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Although dielectronic and radiative recombination are usually treated as distinct noninterfering
processes, Alber, Cooper, and Rau [Phys. Rev. A 30, 2845 (1984)] have recently presented a
scattering- or S-matrix analysis which provides a unified description of these processes. This descrip-
tion employs a diagonalization of the atom plus radiation field Hamiltonian using a limited basis set
consisting of one discrete autoionizing state, a single-electron continuum, and a single-photon contin-
uum. In the present work we extend Mgller scattering operator and resolvent operator techniques,
which have previously been used to discuss the decay of prepared systems, in order to provide an S-
matrix analysis of the electron-ion photorecombination process near an isolated autoionizing reso-
nance. We explicitly allow for degenerate magnetic sublevels of the atomic system and for multiple
angular momentum contributions in the partial-wave expansion of the electron-continuum eigenstate.
After the introduction of the pole approximation, in which only the 8-function term is retained in the
evaluation of the various self-energies that occur in the diagonalization of the Hamiltonian for the
combined many-electron radiation-field system, we obtain the total electron-ion photorecombination
cross section as the sum of the radiative and dielectronic recombination contributions together with
the conventionally ignored interference term. The radiative and dielectronic recombination cross sec-
tions reduce to the familiar forms when the continuum-continuum coupling effects are neglected. Al-
ternatively, the combined cross section for the entire electron-ion photorecombination process may be
represented by a modified Fano line profile, which is shifted and broadened as a result of the cou-
pling between the autoionization and radiation continua. Recombination processes that involve more
than a single state of the initial ion, of the autoionizing resonance, or of the final system can be treat-
ed by appropriately augmenting the unperturbed basis set. It is anticipated that the effects of the in-
terference between radiative and dielectronic recombination and of the continuum-continuum cou-
pling will be most important for individual transitions involving low-lying autoionizing levels and
will probably be negligible for the total dielectronic recombination rates due to the highly excited lev-
els.
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I. INTRODUCTION

In the ordinary nonresonant radiative recombination
process!

Xt D) +e(p) X+t Z V()4 7k , (1)

an electron with momentum p is captured by an ion with
residual charge Z that is initially in the quantum eigen-
state |i), and a photon is emitted simultaneously with
momentum #k. The final state |f) of the recombined
ion, which is the result of this direct recombination pro-
cess, is most probably low-lying bound state. The direct
radiative recombination process is precisely the inverse of
the ordinary nonresonant photoionization process from
the state | f).

In a low-density high-temperature plasma, such as a so-

36

lar flare or a tokamak discharge, multiply charged atomic
ions tend to recombine predominantly by the two-step
dielectronic recombination process. Dielectronic recom-
bination was first described by Bates and Massey? in 1943
in connection with low-temperature phenomena. The im-
portance of dielectronic recombination in high-
temperature plasma was not fully recognized until 1964
when Burgess® first pointed out that very large recombina-
tion rates can be derived by taking into account the rela-
tively high probabilities for recombination into the highly
excited levels | f), which form a Rydberg series converg-
ing to the level |i) of the initial ion.

The initial step in the two-step resonant dielectronic
recombination process is the radiationless capture of a
plasma electron

X+t Pi)+e (p)—Xt“*"V(a), )

1093 ©1987 The American Physical Society



1094

to form a doubly excited autoionizing state |a). The ac-
companiment of the radiationless capture process by the
excitation of the recombining ion is necessary for total en-
ergy conservation. Recombination is accomplished if, in-
stead of autoionizing by means of the inverse of the cap-
ture process (2), the doubly excited state |a) undergoes a
radiatively stabilizing transition to a bound final state

Lf)

X+(Z~1)(a)qx+(2—l)(f)+ﬁk‘ (3)

This radiative stabilization occurs predominantly through
the deexcitation of the recombining ion core when the in-
cident electron is captured into a high Rydberg level.
Such inner-electron stabilizations usually play the dom-
inant role in the dielectronic recombination process.

Recently there has been intense activity in colliding
beam investigations** of electron-ion photorecombination,
which have led to spectacular experimental confirmations
of the theoretically predicted®~? electric-field-induced
dielectronic recombination process. There has also been a
general recognition of the importance of dielectronic
recombination, both in the determination of the
ionization-recombination equilibrium charge-state distri-
butions®'® of multiply charged ions in high-temperature
plasmas, and in the production of the x-ray line emission
spectra.!"'? These developments have provided motiva-
tion for the formulation of a more fundamental quantum-
mechanical description than the traditional picture of ra-
diative and dielectronic recombination. While simplified
calculations that are based on the conventional theory
may ultimately be proven to be adequate for estimating
the total recombination rates that occur in the determina-
tion of the ionization-recombination balance, a precise
treatment, which is based on a fundamental quantum-
mechanical foundation, is expected to be essential for the
reliable theoretical prediction of emission spectra due to
the individual radiatively stabilizing transitions of Eq. (3).
These radiative transitions can produce prominent satel-
lites in the vicinity of the resonance lines that are associat-
ed with deexcitations of the recombining ion. Resolvable
dielectronic satellites can be utilized for spectroscopic
determinations of basic plasma properties,'>!* such as
temperatures, densities, and states of ionization. Un-
resolvable satellites may provide substantial contributions
to the observed intensities of the resonance lines.

In order to develop a fundamental quantum-mechanical
description, it is necessary to abandon the artificial dis-
tinction between the nonresonant radiative and the reso-
nant dielectronic recombination mechanisms. A unified
description is natural because both recombination mecha-
nisms obviously involve identical initial and final states of
the combined electron-ion plus radiation-field system. It
was first pointed out by Shore!® that a unified treatment
can be accomplished by fully utilizing the methods of
multichannel collision theory!® and quantum electro-
dynamics.!” The total cross section describing the com-
bined electron-ion photorecombination process that is ob-
tained for an isolated resonance can thereby be expressed
as the sum
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o(i,p—f,k)=0orr(i,p—f,k)+0pr(i,p—f,k)
+Uint(i,P_’frk) s 4)

of the radiative recombination (denoted by RR) and
dielectronic recombination (denoted by DR) cross sections
plus the usually ignored interference term (denoted by
int).

In a rigorous quantum-mechanical description of the
combined electron-ion photorecombination process, one
should treat in a consistent manner the interactions re-
sponsible for autoionization and spontaneous radiative de-
cay. Spontaneous radiative decay is well known to be the
result of the interaction between the atomic electrons and
the quantized radiation field, while autoionization is usu-
ally described in terms of the effective (configuration-
space) interaction between the atomic electrons. In the
lowest nonvanishing order of quantum electrodynamical
perturbation theory,!” this effective interaction is mediated
by the virtual emission and reabsorption of a photon.
Armstrong, Theodosiou, and Wall'® presented a descrip-
tion of autoionization and radiative decay for a system in-
itially in the doubly excited state in which both interac-
tions were treated on an equal footing and in a consistent
manner. They were able to derive approximate expres-
sions for the modified autoionization and radiative transi-
tion probabilities from the autoionizing state in the pres-
ence of the electromagnetic coupling between the electron
and photon continua. These transition probabilities have
the same familiar branching-ratio form as the convention-
al unperturbed probabilities, but they are expressed in
terms of effective autoionization and radiative decay rates
that incorporate the continuum-continuum coupling. The
approximate expressions obtained by Armstrong, Theodo-
siou, and Wall!® were subsequently rederived by Haan
and Cooper,!® using multichannel scattering theory tech-
niques, and were shown to have a wider region of validity
than was originally recognized. This theory of autoioni-
zation and spontaneous radiative decay in the presence of
the electromagnetic coupling between the final-state con-
tinua has been recently extended by Jacobs®® to explicitly
take into account the angular momentum degeneracy of
the atomic levels and the multiplicity of angular momen-
tum components in the partial-wave expansion for the
electron-continuum state.

In order to predict the dielectronic recombination cross
section and satellite line intensity, the analysis of autoioni-
zation and radiative decay must be combined with a
description of the electron-ion collision mechanism that is
responsible for the excitation of the intermediate autoion-
izing resonance state. The dielectronic recombination
cross section [opr—see Eq. (4)] can be expressed in the
familiar Breit-Wigner form?"?2 (as the product of the radi-
ationless electron-capture cross section and the probability
for the radiatively stabilizing transition) by considering a
system which is initially prepared in the doubly excited
state (in contrast tc a free electron and an ion) and by
making the isolated-resonance approximation. The
isolated-resonance approximation has been recently ap-
plied?® in a investigation of the effects of the continuum-
continuum coupling on dielectronic satellite line intensi-
ties. The continuum-continuum coupling effects were in-
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corporated by the introduction of effective autoionization
and radiative transition rates, which were defined in terms
of the unperturbed rates and the Fano line-profile parame-
ter.?* The objective of the present investigation is to pro-
vide a unified S-matrix description, by means of which the
continuum-continuum coupling effects can be consistently
included in all three terms of Eq. (4).

An S-matrix description of the combined electron-ion
photorecombination process has been presented by Davies
and Seaton,?® and their approach has been adopted by
Bell and Seaton?® and by Alber, Cooper, and Rau?’ to de-
velop unified treatments of radiative and dielectronic
recombination. These treatments rely on the preliminary
determination of a structured electron continuum, which
describes the combined resonant and nonresonant
electron-ion collision process in the absence of the atom-
field interaction. The electron-ion scattering and pho-
torecombination cross sections that are obtained utilizing
this structured electron-continuum eigenstate exhibit the
characteristic Fano line shape?® in the vicinity of the au-
toionizing resonance. The combined resonant plus non-
resonant electron continuum together with the unper-
turbed photon continuum are subsequently employed in
these treatments as a basis set for the exact diagonaliza-
tion of the complete Hamiltonian that includes the atom-
field interaction. The S matrix obtained from this exact
sequential diagonalization then leads to the prediction of a
modified Fano line shape, which incorporates the
continuum-continuum coupling, as has been emphasized
by Alber, Cooper, and Rau.?’

