-order correction to the independent-electron ap-
proximation due to scattering correlations, as defined after
Eq. (11).

2. First-order matrix element

The first-order scattering correlation amplitude is found
by taking the matrix element of Eq. (29) above as
tp~ —oo and t~+ ~, namely,

(24)
Since Vl is simple function of R and r 1, e.g. ,
V( = —Zt /

~

R—r( ~, therefore [Hp, V(]= [v, V(] =0 and

((/2IP t(tp
—( 2(/P )tt

2

(2sc i g f (t/tf
~ [p&, Vz (t( )] (/t; )/t&dt(

J= —oo

2'x f"
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(30)
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1 1

V(Q( )
IH pt

V
tH pt
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Using Vi = —ZP/
~

R —ri and v =
~

r~ —r2
~

', then it is
straightforward to show that

is the single-electron operator to which VI reduces as U

(and therefore /3~) goes to zero. Expanding to first order
in p, t ,

1

2

—iH t ZP iH t0 e ' t
iR —ri/

Vt'(t) = Vt" + ,' [p(, VI']t ' . —

Similarly,

(27a) —tH', t ZP 1

2 r12

1
Vj e

/R —r, [

+iH't 2t

VI = Vt + —,[P2, Vt ]t

so that

VJ= Vt + —,'[P, , Vt ]t

(27b)

(27c)

+O([P, ,H, ]t') . (31)

As in Eq. (24) we again ignore the 0([pf, Hp]t ) contribu-
tion. Then, with p; and pf as eigenfunctions of the un-
correlated IIJ, we have
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Zp (r t
—r2) (R—r~ )

asc= —i g ( —1) dtt e ', ~, ),2 '
1 Irt —r2I' IR —r, I'

(32)

where co=(E; Ef)—. If P; and t&t&f are expanded in spheri-
cal harmonics of r 1 and r2, then the angular integrations
are easily done applying the integral of Deb et al. twice.
Further reduction depends on the choice of radial wave
functions chosen for t)t&, and pf.

A simple expression for the scattering correlation am-
plitude of Eq. (32) may be obtained by considering
large impact parameters. We then approximate

I
R —r~ I

=R (I+3r&.R/R ). Using this in Eq. (32)
after some algebra, we obtain

P2(rt2 R)
asc =iZp dt t e '"'

Pf 3 Pj
oo R r12

(33)

where P2 is the second-order Legendre polynomial. Us-

ing R =B +Z, Z =vt, and qo ——co/B, we obtain

Zp;t2 z P2(r&2. R)
asc= i —

3
e '

yf—oo 7 12

dz
(B2+ Z 2)3/2

2i Q [Ko(—qoB) —(qoB)Kt (qoB)]
Zp
v3

(34)

where Q' = &pf IP2(r&2. R)/r&2
I p; & is a quadrupole ma-

trix element, K is a modified Bessel function, and now v is
the collision velocity. This amplitude, further discussed
in Sec. V, is first order in the interaction potential and
first order in the correlation potential.

I

approximation can be an order of magnitude or more too
small at velocities above several MeV/amu. Predictions
using static correlation using our methods ' are within a
factor of 2 of these observations and the energy depen-
dence of the calculations is also significantly improved
when static correlation is included. A major difficulty
here is our lack of knowledge of the continuum wave
function for two correlated electrons. The most complete
calculation at this time is the recent result of Reading and
Ford who use pseudostates for the continuum and in-
clude correlation in a coupled channel calculation. Their
results are within SO%%uo of observation. Another example
illustrating the applicability of our methods is' capture
plus ionization in helium by protons, a particles, and fully
stripped lithium ions. Again the independent-electron ap-
proximation fails by more than an order of magnitude,
e.g. , above 1 MeV/amu for proton impact, while includ-
ing correlation' ' gives agreement within a factor of 2
and improves the energy dependence of the cross sections
significantly. At lower collision velocities correlation is
also important and scattering correlation, as discussed
below, may be significant.

To illustrate the relative importance and nature of un-
correlated independent-electron approximation or direct
contributions, static correlation or rearrangement, and
scattering correlation, let us consider a two-electron target
undergoing a transition from initial state ((); to final state
t)t&f via an interaction with a particle of charge Zp and ve-
locity v. The exact probability amplitude given by Eq.
(11) may be separated into two terms,

a = &6 I

U
I 4 &

= & K I
Uo

I
4'&+ &K I

U —Uo
I

4'&

V. DISCUS SIGN =a static +a sc (35)

Although the independent-electron approximation has
provided a useful starting point for understanding the na-
ture of multiple-electron transitions in atomic col-
lisions, ' ' it is becoming increasingly clear that
correlation is required for more complete understanding.
A good example is provided by studies' of single and
double ionization of helium by high velocity electrons,
protons, ions, and antiprotons where double-ionization
cross sections predicted' ' by the independent-electron

I

The a„„;, amplitude contains only static correlation.
Both static correlation, from p; and pf, and scattering
correlation, from U —Uo, are included in asc which con-
tains all the scattering correlation. Within the impact-
parameter picture this expression is exact.

