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An analytic formula for the three-electron generating integral I (a &, a2, o.3,o.», a», a 3) )

( r 1 r2 r3 r» r23 r3'j ) exp( —a l r l
—a2r& —a3r3 —e»r» —n»r» —a» r» )d r l d r2d r3 is given

—1 3 3 3

which is valid for all values of a&, a~, a3, cx», +23,+31 for which this integral converges. A large class
of integrals can be evaluated analytically by taking derivatives of I with respect to the a' s. More gen-
eral integrals whose integrands contain products of spherical harmonics can also be evaluated analyti-
cally. In particular, all of the matrix element integrals which arise in a variational calculation on the
lithium atom with Hylleraas-type basis functions can be evaluated in closed form. Certain dif5cult
two-electron integrals can be obtained as a limiting case. Two-center two-electron molecular in-

tegrals can be obtained via an inverse Laplace transform; this observation is used to discuss the com-
putation and convergence of series expansions for these molecular integrals.

I. INTRODUCTION

The well-known Rayleigh-Ritz variational method is
widely used for calculating energies and wave functions
for bound states of atoms and molecules. The success of
such a calculation depends on its rate of convergence.
The rate of convergence depends in turn on the ability of
the basis functions used in the variational calculation to
approximate the behavior of the exact wave function in
the neighborhood of its singularities. The most important
singularities are the cusps which occur at those points in
configuration space where two or more interparticle dis-
tances are zero. ' Getting the two-particle cusp behavior
correct is the primary consideration in the design of better
variational trial functions; three-particle cusps and pairs of
two-particle cusps are believed to be less important. The
wave function in the neighborhood of the point where
particles i and j approach each other with no other parti-
cles close together has the form tllo+ I r; —r, I p;, where 1tlo

and p;l are analytic functions of the Cartesian coordi-

nates. Thus the proper two-particle cusp behavior can be
built in by using a variational trial function of the form

W=4o+ g Ir; —r, I 0;,
l,J

(& (J)

where Po and the t/i;, are finite sums of products of one-
particle functions. For atoms, Slater orbitals, which make
it easy to get the electron-nucleus cusp behavior correct,
are the obvious choice for these one-particle functions.

The use of trial functions such as (1.1) is not a new
idea. An extensive discussion of (1.1) and related ideas
for getting the two-particle cusp behavior right has been
given recently by Kutzelnigg. Unfortunately, the
widespread use of

I
r; —r, I

correlation factors has so far
been precluded by the lack of analytic formulas for certain
of the matrix element integrals which arise. The present
paper opens the door to the practical use of trial functions
such as ( l. 1) by evaluating the previously intractable
three-electron integral

J(n t, nz, n3, n1z, nz3, n3, ,a1,az, a3, a1z, az3, a31)
n& —1 n2 —1 n3 1 Pl» 1 llg3 1 1131 —1 3 3 3r1 rz r3 112 rz3 r31 exp( —a1r1 —azrz a3r3 —a—tzrlz —az3rz3 —a31r31}d I td rzd r3 (1.2)

for all non-negative integers nt, nz, n3, ntz, nz3, n31, where ri:=
I
r; —rl I. Here a:=b means a =b by definition. This is

achieved by deriving an analytic formula for the generating integral

I(at, az, a3,atz, az3, a»):= f (r, rzr3rlzrz3r» ) exp( —a, r1 —azrz a3r3 —a1zr tz —a—z3rz3 —a»rqt)d r, d rzd r3 . (1.3)
—1 3 3 3

The integral (1.2) is obtained from (1.3) by differentiation:

(n1 n2 n3 n12 n23 n31 a1 a2 a3 a12 a23 a31)

a
ace 1

n& n2
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aalu

a
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a
aux 31

n31

I(at, a2, a3,a12,a23, a31) . (1.4)

Integrals more general than (1.2), in which the integrand of (1.2) has been multiplied by one or more factors of the form

Ii 12 13
1 2 r3 ~I1 1(~1 41)~lzmz(02 02)~l3 1(~3 03)
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where the YI are spherical harmonics, can also be evaluated analytically.
The appearance of the three-electron integral (1.2) is not limited to atomic calculations with variational trial functions

of the form (1.1). All of the matrix element integrals which arise in a variational calculation on the lithium atom with
Hylleraas-type basis functions of the form