In the present investigation the interactions responsible
for autoionization and spontaneous radiative emission are
treated on an equal footing by employing a simultaneous
diagonalization procedure. Rather than introducing a
perturbation expansion, we exploit the exact diagonaliza-
tion of the Hamiltonian for the interacting atom-field sys-
tem that can be accomplished by restricting the unper-
turbed basis set to include only a single discrete autoioniz-
ing state and the nonresonant electron- and photon-
continuum states corresponding to the first-order autoion-
ization and radiative decay processes. This exact diago-
nalization is achieved by utilizing the multichannel
scattering-operator techniques that were exploited by
Haan and Cooper’® and subsequently extended by
Jacobs®™ to derive exact closed-form expressions for the
probabilities of autoionization and radiative emission in
the presence of the continuum-continuum coupling. In-
stead of using the initial condition that the atomic system
is prepared in the autoionizing state, we now present an
S-matrix description of the electron-ion photorecombina-
tion process. The introduction of vertex functions and a
modified autoionizing-state propagator enables the S ma-
trix to be expressed in the familiar form as the sum of a
resonant and a nonresonant transition amplitude.

The S-matrix formulation in terms of vertex functions
and a modified propagator has been developed with the
ultimate objective of providing a framework that would be
suitable for the precise nonperturbative incorporation of
radiative corrections, i.e., corrections to the lowest-order S
matrix that would result from the application of relativis-
tic quantum electrodynamical perturbation theory!” to all
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orders. These higher-order corrections could be
represented by Feynman diagrams that would involve the
virtual emissions and reabsorptions of photons. In the
present investigation this nonperturbative analysis is ac-
complished by means of the exact diagonalization of the
complete atom-field Hamiltonian within the subspace of a
severely restricted basis set of unperturbed eigenstates. In
addition, the total electron-ion photorecombination cross
section is explicitly evaluated by introducing the pole ap-
proximation'® in which only the &-function term is re-
tained in the evaluation of the self-energy operators that
arise from the exact simultaneous diagonalization. (The
validity of the pole approximation will be discussed in
Sec. IIT A.) In order to provide a fully consistent treat-
ment of the higher-order corrections, it may be necessary
in a future investigation not only to reconsider these two
approximations but also to confront the well-known ob-
stacles that have prevented the formulation of a rigorous
and practical description of relativistic many-electron
atomic systems.

The difficulties associated with the description of a rela-
tivistic many-electron atom are encountered in the parti-
tion of the lowest-order electron-electron interaction
which is responsible for autoionization. We have chosen
to include this interaction as a perturbation on an equal
footing with the atom-field interaction. The relativistic
electron-electron interaction may be represented to lowest
order in the Mdller form,?’ which corresponds to the vir-
tual exchange of a single photon.!” However, the in-
clusion of a substantial portion of the electron-electron in-
teraction in the unperturbed Hamiltonian has been found
to be essential for a practical description of a many-
electron system. This modification of our treatment of
the electron-electron interaction can be made in a precise
manner by introducing the Feshbach projection opera-
tors’>3! P and Q, which project onto the subspaces
spanned by the open and closed electron-continuum chan-
nels, respectively. A more balanced definition would also
involve the analogous photon-continuum channel projec-
tion operators, but this extension will not be needed for
the description of the photorecombination process of in-
terest. Unfortunately, the inclusion of some virtual
photon-exchange effects in the unperturbed Hamiltonian
not only appears unappealing from the viewpoint of quan-
tum field theory but also, as has been demonstrated by
Sucher,* has the disadvantage of providing a suitable un-
perturbed basis for the rigorous and systematic incorpora-
tion of radiative corrections only with the introduction of
positive-energy projection operators, which immensely
complicate the treatment of the unperturbed problem.

For high-Z few-electron systems, a treatment that fully
utilizes the methods of relativistic quantum field theory
would appear to be appropriate and could be successful.
Such a treatment would have the attractive features that
all radiative corrections could be incorporated in a sys-
tematic and consistent manner and that renormalization
counter terms could be included in an unambiguous
fashion. An approach that might be worthy of considera-
tion would be an extension to the collision process of the
full QED approach that has been recently applied by
Mohr®? in a precise evaluation of radiative corrections to
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the energy eigenvalues of two-electron ions. In this full
QED approach, perturbation theory is applied as an ex-
pansion in terms of a basis of noninteracting Dirac elec-
trons and positrons that are bound by the static nuclear
Coulombic potential, as in the Furry bound-state interac-
tion picture’® of quantum electrodynamics. Both the
electron-electron interactions and radiative corrections
then arise consistently as perturbations produced by the
interaction of the bound electrons with the quantized radi-
ation field. These perturbations are expected to decrease
as the nuclear charge Z is increased. The adoption of
such an approach to the description of the electron-ion
photorecombination process would involve substantial
modifications to the present analysis, in order to utilize a
basis set consisting of both single-electron and single-
positron states, and may ultimately have practical applica-
tion only to very-few-electron systems.

The remainder of this paper has been arranged as fol-
lows: In Sec. II the S-matrix approach is developed to
provide a unified description of radiative and dielectronic
recombination. The one-discrete-autoionizing-level and
two-continua approximation'® ! is utilized in its extended
form?® to allow for the degenerate magnetic substates of
the atomic eigenstates and for a multiplicity of angular
momentum contributions in the partial-wave expansion
for the electron-continuum state. Assuming that this
severely restricted basis set of unperturbed eigenstates pro-
vides an adequate representation, the Mgller scattering-
operator method'® is employed to perform an exact simul-
taneous diagonalization of the complete Hamiltonian for
the interacting many-electron atom and quantized
radiation-field system. The S matrix is thereby obtained
in the familiar form, as the sum of a resonant and a non-
resonant transition amplitude, with the introduction of
vertex corrections and autoionizing-state propagator
modifications. Exact closed-form expressions are present-
ed for the vertex functions and for the modified propaga-
tor.

In Sec. IIT the vertex functions and the modified
autoionizing-resonance propagator are evaluated in the
pole approximation. The cross sections corresponding to
radiative and dielectronic recombination, together with
the contribution that involves the interference between the
nonresonant and the resonant transition amplitudes, are
thereby expressed in terms of the familiar unperturbed au-
toionization and radiative decay rates and the non-
resonant photoionization cross sections. Through the in-
troduction of effective decay rates, which incorporate the
continuum-continuum coupling, the dielectronic recom-
bination cross section opr [Eq. (4)] is expressed in the
same well-known Breit-Wigner form?!?? as the cross sec-
tion in the absence of the continuum-continuum coupling.
The conclusions of the present investigation are presented
in Sec. IV, together with a discussion of future extensions
to incorporate multi-continuum-channel recombination,
the effects of overlapping autoionizing resonances, renor-
malization, and the effects of collisional dephasing pro-
cesses and plasma electric microfields.

II. THE S-MATRIX DESCRIPTION

Bell and Seaton?® have pointed out that the scattering
operator provides a unified description of four distinguish-
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able elementary processes. By considering different ele-
ments of the scattering operator, we can treat electron-ion
photorecombination, electron-ion scattering, photoioniza-
tion, and photon-ion scattering. These binary collision
processes may be schematically represented by the scatter-
ing diagrams shown in Fig. 1, which includes the relevant
Fock-space S-matrix elements. The double lines represent
bound states of the many-electron atomic system. The
electron-spin projection and photon-polarization quantum
numbers m; and A have been explicitly designated,
whereas the total electronic angular-momentum-projection
quantum numbers M; and M, are understood to be in-
cluded in the detailed specifications of the states |i) and
| £, which refer, respectively, to the initial recombining
ion and the final recombined atomic system in the pho-
torecombination process. We emphasize that the con-
tracted diagrams in Fig. 1 represent the complete S-matrix
elements and not only the lowest-order nonvanishing per-
turbation theory contributions.

i’ Bmy
(i5'm;,0]s|i Fm, .0
i _5,ms

(a)
f K, A
{.%x|s]i B mg,0)
i _E,ms
(b)
iz [2Y
<f',I'>«|s|f,I>\>
f PN

i B,ms
<3m5,0|5| f,dl;)\>
f K, A

FIG. 1. Diagrams representing electron-ion scattering (a),
electron-ion photorecombination (b), photon-ion scattering (c),
and photoionization (d), together with the corresponding Fock-
space S-matrix elements. Double lines represent many-electron
bound states.



