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We present formulas for reduced Wigner phase-space functions for atoms, with an emphasis on the
first-order spinless Wigner function. This function can be written as the sum of separate contribu-
tions from single orbitals (the natural orbitals). This allows a detailed study of the function. Here we

display and analyze the function for the closed-shell atoms helium, beryllium, neon, argon, and zinc
in the Hartree-Fock approximation. The quantum-mechanical exact results are compared with those
obtained with the approximate Thomas-Fermi description of electron densities in phase space.

I. INTRODUCTION

Already in the 1920s a statistical theory giving an ap-
proximate description of electron densities in phase space
(the direct product of position and momentum space) was
proposed by Thomas' and Fermi. This theory, with later
improvements (see, e.g. , Ref. 3), is still very useful (for a
recent review, see, e.g. , Ref. 4).

A few years later an exact transformation from a wave
function in either position or momentum space to a func-
tion in phase space, which in some sense can be interpret-
ed as an electron density in phase space (see Sec. II), was
introduced by Wigner. At about the same time, Weyl
discussed the correspondence between quantum-
mechanical operators and dynamical functions in phase
space. Later developments ' led to a synthesis of Weyl's
and Wigner's approaches and subsequently to a well-
defined representation of quantum mechanics. A good in-
troduction to this representation is due to de Groot and
Suttorp.

The phase-space representation has, for instance, found
applications in quantum-mechanical studies of transport
processes, ' radiation, " and electronic devices, ' as well
as in optics, ' and in molecular' and nuclear dynam-
ics. ' ' The dynamical applications are often combined
with a classical description of the time evolution since it is
too complicated to consider the full quantum-mechanical
description of the time evolution (for a recent example, see
the calculation of the photodissociation of CH3I by Hen-
riksen' ). Recent reviews on the phase-space representa-
tion of quantum mechanics discuss the general formal-
ism, ' ' the semiclassical limit, and applications in
quantum collision theory. '

Much insight may be gained by performing detailed
studies of the Wigner functions for stationary states of
quantum-mechanical systems. Considerable attention has
been paid to one-dimensional systems like the harmonic
oscillator, ' a particle in a linear potential, ' the
free particle, and the Morse oscillator. ' However,
there exist only few works on the phase-space function for

atomic and molecular systems in the literature, namely
two on the hydrogen atom, ' including the first paper in
this series, and one by one of us on the LiH molecule. '

Therefore, it will be useful to extend the analysis of
Wigner's phase-space function to atoms with more elec-
trons. Within the Hartree-Fock approximation the for-
mulas become particularly simple and the analysis more
elucidating, so in the present paper we focus on closed-
shell atoms for which the Hartree-Fock approximation is
reasonable. Related approaches have been presented by
Thakkar and Weyrich at two conferences.

The outline of the paper is as follows: In Sec. II we in-
troduce the full Wigner function for an ¹ lectron system
and define reduced spinless phase-space functions. In Sec.
III we describe how we have calculated the one-electron
phase-space function for closed-shell atoms within the
Hartree-Fock approximation. We shall compare our re-
sults with the approximations inherent in and the results
predicted by the simplest Thomas-Fermi theory, so in Sec.
IV we review this theory briefly. The succeeding sections
are devoted to the results on atoms with only filled s
shells (helium and beryllium, Sec. V), atoms with filled s
and p shells (neon and argon, Sec. VI), and an atom with
filled s, p, and d shells (zinc, Sec. VII). Finally, Sec. VIII
is the conclusion. In an appendix we give some details of
the derivation of the formulas used in calculating the
Wigner function and present the final formulas.

