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A detailed exposition on the origin and buildup of polarization in high-energy electron storage
rings is presented. Fundamental, but not clearly understood, theoretical results are rederived and
clarified (Ya. S. Derbenev and A. M. Kondratenko, Zh. Eksp. Teor. Fiz. 64, 1918 (1973) [Sov.
Phys. —JETP 37, 968 (1973)]). It is explained how to diagonalize the Hamiltonian of a storage ring,
in particular the spin-dependent terms, to the first order in Planck's constant. Relevant perturba-
tions, their time scales, and the various ensemble averages, are elucidated: the use of statistical con-
cepts is shown to be essential to the calculation. Semiclassical techniques are used to derive, and ex-

tend to first order in g —2, the equilibrium degree of polarization (the Derbenev-Kondratenko formu-
la). In so doing, some aspects of the polarization mechanism not previously recognized are un-

covered. Because Derbenev and Kondratenko use a different mathematical approach, a proof is given
of the equivalence between their formalism and the one used here.

I. INTRODUCTION

It was predicted many years ago that electrons and pos-
itrons in high-energy storage rings would become polar-
ized by the emission of synchrotron radiation; this is now
known as the Sokolov- Ternov effect. ' Some time ago,
Derbenev and Kondratenko gave a detailed formula for
the equilibrium degree of polarization. There has been
much difficulty in understanding these classic papers, and
in rederiving their results. This paper presents a detailed
exposition on the origin and buildup of polarization in
high-energy electron storage rings. Schwinger's ' semi-
classical techniques are used to calculate the spin-Hip syn-
chrotron radiation power spectrum to rederive the
Derbenev-Kondratenko formula. The formula is also ex-
tended to first order in g —2, and the previously uncertain
consequences thereof are clarified. A number of points
not evident in the work of the original authors are eluci-
dated. In particular, an important point, which does not
appear to have been generally appreciated, is that the po-
larization is a statistical mechanical phenomenon, and
that the Derbenev-Kondratenko formula is fundamentally
statistical in character. To keep this paper at a generally
accessible level, I develop such accelerator physics as is
needed in the text below. In a high-energy storage ring,
the unperturbed particle motion can be satisfactorily de-
scribed using classical mechanics. Further, a single-
photon emission has relatively little effect on the orbital
motion. For this reason, synchrotron radiation has gen-
erally been treated as a classical phenomenon. However,
a single-photon emission can fiip the spin of an electron
completely, hence quantum mechanics must be used to
describe the spin-dependent interactions. This leads us to
a semiclassical description of the electron orbital and spin
motion. This provides a fertile ground for the application
of semiclassical quantum electrodynamics, statistical
mechanics, and classical mechanics, and these techniques

are employed to present a detailed exposition of high-
energy electron spin polarization.

This paper is concerned only with the derivation of the
formula for the equilibrium polarization. To be of practi-
cal value, however, one must also be able to evaluate the
above formula for a given accelerator. The matter is dis-
cussed in the companion work to this paper.

This introduction is followed by six sections. In Sec. II
some general remarks are made about the polarization
and the model used in this paper. The Hamiltonian is de-
scribed in Sec. III, and is divided into unperturbed and
interaction terms. The subtleties encountered in diagonal-
izing the unperturbed Hamiltonian are explained. A
semiclassical approach, valid to the first order in A, is
used. In Sec. IV I consider the effect of perturbations,
their time scales, and the various ensemble averages re-
quired. The use of statistical concepts is shown to be
essential to the calculation. Section V contains the
mathematical details of the calculation, some of which are
relegated to two Appendixes. Since my mathematical ap-
proach does not follow that of Derbenev and Kondraten-
ko, in Sec. VI, I present a proof of the equivalence of our
formalisms. Section VII contains my conclusions.

II. GENERAL REMARKS

For spin- —, particles, the polarization density matrix is a
2 && 2 Hermitian matrix of unit trace, and can be specified
completely by a real three-component vector

N, —N,P—:PP= P,
Np

where N, , denotes the number of electrons with spin pro-
jection +—,

' along the direction P, and Np ——N, +N& is the
total number of electrons which is constant. I shall calcu-
late the equilibrium values of P and P, say P«and P«,
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respectively. If the beam is initially unpolarized, polariza-
tion builds up spontaneously along P,q according to

P(t ) =P,„[1—exp( —t / r~,~) ] .

etc. ,

mc
1 +u px(E+pxB)y+1

p~ —pi

The above statements do not depend on the chosen axis of
quantization, but the description, and calculation, of the
equilibrium state of the ensemble is simplified by the use
of certain preferred quantization axis. The axis I use is
described below: its use simplifies the determination of
the magnitude and direction of the equilibrium polariza-
tion, because it serves to diagonalize the unperturbed
Hamiltonian of the system. The model I treat assumes
that the individual electrons are independent, and that
emission of distinct photons is uncorrelated. Hence a
many-body Hamiltonian is unnecessary, and so a one-
electron Hamiltonian will be used.

III. HAMIL TONIAN
AND UNPERTURBED MOTION

Let us consider a particle of mass m, charge e, spin s,
and g =—2( 1+a ), moving in prescribed external elec-
tromagnetic fields and interacting perturbatively with ra-
diation fields. The Hamiltonian is &,„r +&;„„where

~ext
e

p ——A,„, c+m c
C

]/2

+ee,„,+n„, s,
~int =e ( @rad P' +rad ) +Qrad

(4a)

(4b)

and

The quantity ~~,] is called the polarization buildup time.
If p, and p, denote the probabilities per unit time for flip-
ping spin from "up" to "down" along the direction P,q
and vice versa, then in equilibrium one must have
p, N, =p, N, , whence

1+a 1+a
tr

y
(6a)

ge, 1Q.s=- s.B'+cor.s—= ——p B'+rdr s . (6b)
2mcy y

The subscripts "v" and "tr" denote components parallel
and transverse to P, respectively; B' is the magnetic field
in the particle rest frame, p=—ges/2mc is the magnetic
moment, and

epx = — px(E+pxB)@+I dt mc @+1

is the Thomas precession vector. With an obvious nota-
tion, I shall write coText and mT„q.