@(li tm, , l2, m2, 13,m3;n, , n2, n3, n, z, n23, n», a„a2,a3 czip (x/3 (x3i)

I+11 &2+ 2 &3+l3 &12 &23 &31r
1 r2 r3 r12 r23 r31 exp( (~ir&+~2r2++3r3++12r12++23r23++31r3I )~2)

x Yii~ (Oi, p, )Yi~~~(02, (5~)Y( ~ (03,$3) (1.5)

can be reduced to finite sums of integrals of the form
(1.2). The availability of an analytic formula for (1.2)
should make is possible to use basis functions like (1.5) in
variational approximations to the solutions of the inhomo-
geneous three-particle Schrodinger equations which arise
in perturbation theory. Certain difficult two-electron in-
tegrals can be obtained as limiting cases of (1.2), as is dis-
cussed in Sec. II D. The integral (1.3) is the Laplace
transform of certain two-electron two-center integrals
which appear in molecular calculations, as is discussed in
more detail in Sec. II E. Finally, of course, there is the
hope that the methods which have yielded an analytic for-
mula for (1.1) can be extended to other previously intract-
able matrix element integrals.

The initial evaluation of three-electron integrals such as
(1.2) is due to James and Coolidge, who were the first to
use the Hylleraas-type basis functions (1.5) on lithium.
Improvements were made by Burke, by Larsson, by Ho
and Page, ' and by Ho;" in each of these papers the main
difficulty was the form (1.2). In order to make such in-
tegrals tractable, restrictions were usually placed on the
a's and the n's. The calculations by James and
Coolidge, Burke, Larsson, Ho and Page, ' and Ho" all
had a &2

——+23 ——cz3
&
——0. Additionally, James and

Coolidge, and Burke required that only one of
n&2 —1, n23 —1, and n» —1 be nonzero at a time. The
main technique used by these authors, and extended by
others, ' ' is expansion in terms of spherical harmonics
and/or Legendre polynomials. These approaches then ex-
ploit in varying orders: (1) coordinate system manipula-
tions, (2) relations among the spherical harmonics and
Legendre polynomials, and (3) integrations over the angu-
lar coordinates, with the result being a linear combination
of a set of standard integrals. For some combinations of
the parameters, the sum is finite. For other combinations,
it is an infinite sum that may or may not have a rapid
convergence rate. The main difficulty, though, is that
some of the standard integrals involve double and triple
integrations over the radial variables. and have linked lim-
its of integration. Because of the varying convergence
rates and the computational difficulties associated with the
standard integrals, the accuracy of the evaluations has
been limited.

An example of a different approach is presented in a
paper by Bonham. ' There are three major differences be-
tween his work and that described above. First of all, he
includes the factor ( —a, 2r, 2

—az3r23 —a3, r3i) in the ex-
ponential. Secondly, he gets the various powers of the r's
by differentiation of the integral with respect to the ap-
propriate a' s, thus producing a standard integral to evalu-

ate. Finally, he performs Fourier transformations on this
integral, of the type used in this paper, to obtain an in-
tegral whose integrand contains only rational functions.
His result, after performing the standard integrations, is a
finite sum of integrals that have no linked limits of in-
tegrations, and are, at worst, triple integrals. Although
his result has a very clean appearance, it is numerically
inefficient because different integrals have to be evaluated
for different values of the n's.

This paper is organized as follows: Section II collects
and discusses results. Section III shows how these results
can be used for the efficient recursive evaluation of a col-
lection of integrals of the form (1.2). Derivations have
been relegated to Sec. IV. Section II has been further
subdivided as follows: Sec. II A gives the analytic formu-
las for the generating integral (1.3). Section II B discusses
the symmetries of (1.3); Sec. II C discusses the singulari-
ties and specifies the branches of the multiple valued func-
tions which occur in the formulas of Sec. IIA. Section
II D provides an example of the branch tracking which
must be done to make sure that the correct branches of
the multiple-valued functions are chosen in particular ap-
plications. Section II E outlines the a3~ ao limit of (1.3),
which yields formulas for certain difficult two-electron in-
tegrals and provides another example of how to keep
track of the branches of the multiple-valued functions.
Section II F discusses the two-center two-electron molecu-
lar integral. The extension of the analysis to evaluate in-
tegrals whose integrands contains spherical harmonics is
outlined in Sec. II G.