The direct and rearrangement amplitudes may both be
obtained in the simplest case by expanding a,t,ti,
= (pf I

Ut U2
I p; & in both v and V. If v is small p =p&$2

and if Vis small U=1 —i VIdt. Then

o..;.=&t&fi Ai&tttfzlNz& — ~ t&fi f

ii«gati

tdf~lb;, &+t(dfz f « tl2) t&2il (t&fit&

Vi 1 dt;2 f2 V12dt i 2

=&qf
I q, &+a. +a.

We ignore the first term since correlation alone cannot
cause a transition. It is sensible to retain the shakeofT'am-
plitudes, (off I

t)I&;, & in a„, nevertheless, since the potential
V does change the system, e.g. , by removing an electron,
so that correlation may efI'ect subsequent change. Hence

(36)

if both U and V are small, we have

t ti —ata2+a& (/f2 I
t))i2&+a2(/f1

I
(( 'I &

=aD +ay
where aj = i (off I f Vq, dt—

I p,, &. Equation (35) is ex-



1120 J. H. McGUIRE 36

act. Equation (36) is valid when an and az are both
much smaller than 1 in magnitude.

Some comparison of the amplitudes for the
independent-electron approximation, static correlation,
and scattering correlation is possible. For simple two-
electron targets using first-order perturbation theory for

I

a =aD+ag +asc, (37)

where from Eqs. (18), (20), and (34) with t =Z /v,

both the projectile and correlation interactions, we have
from Eqs. (35) and (36):

Zp2 2
oc lqoz 1

aD =a)ay= —
~ Q J dZ e

v2 ~R —r,
(38a)

LZp iqoZ i
&R =&1(/f2 ~

(t' 2) y dZ e 01 (38b)

and

Zp 2
2

—iq() Z (r) —rp). (R —r, )
asc= —i g ( —1)' f dZZ e '

(5f
2V ~r) —rp R—r, ~'

(38c)

a~ ———
iq0Z

(P rP)(r. R)
~ PJ )dZ

Zp . q()B= —i~ D'fe ' /8,
V

(39)

where D'f=(Pf~
~

rP~(r. R)
~
Pit) corresponding to a di-

pole matrix element. Using Eqs. (38a)—(38c) and Eq. (34),
we have

All of the above expressions based on perturbation
theory are valid at high velocities, v. At the highest ve-
locities the rearrangement amplitude, corresponding to
static correlation, is dominant. As the velocity decreases
(or as the projectile charge Zp increases), the direct ampli-
tude becomes larger. Scattering correlation is not impor-
tant until the velocity, v, is relatively low.

Additional algebraic reduction is possible for large im-

pact parameters. Using the amplitude a ] in first-order
perturbation theory, Eqs. (38a) and (38b) may be written
as

correlation during the collision, the electrons may readjust
somewhat on the way out in the final state, corresponding
to the rearrangement mechanism. Scattering correlation
is included in Fig. 3 where the electrons interact during
the collision. As we discuss further below, whether a
correlation term may be classified as static or scattering
correlation depends on how the calculation is done. If the
correlation is included on the asymptotic wave function, it
is regarded as static correlation. Otherwise, it must occur
during the collision and is a scattering correlation.

Mathematically, correlation is expressed in this paper
by noncommuting terms in the time evolution of the sys-
tem. The commutator P~ =[H~p, v] generates correlation
in both the asymptotic P; and Pf and in the scattering
operator U. When P; and Pf are fully correlated, the P~
terms are fully included in P; and Pf, giving complete
static correlation. Scattering correlation in U is generated

(
I 2jB

a = —w (Z /v )D', D'e ' /B
1B

az —— i~(ZP/v)—D', e ' /B(gz
~

P', ),
~sc = 2i Q—' [Kp(qpB) —(qpB)&~ (qpB)] .

Zp
3

(40a)

(40b)

(40c)

These expressions are valid only at large impact parame-
ter B. This completes our simple discussion of correlation
in a two-electron target.

Conceptually, as well as computationally, it is possible
to distinguish between scattering correlation and static
correlation depending on whether or not correlation
occurs during the collision. The concepts are illustrated
in the collision diagrams of Figs. 1 —3. In Fig. 1 the
independent-electron approximation is illustrated. Here
the electrons do not interact with each other. Static corre-
lation is included in Fig. 2. Here the electrons may in-
teract on the way in and on the way out, but they do not
interact during the collision. Because of the change in

FICi. 1. Scattering event for a two-electron target (T) interact-
ing with a projectile (P) in the independent-electron approxima-
tion. Time increases in the upward direction. Electron-electron
correlation is not included.
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HJO which contain no correlation, but rather P; and PI
would be eigenfunctions of the full Hp which includes
correlation. This would lead to difhculty in evaluation of

—iHot iHot
matrix elements of e ' V~e '. For fully correlated P;
and Py it would be easier to use

FIG. 2. Scattering event with static correlation included.
Correlation is included in the asymptotic states, but no correla-
tion is included during the collision.

by a coupling of the correlation commutator P~ with the
interaction potential VI corresponding to the double com-
mutator [p~, VIJ ] in Eq. (28). As seen from Eq. (31), cou-
pling between v and VI is done via the V~ operator in the
electronic kinetic energy. Coupling between electrons
occurs via the correlation potential U contained in pz.