Let us now consider the solutions of the unperturbed
equations of motion, i.e., the orbital and spin trajectories.
The orbital motion in particle accelerators has been much
studied elsewhere; I discuss it at the end of this section.
My principal interest is in the spin trajectories. These are
obtained by solving the Thomas-Bargmann-Michel-
Telegdi (BMT) equation' '" ds/dt =Q,„rxs. To begin
with, I treat s as a classical vector obeying Poisson brack-
ets, not as an operator. To diagonalize &,„„I seek to
find a quantization axis the use of which yields stationary
spin eigenstates in the quantum theory. Since Q,„, de-
pends on the orbital trajectory, so does the spin motion,
hence such an axis will not, in general, be the same on
every orbital trajectory. For this reason, Derbenev and
Kondratenko introduced a variable vector n(r, p) as the
spin quantization axis. The vector n associated with a
given orbital trajectory is defined to be the explicitly
time-independent solution of the Thomas-BMT equation
on that trajectory states quantized along n are station-
ary states of the Hamiltonian &,„,. To see this, note that
the Heisenberg equation of motion for the operator s-n is

mc
a + —B,„,— P.B,„d6(

1 ay
r '" y+1

1—~+, PXE...y+1

or

(s.n) = [s n, JV,„,] +—(s.n),
dt

= ' '"' at

(s.n) = [s.n, &,„r]+—(s n),d 1

(8a)

(8b)

and Q„~ has the same form as Q,„„but with radiation
fields in place of external fields. The subscripts "ext"
and "rad" denote external and radiation fields, p is the
canonical momentum, P is the particle velocity in units of
c, y=(1 —

~
P

~
) ', and I shall also need r, the labor-

atory-frame particle position. Throughout most of this
paper, it will in fact be unnecessary to know the detailed
form of the orbital part of &,„„and one can write simply
&,„r=&„b(r,p)+Q, „r s. The above variables will even-
tually be interpreted as quantum operators.

It will be useful below to consider alternative forms for
0„,and Q„q to elucidate various aspects of the polariza-
tion process. Specifically, dropping the subscripts ext,

where in Eq. (8a) the spin is treated classically and in Eq.
(8b) it is treated quantum mechanically. Here [, I denotes
a Poisson bracket and [,] denotes a commutator. By the
properties of s and n, r)(s n)/Bt =0, and also, classically,

(s.n)=(Q, „,Xs) n+s. (Q,„,Xs)=0 .
dt

Hence Is.n, &,„,] vanishes, as required. Note that to di-
agonalize &,„„it is not sufficient that s n be a constant of
the motion, it is also necessary that B(s-n)/Bt =0. For a
given orbital trajectory, there are three linearly indepen-
dent solutions of the Thomas-BMT equation, but not all
are explicitly time independent. Yokoya has shown that
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n is unique, hence it is completely specified by the orbital
trajectory. ' Note that the above statements apply to any
Hamiltonian; it is not necessary to assume that we are
dealing with a particle accelerator.

In the quantum theory, with 0,„, interpreted as an
operator and s,~ denoting the electron-spin operator, the
above criteria are satisfied only to the leading order in A,
in general. Let {0,„,) denote the expectation value of
Q,„, over the orbital state of the electron; the classical
analog of the operator 0„,. Then

(s,„.n) =(A,„,X s,~).n+s, ~-( {Q,„,) X n), (10)
dt

which vanishes only to the leading order in R. Conse-
quently, so does the commutator of s,z.n with &,„„now
treated as an operator. '

In the special case when 0„, is constant, the soIution
for n is trivial and familiar: it is just n=Q, „,/

~

0,„, ~, as
can be verified by substitution into the above equations.
This explains why the direction of the external field,
which is usually constant in most models, is normally
used as the spin quantization axis, but in general n does
not coincide with Q,„,/

~

0,,„,
~

. If the orbit is periodic
every Nth turn around the ring, i.e., r(8+27rN)=r(8)
and p(8+2nN)=p(8), where 8 is the azimuth
(8—=2mx/C, where x is the arc length and C is the cir-
cumference of accelerator), then n(8+2nN)=n(8). This
is because n=n(r, p) only, by definition. If the orbit is
aperiodic, then so is n. Thus, for most orbits, n is not
periodic. See also Ref. 12. An algorithm for calculating
0 is given in the companion work to this paper, but is not
needed here.

Let us now return to the orbital trajectories. The exter-
nal fields in a storage ring consist mainly of static rnagnet-
ic fields, which vary in both magnitude and direction.
There are also accelerating electric fields in rf cavities to
make up for the energy lost in synchrotron radiation.
The orbital trajectories consist of osciHations around a
central trajectory, called the equilibrium closed orbit. The
equilibrium closed orbit is periodic around the ring, but in
general the oscillations are not. Because the energy of an
electron varies around the energy associated with the
equilibrium closed orbit, and the path length of a trajecto-
ry around the machine depends on energy, the orbital os-
cillations have a longitudinal component. Modern storage
rings have mechanisms for focusing both longitudinal and
transverse oscillations. This constitutes the "phase space"
of unperturbed orbital trajectories. It is six dimensional,
hence the oscillations can be parameterized by three pairs
of action-angle variables [Ii,gi, A, =1,2, 3].

The fact that the energy of an electron is not constant,
but oscillates around a central value, means that the sys-
tem is not strictly conservative. This means that when we
write n=n(r, p) only, we must recognize that r and p
contain energy and longitudinal oscillations, as well as
transverse oscillations, and motion along the equilibrium
closed orbit. The matter is largely formal. Details are
given in Ref. 12.

IV. ORBITAL AND SPIN KINETICS

The efFect of radiation (photon emission) is to cause a
particle to make transitions between unperturbed trajec-

tories. The concomitant energy loss is compensated in rf
cavities. The net efFect on the ensemble is to create an
equilibrium statistical distribution of particles in the phase
space of unperturbed orbital and spin trajectories. This
distribution is constant in time. ' The phases of the oscil-
lations Pi are uniformly distributed in the interval [0,2m ).
The average values of the actions, say {Ig), are known as
the emittances, and they give a measure of the "beam
size." The calculation of these emittances, at least in the
approximation of linear orbital dynamics, is by now stan-
dard.