36 UNIFIED DESCRIPTION OF RADIATIVE AND . ..

A. Connection with the resolvent operator

Let us assume that we have obtained the eigenstates of
the unperturbed Hamiltonian

H°=H ,+Hf, (5)

which consists of the unperturbed Hamiltonian H 4 for
the relativistic many-electron atomic system and of the
Hamiltonian Hy for the free radiation field. We select a
restricted basis set of these unperturbed eigenstates that
includes only the direct-product states |a,0), |ipm;,0),
and | f,kA). These states represent, respectively, the au-
toionizing state, the nonresonant electron-ion scattering
continuum supporting a single electron of momentum p
(which is allowed to vary) and spin m;=x11, and the
photon-emission continuum supporting a photon of wave
number k (which is also allowed to vary) and polarization
A=1,2. The two continua are the two asymptotic decay
channels of the autoionizing state. Note that the photon
Fock-space basis is restricted to include only the occupa-
tion number state vectors |n;) with n, =0 and n, =1
photons in the quantized-radiation field. The atomic
states |i), |a), and |f) are assumed to be eigenstates
with total electronic-angular-momentum quantum num-
bers J;, J,, and Jr and may each consist of degenerate
magnetic substates specified by the projection quantum
number M;, M,, and M/, respectively. The use of the
one-discrete-level and two-continua basis set of unper-
turbed eigenstates clearly restricts the scope of our present
treatment to elastic electron and photon scattering pro-
cesses, to single-continuum-channel recombination and
photoionization processes, and to isolated-resonance phe-
nomena.

The interacting relativistic many-electron atom and
quantized radiation-field system can be described in terms
of the complete Hamiltonian operator

H=H, +Hpr+H/=H+V, (6)

which consists of the unperturbed Hamiltonians H 4 and
Hp for the atomic system and free radiation field com-
bined with the atom-field interaction H 4r. To provide a
precise description of the autoionization process, we now
introduce the Feshbach projection operators*®3! P and Q.
The operator P projects onto the subspace of the open
electron-continuum channel eigenstate |ipm;,0), while
the operator Q projects onto the subspace of the closed-
channel autoionizing state |a,0). A third projection
operator R could be introduced which projects onto the
subspace of the photon-continuum channel eigenstate
| f-kA), but the explicit indication of this operator will
not be necessary in the present investigation. The explicit
representations of the projection operators P and Q, in
terms of our restricted basis set, are given by the relations
|
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P=373 [d’p|ipm,0){ipm,,0| , (7a)
M- m
Q=3 |a,0)(a,0]| . (7b)
M

a

The perturbation operator ¥ can now be taken to be the
sum of the atom-field interaction H 4r and the projected
interaction PH 4Q + QH 4P, which is the precise form of
the interaction that is responsible for autoionization. For
a consistent partition of the Hamiltonian H, the unper-
turbed Hamiltonian H° must now be taken as the sum of
Hp and the projected atomic Hamiltonian PH ,P
+ QH 4Q. The electron-continuum state |ipm,,0) is
rigorously an eigenstate of PH 4P, while the autoionizing
state | a,0) is precisely an eigenstate of QH 4Q.

In order to derive expressions for the scattering opera-
tor, it is advantageous to introduce the transition operator
T. The matrix elements of the operators S and T for the
electron-ion scattering and photorecombination processes
are connected by the relationships

(i'p'm],0|S |ipm,,0)
=8%p'—p)8(i",i)6(m,,my)
—2mi8(E, —E,) lim (i'"p'm{,0| T(E, +i¢) | ipm,,0),
€l

(8a)
(fLkA|S |ipm,,0)

= —2mi8(Ex —E,) lim (f,kA | T (Ey +i¢) | ipm,,0)
€l

(8b)
where the total continuum energy eigenvalues are defined
by

E,=E;+¢, , (9a)

Ey=E;+fuwy . (9b)
We now exploit the relationship!'®

G (2)V =Go(2)T (2) , (10)

where G (z)=(z — H)~! is the resolvent, or Green’s opera-
tor, and where Gy(z) represents (z —H®)~!. Thus the T
matrix is found to satisfy the relation

T(z)=(z—H%G(z)V , (11)

which can be shown to be in agreement with the reduc-
tion formula that is employed in quantum field theory.
With the introduction of our restricted basis set of unper-
turbed eigenstates and the use of the non-Hermitian prop-
erties T'(z)=T(z*) and GT(Z)=G(Z*), the required ma-
trix elements of T can be evaluated by means of the ex-
pansions

(kA | T(2) |ipm;,0)= 3 (f, kA |V |a,0)€a,0| G (2)(z —H®)|ipm;,0)
M,

+3 3 [dp(fkA|V |i'p'm],0)(i'P'm],0| G (2)z —H®) | ipm,,0)

’ ’
M; my

+ 33 SAARA V| KA KA | Gz)z —H®) | ipm,,0) 12)
<

’ A"
My
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(i'p'm{,0| T(2) | ipm;,0) =+ 3 (i'p'm,,0|V |a,0){a,0|G(z)(z —H®) | ipm,,0)

M

a

+ 33 [dp"i'p'm, 0|V |i"p'm",0){i"p"m{",0| G (z)(z —H) | ipm,,0)

i s

+ 333 'p'm, 0|V | kA (fkA|G(z)(z —H®) |ipm,,0) . (13)

My, Lk

It should be noted that the severely restricted basis set of
unperturbed eigenstates includes primed atomic eigen-
states, such as |i’) and | f’), which within our basis can
differ from the corresponding unprimed eigenstates only
with respect to the magnetic quantum numbers M; and
M. These expansions for the matrix elements of T are
simplified substantially by taking advantage of the fact
that the perturbation matrix elements satisfy the condi-
tions

(ipmg,0|V |i'p'm;,0)=0, (14)

(LKA |V | fKA)=0. (15)

Analogous expansions can be derived for the matrix ele-
ments of T that are required for photon-ion scattering and
photoionization. We note that the S-matrix elements
describing recombination and photoionization are related
on account of charge-conjugation and time-reversal invari-
ance.!’

In the remaining sections of this paper we will find the
necessary matrix elements of G (z), and then we will con-
struct the desired matrix elements of 7°(z) using Egs. (12)
and (13). We wish to close this section, however, with a
short discussion of the relationship between the operator
T and the Mgller operator .

T (z) is defined by

TzZ)=V+VG(2)V , (16)
and therefore
T(E, +i¢) | ipm,0) =VQ, |ipm,,0)=V |ipm,,0+) ,
(17)

where we have introduced the plus sign to denote the
outgoing-wave boundary condition and have used the
well-known relation

Q. |ipmy,0)=[1+G(E, +ie)V]|ipm,,0) . (18)

Projecting Eq. (17) onto some final state such as | f,kA)
and using Eq. (8b) gives

(f,kA|S |ipm;,0)
= —2mi8(Ex —E,){f,kA |V |ipm;,0+ ) .
(19)

Thus the scattering matrix for recombination is directly
proportional to the matrix element of the interaction V be-
tween the unperturbed final state of interest and the diag-
onalized initial continuum state. An analogous relation-
ship can be derived involving the unperturbed initial state

f

and the diagonalized final state by utilizing the Mgller
operator {)_ that corresponds to the incoming-wave
boundary condition.

To cite the simplest case for illustration, suppose we
neglect magnetic degeneracies and other complications
and simply write |ige,) for |ipm,,0) and |fw;) for
| f,kA). Our system then becomes equivalent to that
studied by Alber, Cooper, and Rau.”” Because of the
separability of the coupling involving photon emission!®
[see, for example, Egs. (26) and (27) of this work] we can
write

(for |V |igy+)=g*(){f | Vq lig, +) , (20)

where V; represents essentially the electric dipole cou-
pling and g is defined by Eq. (25) below. Finally
| {f | Va|ie, + ) |* when considered as a function of €
gives the modified Fano profile which we discuss further
in Sec. IITE and, as noted by Alber, Cooper, and Rau,?’
also gives the dependence of the recombination probability
on the energy of the incident electron.

B. The matrix elements of the Green’s operator

The definition of the Green’s operator G (z) can be writ-
ten in the form

(z—HG(2)=1+VG(z), 21)

where V represents the sum of the atom-field interaction
H,r and the projected electron-electron interaction
QH 4P +PH 4,Q. A set of coupled equations for the vari-
ous matrix elements of G (z) is obtained simply by form-
ing the matrix elements of both sides of Eq. (21) between
the unperturbed eigenstates that have been included in
our basis set. Some of the off-diagonal elements of G (z)
can be related by taking advantage of the non-Hermitian
property. Since the matrix elements (a,0|G(z) |a,0),
(ipm;,0|G(2)|a,0), and {f,kA|G(z)|a,0) have al-
ready been obtained in previously reported investiga-
tions'*?° of the autoionization and radiative decay ampli-
tudes for systems initially in the state |a,0), only three
additional independent matrix elements of G (z) will be re-
quired for the present S-matrix description. These addi-
tional matrix elements of G(z) may be denoted by
(i'p'm;,0| G (z) |ipm,,0), (f,kA|G(z)|ipm,,0), and
(f"K'A"| G(z)| f,kA). The last of these matrix elements
is required only for the evaluation of the S-matrix element
describing the photon-ion scattering process, which we
will not pursue further in the present investigation.

The equation for (i'p'm/,0|(z—H%G(z)|ipm,,0)
can be expanded in terms of our restricted basis set of un-
perturbed eigenstates to give the relationship
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(z —Ep)i'p'm;,0| G (2) | ipm,,0) =8(M/,M;)8(m,,m;)8*(p'—p)+ 3, (i'p'm,,0|V |a,0){a,0|G(2) |ipm;,0)
Ma

+3 3 3 'p'm,,0|V | kA{(f,kiA|G(2)]|ipm,,0) . 22)
Mf Ak

Analogous relationships are obtained for (f',k'A’ | (z —H°)G (z) | f,kA) and for {f,kA | (z —H°)G (2) | ipm,,0).