II. RESULTS

This section presents the formula for the generating in-
tegral (1.3), discusses its symmetries and singularities,
shows how it is related to certain difficult two-electron in-
tegrals and to molecular two-center two-electron integrals,
and outlines the extension to more general integrals which
contain spherical harmonics.

A. A formula for the generating integral

The analytic formula for the generating integral (1.2) is

(2.1)
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where the functions u and v are defined by

u (z):=Li2(z) —Li2(1/z)

and

U (z):= —,'Li2[ —,'(1 —z)]——,'ln [—,'(1 —z)]

——,
' Li2[ —,'(1+z)]+—,'ln'[ —,'(1+z)]

with Li2(z) the dilogarithm function, ' defined by

Li2(z): = —I g 'ln(1 —g)dg .
0

(2.2)

(2.3)

(2.4)

P2 ~ a31( a2+a23+a]2)(0). 2 2

]L]3 ~
—a]2( a3+a31+a23)(0). 2 2 2

PP =a23( —a 1+a2+a3),(1). 2 2 2

P1
(1).

P2 ~
—a3( a]2+a23+a2)(1). 2 2 2

)(23:=a 2 ( —a 3 1 +a 3 +a 23 )
(1). 2 2 2

(2.7c)

(2.7d)

(2.7e)

(2.7f)

(2.7g)

(2.7h)

The reader should be warned that the functions u and v

are multiple valued; thus the analytic formula (2.1) holds
only if the branches of u and U are chosen correctly, as is
discussed in more detail in Secs. IIC, IID, and IIE
below. The quantity o. is the square root of a homogene-
ous sixth-degree polynomial in the a' s:

[ala23(a] a2 a3 a]2+a23 a31)2 2 2 2 2 2 2 2

+a2a31( —a 1 +a2 —a3 —a]2 —a23+ a31)2 2 2 2 2 2 2 2

+a3a]2( a] a2+a3+a]2 a23 a31)2 2 2 2 2 2 2 2

+a 1a2a3+ a la]2a3]+ a2a23a]2+ a3a3]a23] . (2.5)2 2 2 2 2 2 2 2 2 2 2 2 1/2

The y P) are homogeneous third-degree polynomials in the
a' s:

tup .'=a31( a2+a]+a3)(2). 2 2 2

1]xl ~
—a3( a12+a31+al)(2). 2 2 2

p2 ~
=2cx30.'1cx31(2),

1(l3 ~ =a 1 ( —a 23 +a 3 +a 3 ] )
(2), 2 2 2

)Mp '=a]2( —a3+al+a2),(3). 2 2 2

p] .=a2( —a3]+a]2+a]),(3). 2 2 2

)]22:=a ' ( —a 23 +a 2 +a ]2 ),(3). 2 2 2

p3 .'= 2']cx2cx12(3).

The P P', defined by

(2.7i)

(2.7j)

(2.7k)

(2.71)

(2.7m)

(2.7n)

(2.7o)

(2.7p)

(0). (0) + (0) + (0) + (0)70:=po p1 p2 p3
(0). (0) (0) + (0) + (0)

(0). (0) (0) (0) (0)

(0). (0) + (0) + (0) (0)

(2.6a)

(2.6b)

(2.6c)

(2.6d)

pk':=( yP')/( +—y P'), (2.8)

(2.9a)

depend only on the ratio y P)/o. The combinations
(0) (i)

Pp 'Pp' which appear as arguments of the function u in
Eq. (2.1) have four equivalent forms:

70:=—po —p1 +p2 +p3(1). (1) (1) (1) (1)

(1). (1) I (1) I (1)+ (1)

72:=Po —P1 —P2 +P3(1). (1) (1) (1) (1)

T3:=Po —P] +P2 —P3(1). (1) (1) (1) (1)

(2.6e)

(2.6f)

(2.6g)

(2.611) B. The symmetry of the generating integral

(2.9b)