The equilibrium in the orbital phase space is established
principally by the emission of ordinary synchrotron radia-
tion and energy gain in the rf cavities: this is essentially a
classical spin-independent process, ' with fluctuations
around the classical synchrotron radiation spectrum due
to the discrete nature of the emitted quanta. The time
scale of this process is known as the radiation damping
time, and is in the range of milliseconds to seconds in ex-
isting storage rings. The net efFect on the orbital coordi-
nates and momenta is to "shuNe" the particles around in
the orbital phase space.

It will prove convenient in this section to use the az-
imuth 0, instead of time, as the independent variable
(8=2mx/C). The equilibrium polarization vector is then
given by

P,„(8)= {{s,„n)n)g g .

The inner angular brackets denote an average over spin
projections in a unit "phase-space volume element" cen-
tered at [Iq, gi) and the outer ones an average over
[Iq, gi ) at azimuth 8. '

Let us now consider the details of the interaction with
the radiation. We have seen that when a photon is emit-
ted the electron will, due to its energy loss, make a transi-
tion to a diA'erent orbital trajectory. The new orbit is
tangent to the old orbit, but with a new y. Let the quan-
tization axes of the initial and final trajectories, at the az-
irnuth 0 where the photon is emitted, be n; and ny, re-
spectively. Then, if we consider a spin whose projection is
initially along n;, it may flip (to point along —n/), or not
(to n/), and the relevant matrix elements are
{ nf 1 ~

Aj i ~
n;, 0) and {n/, 1 ~

&;„,
~
n;, 0), respective-

ly, where I have indicated that the final state contains a
photon but the initial state does not. I shall often omit
explicit mention of the photon where this does not lead to
confusion. Since ordinary synchrotron radiation is almost
spin independent, the vast majority of transitions are
nonflip: the time scale of polarization buildup is typically
tens to hundreds of minutes, as compared to approximate-
ly 10 msec for the radiation damping time. This means
that the equilibrium value of {s,~ n) in a unit phase-
space volume element centered on [Ig, gq) at 8 is in fact
independent of Iq, Pq, and 8 and is given by the average
{s,~.n)q ~g. the relevant time scales are such that the
nonflip processes make it uniform throughout the orbital
phase space as they shuNe the orbital coordinates and
momenta; the spins simply follow without being flipped. '

The above remarks show that, to a good approximation,
the expression for the equilibrium polarization vector fac-
torizes:
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P, =(s, n)t, y, e(n)t, g

=(s z n)t ~e(n n,q)t ~n,q(8), (12)

(13)

where n,q(g) is a unit vector in the direction of (n)t ~.
The quantity ( s,~.n ) t ~ e is determined by spin-flip
interactions, while (n n,q)t ~ is determined solely
by the orbital ensemble average. We may call
(s,„.n)rq g(n n,q)t ~ the equilibrium degree of polariza-
tion and n, q the direction of the equilibrium polarization.
In practice, the variation of n with respect to IIq, gi I is
small except near so-called "spin resonances, " and so
( n, n, q )t ~ = 1, and may be neglected. ' We may then
write P,q

—(s z.n)t ~ e and P,q
——n, q. This approximation

is also made by Derbenev and Kondratenko. '

Returning to the spin-flip matrix elements, it is the
second term in &;„„viz,A„d s,„, that is generally regard-
ed as the source of spin-flip synchrotron radiation. No-
tice, however, that because n; and nf are not necessarily
parallel, even the spin-independent term e(@„,d —P. A„q)
can couple

~

n; ) and
t

—nf ), and this term is compara-
ble in practice to that from Q„,d. s,„. This is a mechanism
not hitherto recognized per se. If the photon energy is
Ace, and the electron energy is E, and we define
Ay = —fico/mc, then it is convenient to write

where the derivative y(Bn/By) is a measure of the extent
to which n; and nf are not parallel [I have omitted the
subscript i on y(Bn/By)]. At a spin resonance

~
y(Bn

~
By)

t
~ oo (the present theory is then inapplic-

able), but in a nonresonant situation
~
y(Bn/By)

~

=O(1).
This represents the "new" spin-flip mechanism that leads
to terms in y(Bn/B) ) in the Derbenev-Kondratenko for-
mula. In the subsequent sections I shall study these
spin-flip matrix elements in detail.

V. EQUILIBRIUM DEGREE OF POLARIZATION

To obtain p, and p „the spin-flip probabilities per unit
time introduced in Sec. II, we must now integrate the
relevant matrix elements. In the model used, spin-flip
transitions are caused solely by photon emissions, not by
the unperturbed motion, and the emission of distinct pho-
tons is uncorrelated, hence p, and p, are proportional to-
the number of photons which flip spin in the appropriate
direction emitted per unit time; this, in turn, is related to
the corresponding power spectra via

dt's

p) ) cc

where m is the frequency of the photon and the angular
brackets denote an average over the orbital actions and
angles and accelerator azimuth. To obtain the power
spectra, I follow Schwinger and write

r

dP co 1 o ag t t g t t
'

~ t kRe j(r(t), t) j*(r(t'), t') p(r(t), t)p*(r(t—'), t') exp ice t—' —t ——[r(t') r(t)] —dt'dQ& . , (15)
dm 4w c c c

where k is the direction of photon propagation. The polarization states of the photon have already been summed over in
the derivation of the above formula. I get the charge density p and the current density j from the spin-flip matrix ele-
ments of &;„,. To do so, I substitute for E„d and B„d in terms of 4„d and A„d in &;„,by writing

ice(k r/c —t) ~e ice(t —k r/c)
~em~ Aem ~ (e

where the subscript "em" means "emission, " whence

E, = — (A, —k4, ), B, = — kXA,

I then read ofF the charge and current density operators which couple to N, and A, , say p, and j, , via

1 .&;„,=—j„A"
c

1.=p, N, ——j, . A, + (absorption terms) .
C

The quantities p and j that appear in Eq. (15) are the appropriate matrix elements of p, and j, , respectively. Let us
calculate the power spectrum for spin flip from n; to —nf, so that p = ( —nf