In order to proceed further, it will be necessary to introduce the explicit expressions for the various matrix elements of
the interaction operator V. These expressions have been derived?® by means of the introduction of a partial-wave expan-
sion’ for the unperturbed electron-continuum eigenstate and by the application of the Wigner-Eckart theorem.*® In our
present analysis, we retain only the electric dipole contribution that arises from the multipole expansion of the radiation
field operator. The inclusion of higher-order multipole contributions in a future extension of this investigation may be
necessary for an accurate description of high-Z atomic systems.

The interaction matrix element that is responsible for autoionization can be represented, in terms of the Wigner 3-j
symbols,® by means of the partial-wave expansion

(a,0|V |ipm,,0)=(a,0| QH 4P | ipm,,0)
= Y expli(lmr/2—0o )Y} (D)
ILm

s—J;—N+K—1—-M

s KHIK J,

Ji
a 172
X 3 (—1) [2K + 1] IM,- B

K,N
><(YaJa”QHAP”yiJi,Kpl;Ja> > (23)

r

where the double vertical bars denote the reduced matrix where D denotes the many-electron atomic dipole-
element of the projected interaction operator QH 4P that  moment operator that has the dimension of length and
results from the application of the Wigner-Eckart  may be represented in its relativistic form. The quantity
theorem.’® The symbols y, and ¥, denote the sets of ad- g, (k,A) is defined by

ditional quantum numbers and o, is the Coulomb phase ) 1/2
shift. We emphasize that the unperturbed electron- gk, A) = —i 2me “ficoy E)* 25)
continuum eigenstate |ipm;,0) that is introduced by this rem Vi mo

partial-wave expansion describes the electron-ion scatter-
ing in the absence of both the projected electron-electron
interaction and the electromagnetic interaction H 4r. In
the terminology of the Feshbach projection-operator for-
malism,>>3! these states correspond to the nonresonant
electron-ion scattering states that are eigenstates of the
projected unperturbed atomic Hamiltonian PH 4P, which
is defined within the subspace of the open electron-

where p designates the irreducible spherical tensor com-
ponents of the unit photon-polarization vector €, and V§
denotes the volume within which the radiation field has
been quantized.

The interaction matrix element that couples the unper-
turbed electron and photon continua may be expressed in
the separable form

continuum channel |ipm;,0). Gpma .0V | £.kA) = (ipm..0 | H kL)
The interaction matrix element that describes the spon- s OV IS, pms,0 [ Har |,
taneous radiative decay process is given in the electric di- =3 fu(Mipm;,M;)g,(k,A) . (26)
pole approximation by 7
(a 0|V |f kA) =(a,0 | H 4p | £, kL) The quantity f;(prms,Mf) is defined in the electric di-
’ ’ ’ ’ pole approximation by the relation
J 1 J ;
= 3 gk A1) M| Y ! fa(Mipm,,M)=ipm | D, | f) 27
o M, p Mf . . . .
and may be represented in this approximation by means
XAvala||Dllysds) s (24) of the partial-wave expansion

J

[ (Mpm,Mp)= S expl—i(Im/2—a)]YimP) S 3 (—1) VR 0k L Dr + D)2
IL,m K,NJ M

J 1 J;

x —-M u My

Ji s K I K J
M; mi —-N||m N —M

Xy i, Kpl;J|Dlly Iy ) (28)
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The notation in our subsequent analysis can be as the following:

simplified substantially by the introduction of vector and (a,0|V |ipm,,0)

tensor self-energies that are natural extensions of the o/ (M M;z)=S S f d3
definitions originally presented by Haan and Cooper.' M; m, (z—E,)
These extended definitions, which include the magnetic
quantum numbers, are as follows:2° X fh (M;pmy,My)
alf(MsM,,z) f
_ a *\ 7%
[d Sul Mpms,Mf (iomo0| ¥ 14.0) . =[ol(MM,,2*)]* . (33)
- 2 z (z —E,) ipm, 0|V |a, The results obtained for the various matrix elements of

G (z) can be simplified substantially by exploiting the spe-
cial properties of the tensor self-energies o//(z) and

U#V(Mfo, z) o%8(z). The tensor self-energy o{(z) is found to have the
[atp LBy diagonal form

22 | & pm— g TSy (Mipms M) 08 (2) = ZE%(2)8,, . (34)
(30) After converting the discrete summation over k into an
integral over the continuous photon-energy variable #iwy,

o8 (MM,,2)= 3, 2 (f, kA |V |a,0), 31 the scalar self-energy 2%5(z) can be expressed as

Ak
_ 2e 2% o dwrol
o s s Sulloled ) 5 0= [ gy (35)
o8(z)= —_—
% k (z —Ey)

The partial-wave expansion Eq. (28) can be employed to
The transposed elements are defined by relationships such reduce the tensor self-energy U"{?:,(Z) to the form

J

J 1 U
-—M/,LMf

J 1 Js

S
M v oy | D@, (36)

oMM} 2= 3,
I M

where the scalar self—energy 3/(2) is defined by the integral

ff ® P dp 2
o=y 7 RS S 1 Keli Dl ) | 67

An equation that involves only matrix elements of G(z) having the forms (f,kA|G(z)|ipm,,0) and
{a,0| G(z) | ipms,0) can be deduced by eliminating matrix elements of the type {i'p'm,,0| G(z) | ipm,,0) from the set
of coupled equations consisting of Eq. (22) together with the analogous relationship for {f,kA |(z —H°)G (z) | ipm,,0).
In order to extract the desired solution for the matrix elements {f,kA | G(z)|ipm,,0), it is first necessary to multiply
both sides of this equation by the factor

Jo 1 J;

M, u M guk,A),

for some fixed value of the index u, and then to perform the summations over My, u, A, and k. This procedure is evi-
dently analogous to that employed previously in connection with Eq. (19) of the derivation of the autoionization and ra-
diative decay probabilities.°

The properties of the tensor self-energies expressed by Eqgs. (34) and (36) allow the extraction of an exact closed-form
expression for the matrix elements {f,kA | G(z) | ipm,,0), which can be presented in the form

(f kA |V [ipmS,O)

gp(k,A)
(z —Ex)z —E,)¥(z) ZH

Y(z)

(f,kA |G (2) | ipm,,0) = (f,kA |V |a, 0>+2 [0/4MM,,z)

(a,0| G (z)|ipms,0)
(z —Ey)

+ 3 (z2)o 8" (MM, ,2)] , (38)

where
W(z)=1-—38(2)3(2) . (39)

The corresponding solution obtained for the matrix elements {i'p'm;,0| G (z) | ipm,,0) can be expressed as
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(i'p'm;,0| G(z)|ipms,0)

_ 8(M/,M;)8(m],m,)8*(p'—p) LSS FE(M/p'm{ ,M;)Z(z2)f,(M;pms, M)
- (z—E}) (z —E))z —E,)¥(z2)

M, u
+ 3 |€i'p'm/,0|V |a,0)
(M/p'm{, M) (a,0|G(2) | ipm;,0)
> ———p’—”——f[aga<MfM,,,z)+zgg(z>a£“<MfMa,z)] %0|Gtz) | ipm : (40)
My u ¥(z) (z —E,)

An analogous exact closed-form expression can be obtained for the matrix elements (', k'’A’ | G (z) | f,kA ), which are re-
quired only for the photon-ion scattering matrix element.

In order to complete the determination of the matrix elements given by Egs. (38) and (40), it is necessary to utilize our
previously derived result for {a,0| G (z) | ipm;,0), which may be presented in the form!%%°

(ipm;,0| G (z)|a,0)

fi(Mpmg,M;)

(ipm,,0|V |4,00+ 3 S (o8 (M M, ,2) + S5(2)o fM M, 2)] | {2OLG @ 2,00y,
i W(z) (z —Ep)
The modified propagator for the autoionizing state is given by
. (M oMy,z) /e
[{a,0|G(2)|a,0)] '=z —E,—2“z2)— 3 3, —\1/( ) [085(M M, ,z)+ 28(2)0 [ (M M,,2)]
u Mg
g (M M ’
- 22%[Uﬁa(MfMa,Z)+2ff(z)aﬁa(MfMayz)] y (42)
u Mg
where
| {a,0| V |ipm,,0) |? [ €{a,0|V |f,kA) |?
saa(; 4 ’ . 43)
%mzf p (z—E, +,%§§ (z —Ex)

C. The transition operator for electron-ion scattering and photorecombination

The matrix elements of the transition operator T that describe the electron-ion scattering and photorecombination pro-
cesses may now be expressed, by means of Egs. (12) and (13) together with our results for the matrix elements of G, as
sums of a resonant and a nonresonant transition amplitude in the familiar forms'®

(i'pm/,0| T |ipm,,0)= lirg (i'p'm{,0| V(E, +ic) | ipm,,0)
€l

+ 3 (i'p'm,,0| V(E, +ie) |a,0){a,0 | G(E, +ic) | a,0){a,0 | V(E, +i¢) | ipm,,0)

(f,kA| T |ipm,,0) = lirg ’(f,k)\ | V(Ey +i¢) | ipm;,0)
el

+ 3 (f.kA | V(Ex +i€)| a,0){a,0| G(Ey +ig) | a,0){a,0 | V(Ey +i¢)|ipm,,0) (45)

a

The matrix elements of the vertex operator ¥(z) that correspond to the nonresonant transition amplitudes are obtained
in the forms

[ (Mip'm{,M;)2%(z)f,(M;pm;,M/)

i 5,0| P(z) 5,0) = ) 4

i'p'm{,0| V(z)|ipm %%‘, ) (46)
- (K, Aol (M M},2)Z%(2) f (Mpm,, M

(f,k7»|V(z)lipms,0>=(f,kk|V[ipmS,O)—f—ZZZ gul )0';1( f fZ) (z)f(M;pm f) 47)

Y7 ¥(z)
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which incorporate our nonperturbative results for the vertex modifications. Note the absence from the right-hand side of
Eq. (46) of the lowest-order contribution (i'p'm;,0| ¥V | ipm,,0), which has been assumed to vanish, as indicated by Eq.
(14). The vanishing of this contribution is in accord with our initial assumption that the nonresonant electron-ion
scattering process, in the absence of the electromagnetic interaction H 4, is completely described by the unperturbed
electron-continuum states | ipm; ).