Scattering correlation has been defined as the difference
between U and the uncorrelated Up defined in terms of
single independent-electron operators

—Hot iHot
e V~e

containing uncorrelated H~p operators. If fully correlated
P; and PI were used, then our method should be modified
because then P; and P~ would not be eigenfunctions of the

FIG. 3. Scattering event with full correlation. Scattering
correlation occurs during the collision and the remaining static
correlation is included in the asymptotic wave functions before
and after the collision.

thereby reducing asc to zero to first order in the interac-
tion potential V. Then scattering correlation would be
carried in Eq. (10) by matrix elements of the form
(P

~

V
~ P„) where P and P„are intermediate eigen-

states of Ho including full correlation. In this paper we
recognize that a fully correlated set [PI often is not exact-
ly known. Correlated continuum wave functions are espe-
cially difficult. For many problems, including the exam-
ples we have considered, the set [P] is approximated by a
set [ g . PJ ] of known eigenfunctions of H o. It is for
these uncorrelated Q P~ that our specific technique for
identifying generating scattering correlation applies. With
our method the action of the p commutators in generating
correlation with an independent-electron basis, even in
higher Born terms in Eq. (10), becomes apparent. Gen-
eralization of our approach to partially correlated P; and

PI may be possible.
Now let us discuss briefly some advantages and disad-

vantages of our approach to the many-body problem. We
first remark that there are other quite useful ap-
proaches" to the many-body problem, some of which
are conceptually different, i.e., do not begin with the
independent-electron approximation. However, the
independent-electron approximation has provided a useful
starting point for some studies of the static many-body
problem and is also well defined in atomic scattering.
And we are encouraged by the possibility of at least some
analytic reduction of many-body matrix elements as illus-
trated above. Mathematical simplification sometimes
leads to insight into the physical nature of a problem.

Dividing the problem of correlation into static and
scattering correlation seems to us to be computationally
sensible and conceptually simple. We wish to emphasize,
however, that the boundary between static and scattering
correlation may be varied by varying the choice of asymp-
totic wave functions, P, and P~. Consequently, whether a
particular effect is seen as a scattering correlation or not
may vary with the methods chosen (e.g. , distorted-wave or
partially correlated methods) to perform the calculation.

The validity of our simple expressions of Eqs. (40) de-
pends largely on our rather extensive use of perturbation
theory. While we have tried to emphasize that use of per-
turbation theory is not always necessary, it is central to
our evaluation of the first-order scattering correlation am-
plitude of Eq. (32). Specifically, our commutator expan-
sion of Sec. IV B requires that the [p, VI ]t terms be
much smaller than 1 but larger than [p,Ho]t terms that
were ignored. This basically means that the collision time
must not be too large and that our methods be restricted
to collision velocities higher than orbital velocities of the
participating atomic electrons.

The direct and rearrangement mechanisms contained in
our formulation have been useful in the analysis of vari-
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ous observations, two of which were discussed at the be-
ginning of this section. Double ionization in helium,
argon, neon, and molecular hydrogen' ' has been ana-
lyzed ' ' by taking the ratio of double- to single-
ionizaton cross sections. Interpretation of this ratio for
protons and electrons in our formulation was reinforced
by a recent measurements by Anderson and co-workers 1

at CERN using antiprotons on helium. Simultaneous
capture and ionization has also been analyzed' ' in a
similar way. Also there is evidence that this approach
may give some insight into mechanisms for fragmentation
of molecules ' in collisions with charged particles at high
velocities. For multiple ionization in the inner shells of
atoms the well-known binomial distribution' ' of
charge states is obtained from our formulation in the
limit of the independent-electron approximation. Sum-
ming over all final states but one gives a single active
electron formulation used for single-electron transitions in
many-electron targets. Single and double electron capture
from multielectron targets at high velocities has also been
interpreted in this way. Multiple ionization of outer
shells is usually due to correlation in the final state,
e.g., shakeoff and Auger effects. Thus our approach gives
a common formulation for various analyses previously
used to interpret transitions of one or more electrons in an
atomic collision. We have also introduced the concept of
scattering correlation which has yet to be tested experi-
mentally.

VI. SUMMARY

In this paper we have considered many-body correla-
tion in atomic scattering. Here correlation, i.e., correc-
tions to the independent-electron approximation, have
been divided into two types, static correlation and scatter-
ing correlation. Static correlation is expressed in the
asymptotic wave functions, while scattering correlation is
expressed in the scattering operator. Scattering correla-
tion, a new term, is pictured as correlation occurring dur-
ing the scattering process itself. At high collision veloci-
ties expressions for the direct and rearrangement mecha-
nisms have been derived from the static correlation term.
In the limit of high collision velocities static correlation
(or rearrangement) is dominant. At lower velocities,
larger projectile charge, or weaker correlation, the un-
correlated independent-electron approximation (or direct)
amplitude becomes more important. Scattering correla-
tion is important when the collision is slow enough that
electron-electron interaction contributes significantly to
the collision.
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