~ p, ~
n; ), etc. For brevity, it is convenient

to drop the subscript i in n, , and to introduce two vectors g ~ and gq, and g =—g ~+i gq, which are solutions
of the Thomas-BMT equation such that I n, pi, Q2] form a right-handed orthonormal triad. We see that
g =(2/A')( —n

~
s,~ ~

n), which also conforms to the Derbenev-Kondratenko normalization, ' which will be discussed in
Sec. VI. Then, to the leading order in fi, [defin D:—(%co/E)y(Bn

~
By)]
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nf r I~.iln, , O)=& —n+D
)'(rs && D) s„zl.fi~

—ny ) ——(n)(D) s,s .yy;„n, O)

—n, y ——(n)(D).s,s(4, —P A, )+Q, .s,s n, O)

ie Rco Bn ' g(c em P Aem)+ em' g
2ymc By

(19)

where 0, is the part of Q„d containing emission terms.
In the last line, N, , A, , and 0, are to be interpreted
as c numbers, not operators. We see that, by treating the
equations of motion of the various operators at the classi-
cal level, the leading terms in the matrix element are of
O(iri), and the power spectrum is therefore of O(fi ). This
is to be compared with O(l) for ordinary synchrotron ra-
diation: we see that spin-flip photon emission is a highly
suppressed process, which explains the great difference in
time scales of the spin flip and nonflip processes. Using
Eqs. (17), (18), and (19),

j "=(cp,j ), j '"=(cp',j'),
1 ~ t p t 1 ~ ~ t

2 jpj =pp—
(21)

s' =s*(r', t'),

and denote the direction of the local magnetic field B,„, by

b. I assume, as is standard, that P is perpendicular to b
and

I P I

is constant, whence b=PxP!P
I P I

. For brevi-

ty, I define

r'=r(t'), P'=P(t'),
j'=j *(r', t'), p'=p" (r', t'),

ie fico
p ~

2mc

1 Bnnay g= —(r' —r)—:gg, X=k g .
c

a+ (AX@) k
y+1

(20a)

dj
dc' f Re 1

cos(a~r —Xg)
c 2

Then Eq. (15) can be rewritten as

1 . iefxo 1 Qn—j=, ——nXy .gp — a+ —gXk
2Plc

+ Im

ay 1+ g.PPXk+ a+ EXPy+1 y+1

To calculate the power spectrum Eq. (15), I integrate over
solid angles Qk (direction of photon emission) first, fol-
lowed by the integral over t'. The approximations made
are the usual ones in the field, and the integrals encoun-
tered are the same (they are listed in Appendix B). For
locally circular motion, the radius of curvature of the tra-
jectory at azimuth 8 is cp /I p I

=c
I pI '. Let us also

write, for brevity, ceio= P /g, co, =3@ coo/2, /=re/ai, ,

(22)
Because I have summed over the photon polarizations,
the integrand is independent of azimuth around k, so I
take the polar axis of the integral over A, k along k, in
which case dQk ——2~dY. Then, from the form of j„j'",I
find three classes of angular integrals, viz. ,

f f(r, X)dX, f k,f(r, x)dX, f k, kff(r, X)dX, (23)

which I shall label scalar, vector, and tensor integrals, re-
spectively. The subscripts i and j refer to the components
of k. The quantity f(r, X) denotes a function invariant
under rotation around k. It is readily verified that

f k;f(r, X)dX=Q; f Xf(r, X)dX, (24)

f dX f(r, X) JdXX'f(r, X)—
k;k, (r,X)dX= A6J+B

3 f dXX'f(r, X) f dX f(r,X)— (25)

These results are exact; they do not depend on the angular distribution of the radiated power, because they assume only
that the integrand is azimuthally symmetric about k. To proceed further, I need the detailed form of f(r, X). At this
point it becomes easier to expand j„j' in powers of a. I shall justify this step below. In that case, we find f(r,X) is of
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the form

(ci]pr) cos(cur —Xg) q =0,2, . . .
f(r, X)= '

(rppr) sin(a]r —Xg) q=1, 3, . . . .

For the leading term, which is independent of a, we need only q =0, 1,2 to the degree of approximation of interest.
The above expressions for p and j were used to derive expressions for the spin-flip power spectra, thence the equilibri-

um degree of polarization. No assumptions were made about the angular distribution of the radiated power: this makes
the algebra lengthy, and not very illuminating; I shall present a simpler derivation below, after the salient features of the
spin-flip matrix elements have been elucidated, thereby simplifying the expressions for p and j. To anticipate these
simplifications, the final results are quoted here. The expression for the power spectrum is, to first order in a =(g —2)/2,

dP,
dg

2T/3 e i9 p cc)o a
32~ m 2g' K3/3 (g)+ —9K3/3 (g) —f K]/3 (g')dg'

2

+(n.v) f"K ]/(3(')dg' K3/3(g)—+— 3 f "K]/3(g')dg' —11K3/3(g)
2

r

+Il b K]/3(g)+a 4K]/3(g)+ f K]/3(g )dg'

2

1 dn
+2 ya

dn
2K2/3 (g) K] /3 (g')d g' —(1+a )y bK]/3 (g) (27)

where v is a unit vector in the direction of the particle velocity b—:v X v/
~

v X v ~, and the K(g) are modified Bessel func-
tions. The power spectrum dP(/dg, for spin ffip from —n; to n~, is obtained by replacing n by —n and y(Bn/By) by
—y(Bn/By). From Sec. II and using Eq. (14), the equilibrium degree of polarization P,q is obtained via

(28)

The angular brackets denote an average over the orbital actions and angles and accelerator azimuth. Performing the in-
tegral over g, I find

P,q
———

)
v) b (1+—", a)n —()+a))

)ay.8

~

v
~

' 1+—"a—( —'+ —"a )(n v)'+ y

(29)

and
2

5+3 e Ay . 3 37 2 13 2 11 c)n
)

v
)

1+ —", a —(-', + —", a)(n v) + ) )m 2c' 18 dy
(30)