The matrix elements of the vertex operator V(z) that are required for the evaluation of the autoionizing-resonance con-
tributions to the transition amplitudes can also be expressed as sums of unmodified and modified interaction matrix ele-

ments as follows:

_ * (Mipm,, M)
(ipms,0| P(z) | a,0) = (ipms,0| V |a,0)+ 3 3 W[aﬁ“wma 2)+ ZE(2) oA MM, ,2)] (48)
Mf "
(f,kA | V(2)]|a,0) ={f,kA |V |a,0) + 3 g% (k, M)/ (M M,,2)
"
*(k,Mofl(M M},2)
+s3 s S (:17(2) LZLE (%M M, 2) + S¥(2)ofAMM,,2)] . (49)

;
BovoM;

If only the matrix elements of the unmodified interaction
operator V are retained in the vertex functions defined by
Eqgs. (47), (48), and (49), and the corresponding approxi-
mation is introduced into the autoionizing-resonance
propagator given by Egs. (42) and (43), we recover the fa-
miliar expression for the lowest-order combined transition
amplitude describing radiative and dielectronic recombina-
tion. !>

The resonant and nonresonant transition amplitudes,
which appear in Eqs. (44) and (45), may be represented
schematically by the Feynman-type diagrams shown in
Figs. 2 and 3, for electron-ion scattering and photorecom-
bination, respectively. In the diagrams associated with

('3 my, 0] V(2)]a,0)
{a,0|G(z)|a,0)
(o,o|\7(z>|i‘pms.o>

P, m,

(b)

FIG. 2. Diagrams representing the lowest-order contribution
(a) to the nonresonant transition amplitude and the entire reso-
nant transition amplitude (b) for electron-ion scattering. The
open circles represent the indicated matrix elements of the vertex
operator ¥(z), while the triple lines represent the indicated ma-
trix element of the modified propagated G (z).

f

the autoionizing-resonance contributions, the open circles
represent the vertex functions while the triple lines desig-
nate the modified propagator. These modifications in-
corporate radiative corrections to all orders in quantum
electrodynamical perturbation theory, but within the limi-
tations of our restricted basis set of unperturbed eigen-
states. The nonresonant transition amplitudes are
represented by Feynman-type diagrams that indicate the
lowest-order photorecombination amplitude [Fig. 3(a)]

x4
>

R G vlizm,.0)
p.m

G |V-v]iEm,.0)

<f,:x‘q(z)\ u.0>
a (a,0|6(2)]a,0)

0.0 V() |iEms)

FS

i (c) p.Mg

FIG. 3. Diagrams representing the unperturbed contribution
(a) and the lowest-order radiative correction (b) to the non-
resonant transition amplitude together with the entire resonant
transition amplitude (c) for electron-ion photorecombination.
The open circles represent the indicated matrix elements of the
vertex operator V(z), while the triple lines represent the indicat-
ed matrix element of the modified propagator G (z).
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and the leading radiative corrections [Figs. 2(a) and 3(b)],
which correspond to the replacement of W(z) by unity in
Egs. (46) and (47). The higher-order radiative corrections,
which involve more than one virtual photon emission and
reabsorption, are generated by the remaining terms in the
expansion of 1/W¥(z) in powers of the product
38(2)3(z).

The vertex functions that are represented by the open
circles in Figs. 2 and 3 may be depicted in greater detail
by means of the Feynman-type diagrams shown in Figs. 4
and 5 for external electron and photon lines, respectively.
The unmodified interaction matrix elements that occur as
the leading terms in the expressions Eqs. (48) and (49) for
the vertex functions are represented by the diagrams la-
beled (a) in Figs. 4 and 5. The diagrams labeled (b) and
(c) exhibit the lowest-order radiative corrections that are
generated by the vertex correction operator V(z)—V. In
Sec. IIT the pole approximation will be employed in an
approximate evaluation of the vertex and propagator

oy
3
L

(c)

FIG. 4. Vertex diagrams containing an external electron line.
The indicated matrix element of the unmodified interaction
operator V is represented by (a), while the lowest-order radiative
corrections that are generated by the vertex correction operator
V(z)— V are represented by (b) and (c).

1103

modifications, which results in expressions for the
modified electron-ion photorecombination cross sections
involving the familiar unperturbed atomic transition prob-
abilities. It would be necessary to employ the renormal-
ization program of modern relativistic quantum field
theory’” in order to properly treat the various divergent
quantities that would be encountered in a precise evalua-
tion of these corrections.

The diagrams that are labeled (a) in Figs. 3-5 represent
the elementary interactions that serve as the fundamental
structures in the diagrammatic perturbation theory expan-
sion of the transition amplitudes describing the electron-
ion scattering and photorecombination processes. It is
desirable to present the relationships between these ele-
mentary interactions and the basic interaction of quantum
electrodynamics, which is represented by a vertex formed
by two electron lines and a single photon line. For con-
creteness, we present these relationships by adopting for

. <f,‘k’x|v|a,o>

(a)

(| Way-v]e,0)

(c)

FIG. 5. Vertex diagrams containing an external photon line.
The indicated matrix element of the unmodified interaction
operator V is represented by (a), while the lowest-order radiative
corrections that are generated by the vertex correction operator
V(z)— V are represented by (b) and (c).
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I, N " J"m' ©a

-
! p, ms P, Mg

<f. kA |v]ipms, O> <n'£"j”m “ T |Har] Pms, O>

< nljmj,-k.x |Hap| n'2j" m], O>
(b)

n!;mj

' B, ms
» Mg
=>
a n"2"j"m;
(i3mg. 0|Vl 0, 0)  (ntim;, Bmy[PHp (1-P) n'ljm], n"t'j"m)")

(c)

FIG. 6. Relationships between the elementary interactions
that are represented by the unmodified vertices in Figs. 2—5 and
the basic interaction diagram of quantum electrodynamics,
which is a vertex formed by two electron lines and a singlet
photon  line. The atomic eigenstates are specified
by |id=|nljm;),|a)=|n'l'im/,n"l"j"m;'), and |f)
= | nljm;,n"I"m;'). The vertex diagrams (a) and (b) represent
the indicated basic interaction matrix elements, while diagram (c)
designates the indicated matrix element of the single-photon-
exchange approximation to the electron-electron interaction.

the atomic basis states the simplified uncoupled-electron
specifications

|i)= |nljm;) ,

la)=|n'l'j'm/,n"l"j"m;") ,
and

| fY=|nljm;,n"I"j"m]") .

These uncoupled representations are most suitable for the
treatment of processes involving the high-Rydberg au-
toionizing states with n”' >>n’>n, for which the dom-
inant stabilizing radiative decay channel involves the

inner-electron transition n'l’j'mj—nljm;.

The pairs of diagrams that are labeled (a) and (b) in Fig.
6 illustrate the connections between the elementary
photon emission processes and the basic single-electron

transition resulting from the relativistic atomic-
electron—radiation-field interaction
172
2mh Ak —ik-
Hp=—e a-efhe T, (50)
Wk

where a denotes the Dirac matrix. The single-photon ex-
change approximation for the relativistic interaction be-
tween the atomic electrons is illustrated by the pair of dia-
grams labeled (c¢). The configuration-space interaction
operator that corresponds to this approximation for the
relativistic electron-electron interaction can be expressed
in the Mgller form?’
explikryy)

(l—aa))——, (51)
ri2

V(rlz):

where k represents the momentum of the virtual photon.
It can be seen that the diagram labeled (c) is in fact a
combination of the two basic diagrams labeled (a) and (b).
This provides a physical understanding for the widely
used approximation®!'® in which the autoionization rates
are expressed in terms of the radiative decay rate for the
inner-electron transition.

III. THE ELECTRON-ION PHOTORECOMBINATION
CROSS SECTIONS

A very general description of electron-ion photorecom-
bination can be presented in terms of a final-state density
matrix, which can be defined in terms of the individual
transition matrix elements and an initial-state density ma-
trix representing the polarization states of the incident
electron and the initial state. An analogous description
has been presented in connection with the atomic photo-
ionization process.® In the present investigation we treat
only the recombination processes in which the magnetic
sublevels of the incident electron and the initial ion are
equally populated and the magnetic quantum numbers
and polarizations of the final-state products are not mea-
sured. In addition, the differential cross sections will be
integrated over the final electron and photon directions to
obtain the total cross sections.