II. SIGNER PHASE-SPACE FUNCTIONS

Let
~

4) be the normalized state vector describing a
stationary state of an ¹ lectron atom or molecule, and
let +(r~, . . . , r~, tT~, . . . , cr~) be the representative wave
function in the combined position and spin space. The
corresponding wave function in the combined momentum
and spin space, C&(p~, . . . , p~,'a ~, . . . , o~), is the 3N
dimensional Fourier transform of +, and vice versa. The
full Wigner function, which combines the coordinate and
momentum characteristics in a single picture, is '
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I I l(rl rN Pl ~ ~ PN o] ~ ~ ~ +N a] ~ ~ ~ aN)

=N!(2/h)' f f dql . dqN]P(r]+q], . . . , rN+qN, a'], . . . , aN)+*(r] —q], . . . , rN —qN', a'], . . . , lTN)

2l
Xe&p — (P]'ql+ ' ' ' +PN'qN)

It is seen to be a certain Fourier transform of the fu11 density matrix

~ I I ~ I %&II + ]' 1 I I&N)=~~ ~(r] . rN;« . . &N)~ (rl (2)

The amount of information contained in the full density matrix or, equivalently, in the full Wigner function is very
large, and for most purposes less is needed. This has led to the definition of reduced density matrices and, similarly,
reduced Wigner functions. These quantities are in general spin dependent, but here we sha11 consider only the spinless
quantities, defined by the following relations, with n = 1, . . . , N:

I
pn(r], . . . , rnrr], . . . , r„)

=N(N+1) (N —n +1)f fdr„+1 . drN f fdo] doN.

X P(r], . . . , r„,r„+], . . . , rN', 0'], . ~ ~, cTN )

aII I1I f IX ~ (rl, . . . , r„,r„+1, . . . , rN, cr], . . . , crN)

and

„(rl, . . . , r„;pl, . . . , p„)

3tl 2l=(2/h) " dql dq„p„(rl+q], . . . , r„+q„;rl—ql, . . . , r„—q„)exp ——(pl. ql+ . +Pn qn)

(4)

The quantities for successive n values are simp1y related; thus

I I ter s r Idrn + ] pn + 1(r] rn «rn + ];r]r ~ r rn «rn + ] ) = (~& n )pn (r] ~ ~ ~ rn I ] ~ ~ ~ In )

and

(6)

Let us now consider a symmetric ¹ lectron operator, built from the quantum-mechanical position and momentum
operators R~, . . . , RN and P~, . . . , PN, i.e.,

g'A„(R;, . . . , R;;P;, . . . , P; )

l) n

where each of the indices i j, . . . , i„scan the numbers 1, . . . , N, but with terms for which two or more indices are equal
omitted (as indicated by the primes). Using the condition that ]P be an antisymmetric wave function, it is then easy to
derive the standard expression

(]P
~

An
~

]P)=, f f drl dr„[An(R], . . . , Rn;P], . . . , P„)p„(rl, . . . , r„;rl, . . . , r'„)].

where r'=r indicates that the primes should be removed from r~, . . . , r„' before the integrations are performed.
Similarly, we get

(]P
~
A„~ ]P)=, fdrl . . dr„dp] . dp„a„(rl, . . . , r„;pl, . . . , p„)f„(rl, . . . , r„;pl, . . . , p„),N

where the dynamical phase-space function a„ is the Weyl transform ' ' of the operator 3„.a„and A„have the same
functional form whenever a„only depends on the coordinates or the momenta, but may otherwise diff'er by terms in A. A.
simple scheme for determining A„when a„ is a polynomial in the r's and the p's is due to McCoy. ' ' However, we
may always write

g„(1, . . . , )=n( 2/)h" f fdrl dr„dpi dp„a„(rl, . . . , r„;pl, . . . , P„)H„(r], . . . , r„;pl, . . . , p„) (10)
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where

H„(rt, . . . , r„;p~, . . . , p„) =1/(2h) "f . f du~ . . du„dv~ dv„exp —g[(rq R—l, ). uq+(pq P—q) vq]

is the inversion operator with respect to the phase-space
point (r~, . . . , r„;p~, . . . , p„). ' ' Using this opera-
tor, but with running indices on R and P, we may also
show that

=(2/h) "{+
~

H„(, . . . , „;p, . . . , p„)
~

ql),

(12)

in the notation of Eq. (7).
Equation (9) shows that

(1/n!)f„(r), . . . , r„;p(, . . . , p„)

plays the role of a phase-space distribution function in an
operational sense, but although it is always real, it may be
locally negative.

In the above discussion we have derived the Wigner
function from the position space density matrices. We
might, however, equally well have used the momentum-
space density matrices. The only difference is that if the
+'s on the right-hand side of Eq. (1) are replaced by @'s,
then the sign must be changed in the argument of the ex-
ponential function. Similar remarks apply to the other
equations above.