Derbenev and Kondratenko obtained the above results for a =0. Since a «1 for electrons, the a terms in Eqs. (29) and
(30) make very little dilference. This may appear surprising, since at the high energies of interest to us, a »y, hence
it dominates the coefficients of the spin-dependent terms in &,„, and A;„„yet it has a strong eff'ect only in &„„but not
in &;„,. t is therefore clear that subtle cancellations are taking place between the various terins in &;„„which shall now
be elucidated. Note, from Sec. III, that A;„, can be written in the form

&;„)=e(&b —p. A) — s,p.
mc '"

1 +a PX(E+PXB)—1+a 1+a
y+1

(31)

where radiation field operators are to be understood throughout. The subscripts U and tr denote components parallel and
transverse to P, respectively, i.e., 8, =—P.BP/P and 8„—=8—8, . For a plane wave [k,E, , B, j form a right-handed
orthogonal triad of vectors, whence

k&&E, =B, , k&&B, = —E,
Since the photon is emitted almost parallel to p, the angle between p and k being of O(y '), and

~ p ~

=1,
(32)
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px(E. +pxB, )=O(y '), p 8, =O(y '), p.E, =O(y ') .

Hence

(33)

px(E, +px(8, )=O(y-'},
y+1
1—B,=O(y ),
y

2 Bi,—— 2
(8—8, ) =O(y ),y' y'

and so the leading contribution of the a-independent explicitly spin-dependent terms in
—(e/mc)s, z.(B,/y+8„/y ), which is of O(y ). As for the terms in a, they are of O(ay ), firstly because

(34a)

(34b)

(34c)

a Px(E+PXB)——8„— Bt, ——O(ay ),
y y'

(35)

which is of O(a) relative to the a-independent terms. Furthermore, the time evolution of g~ ( —n
~

s,~ ~

n) is
drildt=Q„txg, where Q,„,=(1 +ya)co pb, in a locally uniform magnetic field, which leads to terms proportional to
(aycopr), q=0, 1,2, . . . in the integral Eq. (15). It is shown in Ref. 4 that the dimensionless variable of integration is
ycopr, hence such integrands contribute terms of O(a ~), q = 1,2, . . . relative to the a-independent result. It remains to
determine the magnitude of the terms in y(Bn/By). To do so, recall that

E, = — (A, —kC, ),c
(36)

whence

PE, = (Pk&, —P. A, )= (4&, —P A, ), (37)

and so

nxy .rt(4, pA, )= —— p.E, nXy .g=O(y ),
By 2ymc

(38)

using Eq. (33). This term is thus of the same magnitude as the other a-independent terms in the matrix element.
The weak explicit dependence of the equilibrium degree of polarization on the value of a =(g —2)/2 is therefore fun-

damentally because the photon is emitted almost parallel to P and
~
P

~

=1. Clearly, cancellations such as the above do
not occur between the terms in the external fields E,„, and 8,„, in &,„„hence the fact that a ~~y ' does have a pro-
nounced effect on the unperturbed equation of spin motion, thence on n and y(Bn/By), and thus a strong implicit effect
on the equilibrium degree of polarization.

I now present the mathematical details of the integration of the spin-flip matrix elements. The calculation is displayed
for a =0 only, the result for a&0 merely requiring more labor. The simplified matrix element is

eA ice dn( —n, , y ~m;„, ~n„o)=- nay
2ymc c ay

(4, —P A, )+g PP B, + —g.B,1
(39)

whence

Ps=— ie Ace Bnnay
2ymc2 ~y

(40a)

1.Js=— iek) 1 BnrtXk+g PPXk+—q. nxy P
2ymc ay

(40b)

where the subscript "s" stands for "simplified. " The notation otherwise follows that used in Eq. (20). Then
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2~2 2

, j, .j,' p—,l,'= . . .(qxk) (g'xk)+, q pq' p'(pxk). (p'xk)

+, [(gxk).(p'xk)g'. p+(pxk) (g'xk)q p]

1
'

Bn , Bn+, iI. nxy iI'. nxy (p p' 1)—
By By

1 Bn+, g. n x y (g'x k).p+ g' (n xk).p'
y

3

't

nxy q'.p'(p'xk) p+q'. nxy q.p(pxk). p'1 Bn . . . , Bn

y

To evaluate the above expression, I follow Jackson and introduce a right-handed basis [ x,y, z I, where x =P,
y=p/

~
p ~, and z=b at time t (r=0). Expressions for the above vectors and dot products, as functions of r, are given

in Appendix A. The following simplifications can now be made in Eq. (41).
A

~ ~ 4(i) In the term (qxk) (iI Xk)/y, the overall coefficient is already y, so it is permissible to set k=P. Also, since
each power of coor costs a factor y ', the variation of q' with w can be neglected. Hence this term simplifies to

(g Xp) (g* Xp)/y'=(
~ g ~

' —
~
il

~

')/y'= [1+(n x)']/y' .

(ii) In the term iI pal' p'(pxk) (p'Xk)/y, it is not permissible to put k=p, since
~

pXk
~

=O(y ') and I wish to
keep terms up to O(y ). However, note that g.p=il, p and, for a =0, g' p'=il„*p (see Appendix A), which are both
constant, and so we need to integrate only (px k).(p'X k). Since this is simply the integrand of the classical synchrotron
radiation power spectrum, the contribution of this term to dP/dg, to O(y ), is just the classical synchrotron radiation
power spectrum multiplied by

~
il

~
/y =[1—(n x) ]/y .