The total cross sections for electron-ion scattering and
photorecombination are defined, in terms of the respective
matrix elements of the transition operator 7, by the ex-
pressions

. _ 27 me 1 2
olie,—iey)= | 5 > | nEss EZEMZfdQPp gp) | (i'p'my,0| T | ipm;,0) | (52)

_ 27T me 1 . 2
oliey—frwn)= |- > @@ émz%§ JdQuptio) | (f,kA| T |ipm;,0) |2, (53)
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where the nonrelativistic expression for the incident elec-
tron flux has now been introduced. The densities of final
electron and photon states per unit energy and solid angle
intervals are denoted by p(e,) and p(fiwy), respectively.
The cross section for electron-ion scattering that would be
predicted with the results obtained from our severely re-
stricted basis set could describe only the uninteresting
elastic scattering process, which will not be considered
further in the present investigation.

When Eq. (45) is substituted into Eq. (53), three contri-
butions to o(i,e, —f,wx) are obtained which arise from
the modulus squared of the nonresonant transition ampli-
tude, from the modulus squared of the resonant transition
amplitude, and from the interference terms involving the
nonresonant and resonant transition amplitudes. We will
denote these contributions by  Grrli,€,—f,0k),
Oprli,ep—fo0i), and Ginli,e, —f,wy ), respectively. We
will treat them separately in Secs. III B, III C, and IIID
and we will combine them in Sec. III E. First, however,
we will introduce the pole approximation.

A. The pole approximation

The electron-ion photorecombination cross sections will
now be evaluated by introducing into the definitions of the
various self-energies the pole approximation

1
E—E'

I = FinS(E —E'
ci0 E —E'tie imd(E —E)

= Find(E —E'), (54)

in which the principal-value integral arising from the con-
tribution denoted by P is to be ignored. The validity of
the pole approximation has been investigated by Haan
and Cooper,'® and they have concluded that this approxi-
mation can be expected to be valid in a region in which
the transition amplitude is a slowly and smoothly varying
function of the continuous energy variable. However,
they have pointed out that incorrect results can be ob-
tained if the pole approximation is introduced prior to
performing an integration over the entire energy range
since it is not valid for the entire continuum. This
difficulty can occur when the one-discrete-level and two-
continua diagonalization is performed in a sequential
manner, which often gives rise to a rapid energy variation.
Here we avoid the problems by working with undiagonal-
ized continuum states.

The self-energy 3°“(z), which is defined by Eq. (43),
reduces in the pole approximation to the familiar result

3%%(z)= — %[S(Z,Ei +¢€,)Aq(a—igp)
+8(z, Ef+fiwi ) A, (a—f)] , (55)

which is simply the sum of the usual autoionization and
spontaneous radiative decay rates A,(a—ig,) and

A,(a—f) in the absence of the continuum-continuum
coupling. These unperturbed transition rates are ex-
pressed in terms of the appropriate reduced matrix ele-
ments by the relationships

Agla—igy)= 3 Asla—i,Kepl)

K,
=271T8(Ep,Ea——E,-)
| {¥aJal|QH 4P|y :iJi,Kepl;J, ) |2
X ,
ra (27, +1)
(56)
4 | |0l
A (a—f)= |—
(a—f) 3 703
| {¥aJalDllysJs) |2
8wy, E; —E .
X Ol s) 21, +1)
(57)

Note that the electron-continuum states in Eq. (56) have
now been normalized to a Dirac § function in the electron
energy €,.

The scalar self-energies =//(z) and 3%(z) are given in
the pole approximation by the expressions

Mgy — | 3 2 +1
=2 4r | | aior l 2, +1
Xz, E; +ep)0,(f,0r—1,€304) , (58)
. 2 ez 3
38(z)= —i 3= 03 8(z, Ef +fiwy ) (59)
c

where o« denotes the fine-structure constant. The
continuum-continuum coupling parameter, which is
defined by Eq. (39), is accordingly given in the pole ap-
proximation by the relationship

fior

a’
2T 2Ey

X 8(z,E; +¢€,)8(z, Ef +#iwi o p (f0k —1,853d4)

(60)

where Ey=e?/2ay and ao=#*/(e’m.). The quantity
o,(fior—i,€5;J,) denotes the unperturbed photoioniza-
tion cross section corresponding to the partial-wave com-
ponent of the electron-continuum state with total electron-
ic angular momentum J,. This unperturbed photoioniza-
tion cross section is given by the relationship
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op(fior—ieyJa)= 3 0,(fior—i,Kepl;J,)
K.l

417'2a1‘iwk
S bt Ji Ke, 13T, Dy Jr) | 2.
3(2Jf+1)%l<y i Ke,13J4 Dy pdr) | 61)

Note that by the introduction of the pole approximation we have avoided the problem of the divergent principal-value in-
tegral in the expression for =2%(z).

The tensor self-energies U{;fv(M +Mf,z) and of3(z) are obtained in the pole approximation simply by substituting the re-
sults for =/(z) and =%(z), which are given by Egs. (58) and (59), into the defining expressions Egs. (30) and (32), respec-
tively. The defining relations for the vector self-energies 0/*(M;M,,z) and o%"(M;M,,z) can be reduced in the pole ap-
proximation to the forms

. J,—M, Jf Jg 1
fa MM _ —im(—1)
U#( f a,Z) (2Ja+1)l/2 Mf _Ma M
XS(Z’Ei+Ep)2 <7/fJf||D|'7/iJiyK5pl;Ja><7/iJi’KEpl;Ja||PHAQ“7/HJ0) ) (62)
K,
I Jo 1
oS (MM, ,z)=(—1)« M S88(2)y 1 Jf||D|lyada ) (63)
Iz fMa> Mf “Ma u Yrdr YaJda/ »

where 28(z) must be replaced by the result given in the pole approximation by Eq. (59).
The exact closed-form expression Eq. (42) for the modified autoionizing-state propagator simplifies in the pole approxi-
mation to the result

[{a,0|G(2)|a,0)] '=(z —E,)+8(z,E; +¢,)8(2,E/ +#iw)

A, (a—f) it ifi 1
— = L 2 ga—i —— A a—f) |[1—— ||, 64
V20, 3 (a—ig,)+ 20(2) (@—f) [ 07 (64)
where Qr is the multichannel Fano line profile parameter®* defined by
73 Vadal|QH 4P|y iJi,Kepl3J, )y idi, K ey 130, || Dy pJ )
K.l
) (65)

o (2Ja + DV yada|Dlly sJs)

For the case in which only a single angular momentum term is retained in the partial-wave expansion for the electron-
continuum state, Egs. (56), (57), (60), and (61) can be used to reduce Eq. (65) to the simple result

1 Agla—igy)
0} Ala—))
We note that this modified propagator has the familiar Lorentzian form

[(a,OiG(z)la,O)]”:(z—Eﬂ«—A(a)—{—%(a) s (67)

(W(z)—1] . (66)

where the shift A(a) and width I'(a) produced by the interaction V are given by

#A,(a—f)
Alg)= _ 2Arta=/) 68
(a) VG0, (68)
#id,(a—f)
)= fidy (a—ie,)+ 2@ =0 1 1 (69)
W(z) 07

We will denote by A (a) the total perturbed decay rate that is given by I'(a)/#.

B. The modified radiative recombination cross section

The nonresonant transition amplitude in Eq. (45) determines the modified radiative recombination cross section ac-
cording to the relation
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orrli, € — f01)= mme L

RREDS DO g 1 p | 2L+ 1D2s +1)
X I3 [dptio|lim £k PE+ie)| ipmi,0) [ (70)

M; mg My A el

which differs from the usual radiative recombination cross section orr(i,€, — f,w ) because of the appearance of the ver-
tex operator V(z) in place of the interaction operator V. The vertex function, which is defined by Eq. (47), reduces in the
pole approximation to the simple result

(f,k\ | V(2)|ipms,0) :—\V—;Z—) S g (kA)fu(Mipmg, M)
m

1
Y(z)

(f,kA |V |ipm,,0) , (71)

where W(z) is now given by Eq. (60). It can be seen that this result is the lowest-order dipole transition amplitude multi-
plied by a factor of W(z)~!. This factor incorporates to all orders the radiative corrections that are generated by the use
of our limited basis set of unperturbed eigenstates in the diagonalization of the complete Hamiltonian H.

The final result for the modified radiative recombination cross section may be expressed in the form

3

o (is—»fa))—‘l'—ﬂ-za—3 fio i 1 1
RR'5HEp »yWk 3 0(3) 2EH aopp 2J‘.+1 \[’(Ef-f-'ﬁa)k)z
X 333 | {yJsIDllyiJi.Kpl;I ) |
K | J
1
== ([,E —/, ) N (72)
‘P(Ef—}—ﬁwk)z RR p f(Uk

where W(E; +%w, ) is given by Eq. (60). The modified photoionization cross section &,(f,wx—i,€,) corresponding to
the inverse process can be obtained from the unperturbed partial-wave cross sections given by Eq. (61) simply by includ-
ing the factor W(Ey +#iw; )% and performing the summation over the total electronic angular momentum J,. Taking
into account the connection between the alternative normalizations of the electron-continuum state per unit electron en-
ergy and per unit electron density, which may be expressed in the form

| vy 7 IDllyidisKeplsI) |2
| ysJs|ID|lyiJi, Kpl;J) | 2

1

p|__1
2Eya}

#i

(73)

>

we can confirm that the modified radiative recombination and photoionization cross sections satisfy the well-known Kra-
mers relationship®

2 2

Fio
2Ey

2Ey
cp

2Jf-+—1
2J;+1

orrli,ep —f,01)

(74)

a'P(f,(l)kHl.,Ep)

C. The modified dielectronic recombination cross section

The autoionizing-resonance contribution to the transition amplitude determines the modified dielectronic recombina-
tion cross section according to the relation

me

p

1

2w . r
(2J; +1)(2s +1)

#i

Oprli,gp — f0k)=

X333 3 [dupthon

M; m; My A

X 1ir(r)12(f,k)»| V(Ey +i€) | a,0){a,0 | G(Ex +ic)|a,0)
€l Ma

2
x{a,0| V(Ei+i¢) | ipm,,0) | . (75)
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The modified dielectronic recombination cross section may be expressed in the familiar Breit-Wigner form?"?? by the in-
troduction of effective autoionization and radiative decay rates that incorporate the continuum-continuum coupling.'# =20
These effective decay rates may be defined in the same forms as the usual expressions Egs. (56) and (57) for the corre-
sponding unperturbed decay rates, provided that in the reduced matrix elements the interaction operators are replaced by
the effective operators that arise from the vertex operator V(z).