We also want to point out that it is possible to con-
struct a set of coupled phase-space differential equations
which the full Wigner function (1) must satisfy. These
differential equations are in general of infinitely high order
and therefore difticult to solve. Accordingly, they have so
far only been solved directly for some one-dimensional
systems, ' including the free particle, a particle in a
linear potential, and the harmonic oscillator. In addition
they have been used in a discussion of the Bohr-
Heisenberg correspondence principle. In all these cases
the equations become of finite order.

The easiest way of calculating the phase-space function
for atomic and molecular systems is to apply (4) with the
density matrix obtained using some of the standard
methods of quantum chemistry. This is the way we shall
calculate it.

Other phase-space functions can be defined and com-
bined with other' transformation rules between operators
and functions in phase space, but the Wigner function is
the only one which is in general real.

We have here defined phase-space functions for states.
Equivalently, we can define phase-space functions for
transitions by everywhere in Eqs. (1)—(3), (8), and (12) re-
placing the single state,

~

4), with two different states,
~

'P~ ) W
~

'Pq). ln the present paper we shall however
focus on phase-space functions for states.

Finally, it should be mentioned that Eq. (9) offers a
unique way of obtaining densities in position space for
any operator and state simply by only integrating over the

momentum coordinates. This has previously been demon-
strated by us by calculating kinetic and exchange energy
densities for some molecules and atoms. The exchange en-
ergy density is particularly interesting since it does not
have any classical counterpart.

In the present paper we shall solely consider the first-
order Wigner function, obtained by putting n =1 in the
above definitions and relations. Hence, we shall omit the
subscript n. The wave functions from which the first-order
Wigner function is calculated are always chosen to be of
Hartree-Fock type. This simplifies the formulas and still
leads to accurate results.

In the remainder of the paper we shall use Hartree
atomic units, i.e., Planck's constant, A, the electronic
mass, m„and the elementary charge, e, are all set to 1.
Thus, h gets the value 2~.

III. THE HARTREK-POCK APPROXIMATION
AND CLOSED-SHELL ATOMS

where I P; I is the set of occupied orbitals.
Wigner's first-order phase-space function is then [cf.

Eq. (4)] written as a sum of single phase-space functions:

N/2

f(r, p)=f~(r, p)=2+ f;(r, p), (14a)

f;(r, p)= fP;(r+r')(t,*(r—r')exp( —2ip r') dr'. (14b)
~3

The Hartree-Fock approximation is reasonable for
closed-shell atoms. For those the single-electron wave
functions P;(r) are explicitly given as

(t;(r) =R„l(r)Yl (0,$),

where for the atoms we have considered, we have used the
expansions of the radial dependencies in Gaussians as
given by van Duijneveldt for helium, beryllium, and
neon, and as given by Huzinaga for argon and zinc. For
all atoms except zinc we used 10 Gaussians to describe s
functions and 6 to describe p functions. For zinc we used
14 for s functions, 9 for p functions, and 5 for d functions.

In order to depict the phase-space function we define in
the six-dimensional phase space six new variables. As
three we use the two lengths r and p and the angle be-
tween the two vectors, u =Z(r, p). As the other three we
use the Euler angles a,P, y describing how the coordinate
system

Within the Hartree-Fock approximation the first-order
density matrix takes the form

N/2

p(r, r') —=p~(r, r') =2 g P;(r)P,*(r')
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r
e~ ——

r
[2 sin(u /2)],

(Z being the nuclear charge), one arrives at the following
nonlinear differential equation for a neutral atom

e2= +r p

e3 ——e& Xe2,

[2cos(u/2)],

P"(x ) =P ~ (x ) /x '

P(0) =1,
y(xo) =y'(xo) =0, xo

(21)