(iii) As for

[(qxk) (p'xk)q' p+(pxk). (g'xk)q p]/y',

to O(y ) I need only expand the r dependence to O(coor), and the angular dependence of the dot products to O(y ').
Then

g p(px k).(iI'x k) =q. (g'.p —p.kiI'. k) =q. (g' p —g' k)

and

g'.p'( p' X k) .( il X k ) = ,' cearly i) * . —

—'9x ('9x ~orpy 'gx + 2
~o&'gy ) =

&
~o&rI& Qy (42a)

(42b)

Hence, to O(y ), this integrand is coor(i)Ji)„*—il il*)/2y3 =in zcoor/y'.
(iv) In the term

g. [nXy(Bn/By)]q' [nXy(Bn/By )](p.p' —1)/y',

since P P' —1 is the integrand of the classical synchrotron radiation power spectrum, " which is of O(y ), and there is

already an overall coefticient of y, I neglect the variation of g'. From Appendix A,

g [nXy(Bn/By)]g'. [nXy(Bn/By)]=
~

y(Bn/By)

The contribution of this term to dP/dg is therefore the classical synchrotron radiation power spectrum multiplied by

~

y(Bn/By)
~

'/y'.
(v) The term

[g [nXy(Bn/By)](il'Xk) p+iI'. [nxy(Bn/By)](il Xk) p'I/y

yields only vector integrals, and so from Eq. (24) I replace k by Xg. Then, as in (iii), I approximate +=1 and keep the r
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dependence only up to 0(coos). I obtain the products (g'Xg).p(= —ri,*toor/2) and (AX[) p'(-g, @or/2), whence the
integrand reduces to

—iIm{g,*s [nxy(Bn/By)]Icoor/y = —iy(Bn/By) zcoor/y

(vi) As for

{g.[n x y(Bn/By ) ]g' p'(p' x k) p+ g'. [n x y(Bn/By )]g.p(p x k).p'
I /y',

I replace k by Xg, as in (v), whereupon I discover the integrals of these terms vanish because I obtain the products
(p'Xg) p and (pXQ).p', which vanish since the vectors are coplanar.

This concludes the discussion of the individual terms in j, .j,'/c —p, p,'. The total integrand is

j, .j,' —p, p,'= [1+(n x) ]— [1—(n x) ] + —
floor

i 1 c)n+ n'XNo7-r'
2

1 1 22 i Bn
2+ S 7 — 3P 'ZCO

2
(43)

and the relevant integrals, to the degree of accuracy required, are

Re f (l,icuor, +or )e ' "' ~'d~dq = — f"K~/3(g')dg'
3 '/3

4
K~/3(g)

&3'/3y
8

, Kz/3(g) ~

& 3coPy

with an obvious notation, and so we arrive at the result

(44)

e A co [1+(n x) ] f"K\/3(g')dg'+2z n —y K1/3(g)d~ 4&3vrm 'c'y' Bp

+[1—(n-x) ] 2K//3(g) —f K)/3(g')dg'

2
Bn

2K2/3(g') —f "
K)/3(g')dg' (45)

or

dP$

dg

2g2 8 4

K, /, (g)+(n v)' f"K, /3(g')dg' —K2/3(g)

1 Bn+— Bn
2K//3(g) —f K&/3(g')dg' +b. n —y K~/3(g)

Bp

(46)

which leads to the Derbenev-Kondratenko formula, or,
with a~O included to first order, to Eq. (29).

VE. DERBENEV-KONDRATENKO APPROACH

—(s n)= {s n, S;„,)

=(Q„d Xs).n+s. {n,e(4„d—P. A„,d)] (47)

In this Section I prove the equivalence of my approach
with that of Derbenev and Kondratenko, because they do
not follow the above procedure. I begin by deriving their
interaction Hamiltonian, following their approach. We
have seen in Sec. III that s-n is a constant of the unper-
turbed motion. In the presence of radiation, Derbenev
and Kondratenko write, for the instantaneous rate of
change, and to the leading order in spin,

where {,I denotes a Poisson bracket. At this point an im-
portant diA'erence in our formulations exhibits itself: I as-
sociate n (and {Iq,gq] ) with a trajectory, and use a
phase-space average, whereas they attach n to a particle,
and calculate the time average of s.n as the particle moves
through phase space. By the ergodic hypothesis, the
final result is the same, and Derbenev and Kondratenko
present their final result as a phase-space average. This is
how the spin-independent part of gf;„, [thence y(Bn/By)]
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enters their calculation. To quote them "With the spin-
orbit coupling taken into account, the radiation can thus
act on the polarization not only directly, but also via the
trajectory, perturbing the quantization axis. " Now

Bn ~~int
int Br Bp

&)n &)~int

0p Br
(4g)

In, &totj = In, e(&I)«d —p A„,d) I

Because of the assumption of "point emission, " they
neglect Bn/Br, and to the desired order in spin they also
neglect Q„d.s in &;„„whence

—(s.n) = I s n, roDK. sI
dt

=na~ODKPI Sas SP I

—(roDK X s) 'n

=(Q„dXs).n+sp f np, (51)
Bp

in agreement with Eqs. (47) and (49). For the case of in-
terest, viz. , "point" photon emission, almost parallel to P,
by an electron following a classical orbital trajectory, eval-
uation to the leading ordering in A yields

a f.P a
(52)

mc ~y
—

mc
whence

dn (4„d—P A„d)
9p Br

e Bn
rODK —IIrad P Eradn X yymc ay

Neglecting the terms in a, this simplifies to

(53)

a-= a--e(E„,d+pXB„,d) n= f. n,
Bp Bp

(49) ymc

»

1 BnB,+—B„+pEnXy
y ~y,

(54)

where f=e(E„d+pXB„d). They now introduce

d
—nX

Bp
(50)

They cail this co, but I use co to denote the photon fre-
quency. In terms of coDK, one can construct an effective
interaction Hamiltonian coDy. s, called V~ by Dervenev
and Kondratenko, whence

which is the final form quoted by Derbenev and Kondra-
tenko. In the quantum (spin- —,') theory, s n can have, in-

stantaneously, one of only two values, and the radiation
causes transitions between them; recall that s.n is other-
wise constant. The equilibrium degree of polarization is
the time-averaged value of s-n. The relevant matrix ele-
ments are (+n, y ~

roDK s,z ~

+n, O), i.e.,
~

+n) to
~

+n), since the diff'erence between the initial and final
quantization axes has been absorbed into the effective in-
teraction Hamiltonian. We can compare this result with
mine; using Eqs. (19) and (39) we see that

&
—n y ~

mo» s s ~

n O ) = —n y tt,m s s — tt E,mn X y n 0)

ie Ace Bn=—0, .g — nXy
2ymc

II(@, —P. A, )

=( —n+D, y ~
&;„t

~

n, O) . (55)

I introduce y(&)n/&)y) and the various simplifications after determining the matrix elements; they do it before. They next
introduce two functions, a+ and a, given mathematically by '

f «&O
l

[&morc. rt) r. ,rr, &morc rt') —,rr]s
~ O)), (56)

and obtain the equilibrium degree of polarization via P,q
——a /a+. The large angular brackets denote an ensemble aver-

age over the electron distribution and accelerator azimuth, while the subscript "+"in [,]~ denotes an anticommutator or
commutator, respectively, and "Here (0 ~. . .