The vertex functions that occur in the expression Eq. (75) for the modified dielectronic recombination cross section
may be represented in terms of the desired reduced matrix elements by means of the expansions

(ipm;,0| V(z)|a,0)= 3 exp[—i(Im/2—0)]Y}m(P)
ILm

Ji s K I K J
s—Ji—N+K—-1-M, 1/2
X (—1) (2K +1) [Mi m, _N!lm N —M,
KN
X<7/1'Ji:Kpl;Ja”PﬁA(Z)Q“YaJa> ) (76)
(fikh| 7 ) S I P )
kA | V(2)|a,0)= (kA (—1) e JrID@)||vada? » 77
f kA | V(z)|a ’ztgu M, u M; vrdr DGy

which are identical in their forms to the corresponding expansions Egs. (23) and (24) for the unmodified interactions.

The reduced matrix elements of the effective interaction operators PH ,(z)Q and D(z) with z = E; +ie may be related
to the reduced matrix elements of the corresponding unmodified interaction operators by means of the pole approxima-
tion as follows:

_ (y;J:,Kpl;J,||PH 4Ql|lvJ, ) Ala— (£ +1/Q))
1 "K ;Ja P al — - N ’
(viJi,Kpl;Jo||PH 4(2)Q|lvJ s ) v W(z) (@ —iKe, D0, KD (78)
- (yrdrlDllvada? |, i
= - 79
(v pdr D@V ada? Ye) 1+Qf , (79)

where in Eq. (75) Qf(KI) denotes the individual contribution to the summation Eq. (65) associated with the partial wave
K,

The modified dielectronic recombination cross section may be expressed in the familiar Breit-Wigner form
Pk (21, +1) A,(a—f)A,(a—ie,)

aop 2(2J;+1) A(a)

21,22

#i

2E, (REy )L, (fiwy)

5’DR(i,EP~—>f,wk)=27Tzao (80)

The effective autoionization and radiative decay rates are related to the corresponding unperturbed rates in the pole ap-
proximation by means of the expressions>°

- Ay(a—ig,) 2¥ A4,(a ) A (a )
Ala iy =2 0be) Iy 2VANDS) (g gy |y, L) AdaS) 81)
v QF Agla—iye,) Qf | Aala—igp)
- A la—f) 1
A,(a—»f):—\;—z— 1+—Q’fz‘ , (82)
where W represents W(Ef+#iwy ). The energy-normalized Lorentzian profile function obtained from Eq. (66) is given by
Ly (g ) = 2 L (83)

27 [Ef—E, +fiw, —A@)*+T(a)?/4 ’

and I'(a)=7A4(a) represents the total width, which differs from the width obtained in the absence of the continuum-
continuum coupling.®

For the case in which only a single angular momentum term is retained in the partial-wave expansion for the
electron-continuum state, it follows from Egs. (81) and (82) that the total perturbed decay rate A4(a) is reduced from its
unperturbed value A4 (a) according to the relation

A(a)

i
PN

ala—igy)+ A, (a—f)

[Acla—ie,)+ A (a—f)]

A(a) . (84)

Sl
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D. The modified interference cross section

The cross section that arises from the interference between the resonant and nonresonant modified transition ampli-
tudes in Eq. (45) can be expressed in the form

1
(2J; 4+ 1)(2s +1)

Gineli, €p —fior)=

#
xITIISS fkop(ﬁwk)linol[(f,kM V(Ey +i€) | ipm,,0) { f,kA | V(Ey +ig) |a,0)*
A el

X {a,0| G(E, +ig)|a,0)*{a,0| V(E; +ig)|ipm,,0)* +c.c.], (85)

where c.c. denotes the complex conjugate contribution. The complex conjugate of {f,kA | V(E; +i€)|a,0) can be ob-
tained by first substituting the relation Eq. (79) with z =E} +i¢ into the expansion Eq. (77) and then taking the complex
conjugate. The complex conjugate of {a,0| V(E, +i€)|ipm,,0) can be obtained by first utilizing the non-Hermitian
property ¥ '(z)=V(z*), which implies that (a,0| V(Ey +i€) |ipm;,0)* = (ipm,,0| V(E; —i€)|a,0), and then substi-
tuting the relation Eq. (78) with z =E; —i¢ into the expansion Eq. (76).

In the pole approximation the modified interference cross section may thereby be reduced to the form

2 ~ .

% # (2J,+1) A (a—f)A,(a—i,e,) 2 1 1
Fintlis€p—frox)=2m%ad|—— | | =—— |(2Egx )L, (#iwy) - P 1+— | —
Tindi, €p — fL 0k aj 0 2E, (2Ey )Ly (Fiwy 2027, 4+ 1) 1) fidala—ire,) + 07 v

2 1 I'(a)
X2 | | =5 |[Ef+fiwox—E,—Ala)]— | —5+¥—1 , (86)

Qf 4 Q7 2

where W represents W(E, +#iwy ).

The interference between the resonant and nonresonant modified transition amplitudes produces a departure from the
standard Breit-Wigner form, which exhibits the usual Lorentzian energy dependence that is characteristic of the dielect-
ronic recombination cross section. This departure from the Lorentzian line shape is manifest by the additional energy-
dependent factor [E;+#iwi —E, — A(a)] in Eq. (86) and is completely analogous to the interference phenomena that was
first theoretically described in the context of photoionization by Fano.?® It should be emphasized that the modified in-
terference cross section presented by Eq. (86) incorporates the additional shift and broadening that is produced by the
coupling between the autoionization and radiation continua. The appearance of the interference contribution in the total
electron-ion photorecombination cross section implies that the standard picture, in which radiative and dielectronic
recombination are described as independent processes, is not strictly valid. The accuracy of the standard picture will ob-
viously depend on the relative importance of the interference term.

E. The combined electron-ion photorecombination cross section

It is of interest to investigate the energy-dependence of the transition amplitude for the combined electron-ion pho-
torecombination process without separating the nonresonant radiative and resonant dielectronic recombination contribu-
tions, since this separation has no fundamental foundation in our unified description. For simplicity we first treat only
the case for which the tensor self-energy 0 (M M f,z) can be assumed to have the diagonal form Sz z)8,v, and we omit
all magnetic quantum number speciﬁcations In other words, we now proceed according to the one-dimensional analysis
presented by Haan and Cooper.!® If the unperturbed electron- and photon-continuum state vectors are now denoted by
lie, ) and | foy ), respectively, the total electron-ion photorecombination amplitude, which is obtained from Egs. (42),
(45), (48), (49), and (71), is given in the notationally simplified form

. 1 .
(for |T 1zsp>=—-—w(z) (for |V |ig,)
8" (g
(for |V |a) +—-w—[zf“ 2)+ 2M(2)2#(2)]
{ —1
X |(z —Ez)—Z2%(z)— W[E“f(z)zg“(zHZ“g(z)zf"(z)zafu)zgg(z>zf“(z)+2“8(z)sz(z)28"(z)]

f(,,)

(a |V |igy)+——T— e

T[Z%(z*)* + 28z *)* 2V (2 %)* ] ] , (87)
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where all z-dependent quantities are to be evaluated at z =FEj +ie. In conformity with the notation of Haan and Coop-
er,'? the vector self-energies without the magnetic quantum numbers are denoted by =/%(z) and =¢%(z), and the autoioniz-
ing state in the unperturbed basis set is designated simply by |a).