N/2
F(r,p ) =2 g F;(r,p ), (17)

is orientated with respect to the reference system.
The closed-shell function (14a) can now be shown (see

the Appendix) to be independent of a, 13, and y, i.e., it is
only a function of r, p, and u. The dependence on u can
be analyzed in a similar way as in Ref. 29, but for sim-
plicity we shall here remove the u dependence by in-
tegration. Accordingly, we integrate both sides of Eq.
(14a) over u. We also integrate over a, P, and y, which
amounts to multiplying the left-hand side by 8~ . Fur-
thermore, we multiply by r p . We are thus left with the
function

Latter gives approximate expressions for P(x).
One of the assumptions of this theory is that for a given

value of r there will in the six-dimensional phase space be
a constant density up to an upper limit p„(r) above which
it is zero. Here,

p„(r)=[2ZQ(r/v)/r J'~2 (22)

This prediction can be compared with our calculated
Wigner function, which —as demonstrated in Sec. II—is
to be interpreted as a quasidensity in phase space.

Due to the assumption of large electron densities, the
Thomas-Fermi theory will be most accurate for
z 4, 50

where

I'; r p drdp=1. (18)
V. FILLED s SHELLS: THE HELIUM

AND BERYLLIUM ATOMS

As also demonstrated in the Appendix, the indepen-
dence of the radial functions R„~ of (15) of m leads to the
result that all functions F; (r,p) for same (n, l } are identi-
cal. For the closed-shell atoms it is thus sufhcient to cal-
culate only one phase-space function for each (n, l) shell
and afterwards multiply it with the occupancy of the
shell.

Finally, in the Appendix we demonstrate how the
single-electron phase-space functions can be calculated
and present the formulas.

IV. THE THOMAS-FERMI THEORY

The Thomas-Fermi theory' is a statistical theory for
the electron densities,

n(r) =p(r, r), (19)

1 9V=
4 2Z

n(r}= 1

3~2

3/2
2ZQ(r/v)

r

(20)

in atoms and molecules. It assumes high density and
small variations of it in differential parts of the three-
dimensional position space. In the simplest version' of
this theory the total energy for an atom is written as the
sum of the kinetic energy of the electrons (proportional to
n ~ ), the Coulomb energy from the self-interaction of the
electrons, and the Coulomb energy from the interaction
between the electrons and the nucleus. By requiring this
energy functional of n(r) to be stationary to small varia-
tions under the constraint that the total number of elec-
trons is conserved, and by introducing

x=r jv,
1/3

The phase-space function for the helium atom, shown
in Fig. 1(a), is simply twice that of a single Is electron.
Therefore, it shows many similarities with that of the 1s
electron of the hydrogen atom presented in our earlier pa-
per. We observe a region for small rp inside which the
major part of the function is located. Outside this area the
Wigner function oscillates around zero with rapidly de-
creasing amplitude. The largest change from the phase-
space function of hydrogen is the shift of the maximum to
smaller r and larger p caused by the increased nuclear
charge: For hydrogen the maximum was located at
(r,p ) =(1.3,0.7), for helium it is found at (0.8, 1.0).

Except for having the same shape the Thomas-Fermi
curve p =p~(r) of Fig. 1(b) shows only little agreement
with the phase-space function. The Thomas-Fermi curve
clearly underestimates for small r values the p value inside
which the (major part of the) phase-space function is lo-
cated. Furthermore, it does not share the property of the
calculated phase-space function of being mainly located
inside a region defined by a maximum r value. Improve-
ments of the Thomas-Fermi theory with the inclusion of
exchange interactions (see, e.g. , Ref. 3) will improve on
this but only a little.

In Fig. 2(a) we depict the phase-space function of the
beryllium atom. This is the sum of that of the 1s shell and
that of the 2s shell. The former is located at even smaller
r values and even larger p values than was the case for the
hydrogen and helium atoms: a direct consequence of the
increased nuclear charge.

In Fig. 3 we show the radial parts of the 1s and 2s wave
functions in both position and momentum representation.
For the 1s functions we notice the small extension in the r
space and the larger extension in the p space. For the 2s
functions the reverse is found. For both we notice the ap-
proximate coincidence of the positions of the extrema and
the local maxima for the phase-space function.
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We see that in th
sel-

this case the phase-space function is th
e f-convolution of the wave function modified by a

th e

cosine. A similar expression is valid for the (real) wave

wave functions in Fig. 3 have two extrema, a maximum
and a minimum, and are fairly localized. Therefore when
r, respectively p, is roughly in the rniddle between the two
extrema, the phase-space function will be most negative.

e cosine factor is positive in the region where the in-

slightly modified in the three-dimensional space.
In Fig. 2(a) it is interesting to notice that the volumes of

the two regions of the two different shells are corn bl .m para e.
us, a small extension in position space leads to a large

extension in momentum space, and vice versa; this is just
another way of stating Heisenberg's uncertainty relation.