~

0) denotes averaging over the state of the photon vacuum, " this state-
ment will be explained in more detail below. They state, and I shall show below, that for spin —,', ay=@, +p, . I do this

by noting that the probability of emitting a photon, accompanied by spin-Hip from "up" to "down" in the time interval
( —T/2, T/2) is'

dk 2 T2
3

dt ' —n, y coDK t ' - s,p t n 0
(2~)3 fico —rn (57)

and the corresponding probability per unit time pt(r, p, t) is
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dk 2m3

p, (r, p, t)= J dr (n, O (coDK s z)t+ /2 I

n y&& n y I
(coDK'soP)t — /2 n, O&,

(2ir)' ~ (58)

limit T~ ac, . Then p, is the average of p, (r, p, t) over the electron distribution and the accelerator azimuth;

p, = (p, (r, p, t)&. 1n keeping with notation of the original authors, I have not complex conjugated coDK, which is permis-
sible because cuDK s p is Hermitian. However, this is only true if both photon emission and absorption terms are retained
in AD~, hence in this approach one cannot neglect photon absorption terms. Now, g and g are introduced by writing

p, t)= d, ~ &o I( n*),r I
y&&y I( ri) .r IO&—.

4 (2~)' fico

Next, I d k(2vr) (fico) '
~
y&(y

~

is replaced by the unit operator by using the identity g ~
y, . . . , y&(y, . . . , y ~

=1,
where the sum extends over all photon states. Hence

pt(r, p, t)= J dr(0
~

(coDK 9 )t +r/2 (coDK g)t —r/2
~

0&
4

(60)

with a similar expression for p, . We see now the meaning of the phrase "averaging over the state of the photon vacu-
um" alluded to above. Thus

2

pt(r p t)+pt(r p t)= I" dr&0
~

[(coDK il)t+ /2(coDK ri')t /2+(coDK tr*)—t+/2(coDK 21)t —r2]
~

0& . (61)

Finally, because the range of integration is symmetric about ~=0, one can replace ~ by —7. in the second term, whence

pt(r, p, t)+p (r, p, t)= I" «&0
I

[~coDK g)t+ /2 (coDK g )t — /2]+ I
o&

4
(62)

Ensemble averaging yields the expressions for a+. As has
been explained in Sec. II, the equilibrium degree of polar-
ization is given by (p, —p, )/(p„+p, ), or, as we now see,
by a /a+.

VII. CONCLUSIONS

A number of concluding remarks are in order. To be-
gin, let us recall the argument for the origin of polariza-
tion in electron storage rings. When an electron emits a
photon, its spin sometimes Hips. This can be either be-
cause of the direct interaction of the spin operator with
the photon field in the interaction Hamiltonian, or be-
cause the initial and final spin quantization axes are not
parallel. Polarization develops because the transition
probabilities are not equal for Hips in opposite directions.

The calculations in Sec. V elucidate the effect of the
anomalous magnetic moment on the polarization and jus-
tify the way in which the equilibrium polarization has
thus far been calculated in practice —the Derbenev-
Kondratenko expression is used, but n and y(Bn/By) are
calculated with g&2. An important goal of these calcula-
tions is the analysis of the phenomenon of "spin reso-
nances. " Near a resonance, the polarization almost van-
ishes, and so the accurate determination of resonances is
essential to the design of an electron accelerator in which
it is desired to achieve a high degree of polarization. A
clear understanding of the processes which lead to the
equilibrium polarization, and of the roles they play, is
thus desirable.

Semiclassical quantum electrodynamics, statistical
mechanics, and classical mechanics have been used to
derive the equilibrium polarization in a high-energy elec-
tron storage ring. First, the Hamiltonian was specified
and divided into appropriate unperturbed and interaction
parts. The unperturbed Hamiltonian was then diagonal-

ized, to first order in A, and the subtleties encountered in
so doing were elucidated, such as the need for a
trajectory-dependent spin quantization axis. Further-
more, many workers in the field have had difficulty in un-
derstanding the meaning of the quantity y(Bn/By).
Perhaps the reason for this is the failure to realize that n
is not merely a fixed vector, but a vector field —a function
of the orbital trajectory on which it is defined. From the
above analysis, it is clear that y(Bn/By) is also a vector
field. The effects of perturbations on the unperturbed
motion were then included. The relevant processes were
described, their time scales, and their effect on the elec-
tron beam. This enabled us to determine the matrix ele-
ments and statistical averages needed to calculate the
equilibrium state of the beam. The Derbenev-
Kondratenko formula was the result, and, because of the
relative simplicity of Schwinger's formalism, it was also
possible to extend the formula to elucidate the role of the
anomalous magnetic moment. The approach used by
Derbenev and Kondratenko was explained in Sec. VI,
and was shown to be equivalent to that used in this paper.
In summary, the above work helps to elucidate several as-
pects of the polarization process not evident from the
work of the original authors.
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Then, quoting his results in my notation,

'g 'z = —slnOn

APPENDIX A:
USEFUL MATHEMATICAL EXPRESSIONS

I begin with the "spin-flip" vector" g. In this appendix
denotes )I(r=0). Following Jackson, " I write

n=( sinO-„cosg-„, sinO-„sing-„, cosO-„) in the basis Ix, y, zI.

)I.(x+iy) = —e "(1—cosO-„), (A 1)

)I (x i —y ) = e "(1+cosO-„) .