In order to combine the resonant and nonresonant transition amplitudes, we exploit the separable form of the dipole-
interaction matrix elements. It is also advantageous to separate the electron- and photon-continuum contributions to the

self-energy 2?%(z) by writing
2Mz)=Z(2) + Zphorl2) -

(88)

The matrix elements of the electronic dipole-moment operator between the unperturbed atomic eigenstates are explicitly

introduced by employing the relationships

(for |V i, )=g*(wx){f |Dlig,) , (89)
(for |V ]a)=g*(){f|D|a), (90)
fle)={(f|D]ig,) , C2V)
389(z)=3%(z){f |D|a) , (92)
aon(z)=3%8(z) | (f|D]a)|*. (93)
The resonant and nonresonant contributions in Eq. (87) may now be combined to form the result
(fID]igy)[(z —E;)— 28 ]1+[(f |D|a) + =) a | V |ig,)
T |ie,) =g*(wi) . (94)
Sar T i) =8 o) g Ey )~ 2] 2%)(f | D @) + @]i(a |D|/)+37)]
M
The self-energies S%..(z), 2/%(z), and 2#(z) can be eval- ( T lie) g*w) | {f |D]ig,) | 2er+Qf)
uated in the pole approximation to obtain the expressions for|T |ie,) = 24 ’
Wlep+——— |+i |14+ =
S8z =—im|{a |V |ig,) |2, (95) T wQ 4, Aq
3fa(z)=—in(f | D|ig, Y ig, | V |a) , (96) (103)
$98(2) = —im | g () | 2 97) and the total electron-ion photorecombination cross sec-

It is now convenient to introduce the parameters which
are conventionally used in the Fano line shape theory,?®
i.e.,

(Ex—Es)  (Ej—E, +#oy)
e — , (98)
r,r72 .72
1 7(f|D]ig,)ig, |V |a) 99)
or (f|D]a) ’
r, A, .
=" =7|{a |V |ig,)|*. (100)

(Note that we have now restricted our analysis to the case
of a single electron-continuum partial-wave component.)
In addition the continuum-continuum coupling parameter
W(z) can be expressed in the pole approximation by

V(z)=1+7"|glwx) | 2| {f|D]ig,) |?, (101)
and the radiative decay rate A, is given by
C=m|glw)|?|{a |D|f)|2. (102)

2

The combined electron-ion photorecombination amplitude
is finally obtained in the pole approximation in the
parametrized form

tion is accordingly given in terms of the unperturbed radi-
ative recombination cross section ogr(i,€, —f,wi) by the
result

2 J 4

(104)

URR(i’Ep — f,wk )(Ef-f-Qf)z
24, 2+ A,
\PQan Aa

a(i,e,,-—»f,wk )=
‘I’l

€r+ 1+

which is in agreement with Eq. (5a) in the paper of Alber,
Cooper, and Rau.?’ In the limit of very large Qy, Eq.
(104) reduces to a Lorentzian profile function correspond-
ing to the total unperturbed width #( A4, + 4,) and there-
fore yields the conventional unperturbed dielectronic
recombination cross section. In general, Eq. (104)
represents a modified Fano profile characterized by a shift
of the closed-channel resonance given by #4,/¥Q, and
by a reduced total width of #( A, + 4,)/V¥, which are the
result of the continuum-continuum coupling. This
modified Fano profile has also been predicted for the pro-
cess of laser-induced autoionization by Agarwal, Haan,
and Cooper.>?#

For application to the general case of degenerate mag-
netic sublevels and multiple electron-continuum partial-
wave components, Egs. (72), (80), and (86) can be com-
bined to form the total electron-ion photorecombination
cross section
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2 ~ 2711 2 ~ 2
24 A(a) 24, A(a)
. 2 r .
— R \y b ’
olbey—=fro)= Ve + 457 | Vg, e e ARyl Il oy
2 ~
# (2J,4+1) A, A4, 1
2
—_ 1 -
+maj ap | 2204 1) VE +Qf2
84, 2—W 24, 1 A(a)
+— gr+— | — | —4+VY-—1 (105)
VA, o, "7 wo, 4, } lQ} A,

This general expression can be reduced to the special case
represented by Eq. (104) by utilizing Egs. (66), (81), (84),
and the relationship

20, +1) 44,
220i+1) 4,07

#i

aopp

orrli €y — frok)=ma}

(106)

Consequently, the equivalence between the final result
(105) of the present investigation and that of Alber, Coop-
er, and Rau?’ has been established, for the nondegen-
erate-level and single-partial-wave problem, by two
different methods.

In the limit of very large values of Qr, Eq. (105) can be
reduced to the Lorentzian form

2
# 2J,+1)
. 4 2 _ -
olhey—fion) = 4mas |12 San D
271-1
r 2 1 r ,
X 4, €+ +Aa
(107)

which is the conventional expression for the cross section
describing dielectronic recombination in the absence of the
coupling between the autoionization and radiation con-
tinua. The radiative recombination and interference con-
tributions, together with the effects of the continuum-
continuum coupling, must consequently become more im-
portant with decreasing values of Q;. In the case of
inner-electron radiatively stabilizing transitions, it can be
deduced that Qr increases as n 3 where n denotes the prin-
cipal quantum number of the outer electron. Moreover, it
can be shown that Q scales in this case as Z, where Z
represents the nuclear charge. From these properties it
might be anticipated that the most important
modifications to Eq. (107) will arise for transitions corre-
sponding to the lowest possible values of n in low- and
medium-Z elements. Consequently, the modifications are
expected to be most important for individual transitions
involving low-lying autoionizing levels and to be negligible
for total dielectronic recombination rates which are dom-
inated by the contributions from highly excited levels.
However, a more precise assessment of the importance of
these modifications, together with the radiative correc-
tions, can only be made after a more detailed analysis to-
gether with systematic numerical calculations for a variety
of satellite transitions.

IV. CONCLUSIONS

In this investigation a unified description of radiative
and dielectronic recombination has been presented that in-
corporates a nonperturbative treatment of the electromag-
netic coupling between the autoionization and radiative
decay continua. Particular attention has been given to the
angular momentum degeneracy of the atomic levels and
to the multiplicity of angular momentum components in
the partial-wave expansion for the electron-continuum
state. Through the introduction of vertex functions and
of a modified propagator, the S matrix describing the
combined electron-ion photorecombination process has
been expressed as the sum of a resonant and a non-
resonant transition amplitude. Within the limitations of
our restricted basis set of unperturbed eigenstates, this for-
mulation incorporates radiative corrections to all orders in
quantum electrodynamical perturbation theory.

In a previous reported investigation?® of radiative
corrections to the intensities of dielectronic recombination
satellite lines, the isolated-resonance approximation was
employed to derive an expression that is found to be in
agreement with the modified resonant contribution to the
electron-ion photorecombination cross section obtained in
our present unified description. This previous investiga-
tion is accordingly given a precise foundation by our
unified expression, which would predict that the observed
intensity of photoemission is determined completely by
adding to the resonant contribution the conventionally
neglected nonresonant and interference terms. By consid-
ering the case of a single electron-continuum partial-wave
component, the unified expression for the modified
electron-ion photorecombination cross section that has
been derived in the present investigation is found to be in
agreement with the corresponding result obtained by
Alber, Cooper, and Rau.?’

The full expression for the combined photorecombina-
tion cross section, given by Eq. (105), is quite complicat-
ed. However, it is clear that the interference and
continuum-continuum coupling modifications are most
important for small values of the Fano line profile param-
eter Qr, which are most likely to occur for satellite lines
with small principal quantum number. For these lines,
detailed numerical calculations will be needed to assess
the overall importance of the corrections considered here.

In order to correctly treat the multi-continuum-channel
electron-ion photorecombination processes that are known
to play an important role in determining the charge-state
distributions and the photoemission spectra of high-
temperature plasma, it will be necessary to enlarge the
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basis set of unperturbed eigenstates to include several
electron-continuum channels | ipim,0) and several
photon-continuum channels | f,kﬂ»). This extension of
our unified description of radiative and dielectronic
recombination is not expected to present any fundamental
difficulties in view of the fact that the theory of autoioni-
zation and radiative decay into several final-state electron-
and photon-continuum channels has already been
developed'®? for an atomic system that has been initially
prepared in the doubly excited state. Another situation in
which an enlargement of our unperturbed basis set will be
required arises in the case of overlapping resonances, i.e.,
autoionizing states whose widths exceed their energy-level
separations. The autoionizing states that correspond to
highly excited nl/ states of the outer electron must ulti-
mately form a Rydberg series of overlapping resonances,
because the width due to the dominant inner-electron ra-
diative decay process is independent of n whereas the
energy-level separations decreases as n ~>. The effects of
overlapping resonances are expected to be significant for
the resonance properties, such as level shifts and widths,
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and for the dielectronic recombination cross sections asso-
ciated with the high-Rydberg autoionizing levels.?® Final-
ly, the photon Fock-space basis can be extended to allow
for many photons in the quantized-radiation-field modes
for application to photoionization and stimulated recom-
bination processes in the presence of intense laser radia-
tive fields, such as has been treated by Agarwal, Haan,
and Cooper.**40

In a precise evaluation of the modified electron-ion pho-
torecombination cross sections, the vertex and propagator
modifications must be obtained without making the pole
approximation. In order to properly treat the divergent
self-energy quantities that would appear in this evaluation,
it will be necessary to derive a renormalized expression
for the transition operator. We anticipate that the renor-
malization procedure will involve the replacement of the
modified propagator and the vertex correction operator by
the corresponding renormalized operators. The renormal-
ization must be consistent with the integral relationship
between the vertex and propagator modifications, which
can be expressed in the form

(a,0|V |ipm,,0){ipm,,0| V(z)|a,0)

[(a,0|G(2)0,00] '=z—E,—~ 33 [d’p
M; m

i s

(a,0| V| KM (f,kA | P(2) | a,0)

(z —E,)

AR

S

Analogous relationships have been encountered in quan-
tum electrodynamics.*!

For application to electron-ion photorecombination in
high-density plasmas, the analysis presented in this inves-
tigation should be extended to allow for the effects of both
collisional dephasing processes and plasma electric
microfields. Ballagh and Cooper*? have recently present-
ed a density-matrix description that takes into account the
correlation effects that result when collision and spontane-
ous decay processes are of comparable duration. They
demonstrated that the presence of this correlation phe-
nomena invalidates the usual assumption that the total
transition rates can be obtained as the sums of the rates
that would be produced by the individual actions of the
collision and spontaneous decay processes. It appears

(z —Ey)

(108)

f

desirable to develop a density-matrix description of the
combined radiative and dielectronic recombination pro-
cesses that would incorporate electron-ion collisional de-
phasing processes and plasma electric microfields.
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