Finally, the agreement between the Thomas-Fermi
curve p =p„(r) shown in Fig. 2(b) and the phase-space
unction is improved as compared with the helium atom,

although the disagreements noticed for the helium atom
remain.

I

1 5 I

0.0 1.0 2.0 3.0 4.0 5.0 6.0

VI. FILLED s AND p SHELLS: THE NEON
AND ARGON ATOMS

P
FICx. 3. The radia'al dependencies of the wave functions for the

1s and 2s electrons of beryllium in position (a) and momentum
(b) representation. The functions are multi lied b (4 )'
(4~)'"p (b).

2
f; r,p) =— P;(r+r')P; (r —r')cos(2pr') dr'. (23)

The local m'minimum of the phase-space function around
(r,p)=(1.2, 1.2) is related to the nodes of th d 1

of the
o e ra ia parts

o t e wave functions. The one-dimensional analogue of
Eq. (14b) is for real wave functions

For the neon atom we depict in Fig. 4 the contributions
to the total phase-space function from the ls shell [Fig.
4(a)], the 2s shell [Fig. 4(b)], and the 2p shell [Fig. 4(c)].

he shift towards smaller r and larger p values for the 1s
and 2s shells as compared with beryllium is clearly seen.
Furthermore, we recognize in Fig. 4(b) both the positive
and negative parts of the phase-space function discussed
in the previous section for the beryllium 2s shell.

Comparing Figs. 4(a) and 4(b) we see that the oscilla-
tions for larger rp have larger amplitudes for the 2s shell
than for the 1s shell. For the 2p shell these become even
larger but, on the other hand, the 2p shell contains six
compared with two electrons of the s shells.

We rewrite the phase-space function as

1
; r, p)=

3
P;(r+r')P,*(r—r') dr'+ JP;(r+r')(t,*lr—r')[exp( —2ip. r') —1]dr' (24)

For small p the first part is dominating, and the h

p unction is essentially the self-convolution of the
n e p ase-

wave function. A similar argumentation can be a lied
y considering the wave function in the

~ ~

e app ie

momentum representation. Due to th e inversion anti-
symmetry about the origin for the wave function in either

the h
position or momentum representation f th 2 b'

t e phase-space function is negative for small rp values as
seen in Fig. 4(c).

The totalotal phase-space function presented in Fig. 4(d
shows less details than the single ones for each shell: It
mainly shows similarity with that of the 2p shell whereas
the detailed structures of the 1s and the 2s shells are

smeared out. This isis of course partly a consequence of the
different occupancy of the shells. For the beryllium atom
it was still possible to identify the contribution of each
shell. But because of the roughly constant radius in posi-
tion space for all atoms the single-shell contributions get
smeared out by those of the other shells: a statistical
t eory becomes more justified. The improvedprove agreement
wit t e theory of Thomas and Fermi can be seen by
comparing the Thomas-Fermi curve p=@ (r) shown in
Fig. 4(e) with the phase-space function.

For argon we show in Fig. 5(a) the total phase-space
unction. Although the relative number of p electrons has

increased compared with that of neon (12 out of 18 com-
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information is lost due to the folding). But the Wigner
function makes a more direct comparison with classical
descriptions possible such that quantum effects easily are
recognized. This was in detail demonstrated for the hy-
drogen atom. Furthermore, detailed information on the29

effects of the formation of a chemical bond can easily be
extracted as shown for the LiH molecule. ' The present
paper is hoped to demonstrate the usefulness of the
Wigner phase-space function.
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agreement with the phase-space function results especially
for small p.

VIII. CONCLUSION

In the present paper, as well as in our earlier ones on
phase-space functions of electronic ground states of atom-
ic and molecular systems, ' we have shown that the
phase-space function offers a useful alternative of present-
ing and analyzing the electronic state.