It is easy to check that
~
)I

~

=2 and ~r) 2:—
~

)I.x
~

2

=[1—(n x) ]. I also need the value of)I [nXy(Bn/By)]
at 7=0, which is

Bnnay
Bp

Bn Bn . Bn
i —( sinO-„)y z —( cosO-„) ( cosP-„)y .x+( sing-„)y y

Bp

Bn Bn+i ( sing-„)y x —( cosP-„)y y (A2)

which can be simplified, using the constraint n. [y(Bn/By' )) =0, to

Bn . 1 Bn
nay = —i . y -z+i

By ( sinO„-) By

Bn Bn
( sing-„)y .x —( cosP-„)y .y

By By
(A3)

Note that y(Bn/By). z vanishes at O-„=O, a, hence the term in ( sinO-„) is not divergent. It is easily verified that

~)I [nXy(Bn/By)]
~

'=
~
y(Bn/By) and

Im[r),*)I.[nxy(Bn/By)] J =y(Bn/By) z .

Furthermore, following Derbenev and Kondratenko and Jackson, I neglect the variation of n and y(Bn/By) along the
electron trajectory over the duration of the photon emission, in keeping with the assumption of "point" photon emission.

To evaluate the integrand in Sec. V, it is useful to prepare a list of relevant vectors as functions of 7. Primed vectors
are evaluated at time 7, unprimed ones at 7=0. Then

2 2
COp7

r =—0, r' =cop7x+ y,
2

2 2Sp7
P—=Px, P'= P 1 — x+ copry

2

2 28p7 Sp7
g = gxx+)iyy+ )lzz, f 1 — x+ — y

8 2
2

)I'= ri*+rQ„, X )I*+ 0„,X (Q,„,X )I')
2

2 2

=)),*z—(r)y*x —ri*y)IIr+(r)„*x+))y*y) 1—
2

(A4)

where g, g~, and g, all refer to 7=0. To obtain the expression for g', the Thomas-BMT equation dg'/dt =Q,„,)&g' is
solved using Q,„,=IIz, assumed constant over the duration of the photon emission, in which case A=(1+ya)cop. It is

also helpful to prepare a list of relevant dot products of the above vectors (putting a =0 in all expressions involving )I ):

2 2
Cc)p7

13 P'=0
2

)I P=))„/3, )I' P'=g*P,

)I.p'= t), 1—CO@7
+))ycoPr, )I' P=@ )1, 1—Sp7 —'lay Mp7 ) (A5)

2 2Sp7
8

Np7+gy, )I'.g=ri,' 1—
272 Sp7

Sp7 Cc) p7
(qxP) g=g 0 (~'x p') g = ~"p

2 2
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APPENDIX 8:
EVALUATION OF THE INTEGRALS

Consider the angular integrals first. There are six of
them, viz. ,

ding sin cow —X
—1

sing cosg sing=2 sin cur +2

1 sin
dX cos(cor —Xg) =2 cos(cur)—1

~ ~1 sin
dX sin(cow —Xg) =2 sin(cov')

—1

1

dXXcos(cur —Xg) =2 sin(cur)
z

sing cosg
—1

1 sing cosg
dX X sin(cor —Xg) = —2 cos(cor )—1

f '
dX X' cos(cur —Xg )—1

(Bl)

I am now left with the integral over ~=t' —t. I follow the
usual approach, which is to expand g for small

~

r ~, up
to

~

r
~

. The rapid oscillation of sing and cosg kills off
contributions from large values of

~

r ~, so the limits of
integration can be taken to be —ao &~& ao. From the
main body of the text, the integrands, say f(r,X), are all
of the form (coos)~ cos(row Xg)—, q =0,2, . . . or
(ci)or)~sin(cur Xg)—, q=1, 3, . . . , and, to the degree of
approximation of interest, only the values q =0, 1,2
matter. It will be helpful to classify the distinct integrals
that appear, and to prepare a list of results.

We see that only three distinct integrals appear in the
simplified derivation in Sec. V, and they are the same as
those that occur in the theory of classical synchrotron ra-
diation, viz. ,

=2 cos(nor) +2 g —2

Re 1 EQ)p7, Q)pS e

or, consulting the list of angular integrals,

(B2)

2 f" cos(er) dr, 2 f" coorsin(cur) dr, 2 f" (coor) cos(cur) dr . (B3)

We therefore consult Ref. 4 to evaluate them. Consider the first of the three integrals above. Expanding g for small

~

r ~, g =coP
~

r coo/r24 ~,—whence

2 Gvcos Qpv
4 sindr cos(cor )

CO 0 ~—cop~ /24

4 f dr ~0&2 2

1+
BP 0 r 24

CO 7
cos(cur) sin coPr 1—

24

2oodT
COP 0 1

COp7

sin(2&or) —sin co(1 —p)r+co
24

COp
2 $072 3

+ dr r sin(2(or) —sin co(1 —P)r+co
12coP o 24

(B4)

It is shown in Ref. 4 that the above integrals are modified Bessel functions, specifically

f~ dr
0 'T

CO @7
sin(2ror) —sin co(1 —P)r+ cu

24
(B5)

4
&

Kpy3(g)
3 y'

whence the sum total is

where /=co/co, and co, =3cooy /2 (see Sec. V), and

2 3
OO C007

d r r sin(2cor) —sin co( 1 P)r+co—
0 24

(86)

Re f e ""' «~'drdX = — f "K)g3(g')dg' — —,&zy3(g)v 3cop g 3+3copp

It can similarly be shown that

(B7)
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sing 2roo r roo&
2 2

2 f dr rior sin(cur) = f dr 1+
Qo co —ca 7

sin(d'or) sing

2 2' f"dr 1+ sin(cor ) sing

2COp CO p7
2 3

dr cos ro(1 —P)~+ ro
COP 0 24

4—cos(2ror) = — K iy3(g)+3coP7'
(BS)

and

2 2

2 sing 4 oo d 7 p
roo&

2 d~ sp& cos N«p7 1+
oo ro 0 r

4cop
cos(ror) sing= dr r cos(cow) sing

Co 0

8
2 &zy3(g) .+3coPQ

(B9)
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nonAip. With regard to the matrix elements, ordinary syn-
chrotron radiation is of O(1), whereas the spin-dependent ma-
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qq (a ) l(a+ ),
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~
( n ) g q ~

= 1.
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'Derbenev and Kondratenko introduce two vectors g~ and g2,
defined as solutions of the Thomas-BMT equation, such that
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