The phase-space function allows a simultaneous
description of position and momentum coordinates. As a
result we have for the closed-shell atoms, analyzed in the
present paper, seen how the 1s shell moves towards small-
er r and larger p values with increasing atomic number.
As a consequence of Heisenberg's uncertainty relations
the contraction in r space is followed by an elongation in

p space. The wave functions in coordinate or momentum
representation of the states of the other shells have nodes
in the radial and/or angular dependencies. We have here
demonstrated how these nodes are refound in the phase
space as regions of negative phase-space function.

The results of the statistical theory of Thomas and Fer-
mi or later improvements is in partial agreement with the
Wigner function, but many of the details of the latter are
lacking in the former, especially the description of the be-
havior for large rp.

The Hartree-Fock approximation used here allowed a
simple separation into orbital phase-space functions. For
systems where this approximation is too crude, the natu-
ral orbitals of Lowdin can be used in a similar separa-
tion.

The Wigner phase-space function contains no more and
no less information than the wave functions (in contrast
with for instance the Husimi function, ' ' which is ob-
tained by folding the Wigner function with Gaussians giv-
ing an everywhere non-negative function, but for which

APPENDIX

In this appendix we shall investigate general phase-
space functions for atomic orbitals, thereby proving that
the single-orbital phase-space function, F; (r,p ) of Sec.
III, for given (n, l) is independent of m and that the
closed-shell function (14a) is independent of a, P, and y.
Furthermore, we demonstrate how f;(r, p) and F;(r,p)
can be calculated and give the final formulas when the
radial dependences of the wave functions in the coordi-
nate representation are expanded in Gaussians.

We consider the general single-particle phase-space
function in the six-dimensional phase space

1f,b (r, p) = Pb (r —r')it, (r+ r')exp( —2i p. r') dr'

(A 1)
where, for O', =Vb, it is the phase-space function of a
state; otherwise that of a transition. The wave functions
are atomic orbitals, i.e.,

Q(r) =R„((r) Y( (8,P)

=R„l(r)( —I)'Y(~ (ir 8, (b+n)— .

Then (Al) can be written as

(A2)

X exp( —2ip. r') dr' . (A3)

The integral (A3) is, for a fixed value of r, the Fourier
transform of the product of two orbitals g, and gb, cen-
tered around the points —r and r, respectively. Thus, it is
recognized as a generalized scattering factor. The various
methods for the evaluation of such factors are reviewed in
Ref. 29.

Let us now place local coordinate systems at —r and r,
with axes which are parallel to the axes el, e2, e3, as
defined by Eq. (16). We shall then denote the spherical
polar coordinates of r'+r by (r, , 8, ,$, ) and of r' —r by
(rb, 8b, gb), when referred to these local "inner" coordi-
nate systems. Similarly, we place local coordinate systems
with axes which are parallel to the axes of the outer coor-
dinate system in which the functions (A2) are defined.
With respect to these "outer" axes, r'+r and r' —r have
the spherical polar coordinates (r, , 8, ,$, ) and (rq, OI„Pb ),
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respectively. We may thus write

Pb(r —r)P, (r +r)
=R„,i, (rb)R„ i (r, )Yi*,~, (0b, gb)Yi ~ (0, ,$, ).

(A4)

The three Euler angles (a,P, y)=A are defined to de-
scribe how the inner axes are rotated with respect to the
outer axes, and the set Q ' is defined to describe how the
outer axes are rotated with respect to the inner ones.

Then"

']* ' «
I

mb ma

=gg Y,*,(0b, pb ) Y, , (0„$,)D ', (Q)[D ', (II)]*,
I

mb ma

where we have used the unitarity of the D matrices. Thus, by writing (A3) as

(A5)

f,b(r, p)=( —1) "ggD (Q)[D ' (0)]* f P„*
&

(rb, 0b, gb)g„ i
.(r, ,0„$,)exp( —2ip. r') dr',

I
m m 3

mb ma

(A6)

the dependence of f,b on the orientation of the inner axes (or, equivalently, of r and p) with respect to the outer axes is
completely put into the D matrices.

We can then apply the orthogonality relations

8 2

Dm„(&)[D~ „(&)]*d&= &u &mm &„p.2l+ I

to give, for n, =n~ ——n, m, =m~ ——m, l, =l~ ——I:

f,b (r, p)d Q = ( —1) g p„*i (rb, 0b, pb )g„i (r„0„$,)exp( —2ip. r')dr',f 8m ( 1

2l+1

(A7)

(A8)

which is independent of m. After integrating over the angle u, it is of course still independent of m. This is the important
result stated in Sec. III and used in the calculations of F(r,p ).

By using the relation

gD' „(Q)[D'„(0)]*=5„„ (A9)

for n, =nb=n, m, =mb =m, l, =lb =1, we also get, from Eq. (A6):
I

fab(r, p) = ( —1 )'g, f p„'i~ (rb, 0b, pb )p„i~ (r, , 0, , $, )exp( —2ip. r')dr'.
m= —I m

(A 10)

This result shows that the closed-shell function (14a) is independent of the Euler angles a,13,y, as stated in Sec. III.
We will now restrict ourselves to the case that the radial dependence of the wave function in position space, R„~ of Eq.

(A2), is given as a sum of Gaussians, i.e.

R„I=pc;N(1;a.; )r'exp( a;r ), — (A 1 1)

where the normalization constants are

N(l;a) =
1/2

2(4 ) (2a/~)1/2
(2n + 1)!!

4a"
(2n+ 1)!!

1/2

XN(O;~). (A12)

The phase-space function (Al) is then

f,b(r, p)= 3 gcick N(l„'ai)N(lb', ak) f r, 'rb'exp( —air, )exp( —akrb)Yi ~ (0, ,$, )Yl"„„(0b,pb)exp( —2ip r')dr'. (A13)
jk

The function r'YI (0,$) is an lth order homogeneous polynomial in the Cartesian coordinates x,y, z. This polynomial
is denoted Pi (x,y, z). Then we can write (A13) as a linear combination of terms of the type

1
g,b(r, p) = N(l, ;a)N(lb, p) fPi m (x —x',y —y', z z')Pi*~, (x +x',y +y', z +—z')

X exp( —a
~

r —r'
~

)exp( Ii
~

r+r'
~

)exp( —2i—p r') dr'. . (A14)
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(A15)

It is now easily realized that the polynomials PI can be put outside the integration, when replacing it with operators:
f

t t) t c} t c}
Pt (x kx ',y ky', z+z'}~Pi x R—,y+—,z +—

2 Bp
'

2 Bp
'

2 Bp,

such that from the integrals for l, =lb =m, =mb ——0 we can derive all the others by simple rnultiplications and
differentiations.

For l, =lb ——m, =mb =0 we have

g,b(r, p) = (y/o ) exp( —yr —p /o )cos(2zr p),~3

where

4ap
a+p'

o =a+p,
CK—

a+p '

(A16}

(A17)

In calculating the phase-space function F; (r,p), only depending on the lengths of the vectors r and p, for n, =nb =n,
=mb =m, we can make use of the independency of this function of m and thus calculate it for a sim-

ple case for which PI reduces to a single term.
Explicitly we find

F„t (r,p)=gcjck" Gt(aj, ak', r,p)
jk

where the expression for 6 for l =0, 1,2 is for l =0,

(A18)

Go(a, P;r,p)= r p (ylcr) exp( —yr )exp( —p /o)J'o(2&rp), (A19)

for l =1,

G)(a,p;r,p)= (ylo) exp( —yr )exp( p /cr)X [jo(2rrp—)[yr +p /o——']—cos(2~rp. )],
377 2

and for l =2,

(A20)

G2(a, P;r,p)= (ylcr) exp( —yr )exp( —p /cr)
15m

&& [j o(27rp)[4y r +4p /o +8yr p /cr —16m r p —12yr —12p /o +7+4y/o/r ]

+cos(2rrp)[ —8yr 8p /et+8 ——4y/o/r ]], (A21)

where jo(x ) is the spherical Bessel function of zeroth order:

sin(x )jo(x)=
X

(A22)
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