(2.9c)

(2). (2) (2) (2) (2)70:=—Po +P1 —P2 +P
'V1:=PO —P1 —P2 +P~(2). (2) (2) (2) (2)

(2). (2) + (2) + (2) (2)

P3 —PO +P 1 P2 P3(2). (2) (2) (2) (2)

'Yo:= —Po +P1 +P2 —P3
(3). (3) (3) (3) (3)

:=PO —P1 +P2 —P3(3). (3) (3) (3) (3)

X2:=po +p1 —p2 —p3
(3). (3) (3) (3) (3)

(3). (3)+ (3)+ (3)+ (3)

where

po ~ —2~ 122331(0).

((X] ~ a23( a]+a]2+a31)(0). 2 2 2

(2.6i)

(2.6j)

(2.6k)

(2.61)

(2.6m)

(2.6n)

(2.6o)

(2.6p)

(2.7a)

(2.7b)

Symmetry was a major consideration when the generat-
ing integral (1.3) was chosen as the fundamental object in
the evaluation of the class of integrals (1.2). It is ob-
vious from the definition (1.3) that the value of
I(a],a2, a3,a]2,a23, a») is unchanged under any permuta-
tion of the three indexes 1,2,3. What is less obvious is
that I has the permutation group on four objects as in-
variance group: If the index zero is added by replacing
n], n2, a3 by ao1,ao2, +03, and if ~;~ =+i; by definition, then
the value of I(ap] ap2 ap3 a]2 a23 a3]) is unchanged un-
der any permutation of the four indexes 0, 1,2,3. This in-
variance is present because the nontrivial part of the in-
tegration in (1.3) is an integration over the difterent pos-
sible shapes of the tetrahedron whose edges are
r], r2, r3, r1 —r2, r2 —r3, and r3 —r1. Because the group of
permutations on the four objects 0, 1,2,3 is generated by
the interchanges 0~1, 1~2, and 2+ 3, the fact that I is
invariant under the larger symmetry group is equivalent
to the relations
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I (a01,a 02,a 03,a 12,a23, a 31 ) =I(a 01,a 12,a 3 1,a02,a 23, a 03 )

02 01 03 12 a31 23 }

Ql Q3 Q2 31 23 12)

(2.10)

The relation (2.10) can be easily demonstrated from the
definition (1.3) by replacing the dummy variables r, , rz, r3
by r]p, rzo, r3o and renaming the dummy variables
r&p, r2p, r3p, r&2, r23, r» via the same permutation of 0, 1,2,3
as was used on the n's. The observation that the Jacobian
B(rQ, , r», r, z)/B(rQ, , rQz, r03) is 1, which permits replacing
the volume element d rp]d r»d r&2 by d rp]d I"p2d Tp3,

3 3 3 3 3 3

is needed to complete the proof of the equality in (2.10)
which results fror1 the 0~1 interchange. The notation
introduced via the definitions (2.6) and (2.7) is consistent
with the above symmetry: Any permutation of the o s in-
duced by a permutation of (0,1,2,3) induces the same per-
mutation of (0, 1,2,3) on the indexes j and k of the p &

and y1, . Thus a permutation of (0,1,2,3) permutes the(j)

p k with j =k among themselves, the p &
with j&k(j) (j)

among themselves, the y z with j =k amon~ themselves,(j)

the yp with j&k among themselves, the p„with j =k
among themselves, and the pk with j&k among them-(j)

selves. The quantity cr is invariant under any permuta-
tion of 0, 1,2,3. The above remarks can be used to verify
that the right-hand side of (2.1) is consistent with (2.10).
The invariance discussed above was very important in the
discovery of the formula (2.1), and should be kept in mind
by users of (2.1).

C. The singularities of the generating integral

ln(z) =ln
~

z
~

+i argz, —ir & argz & ir . (2.1 1)

With this convention, the logarithm is an analytic func-
tion in the cut plane. The choice (2.11) for the complex
logarithm then determines the location of branch cuts,

The functions u and v which appear in the formula
(2.1) for the generating integral I are multiple valued, be-
cause the logarithms and dilogarithms which appear in
their definitions (2.2) and (2.3) are multiple valued. The
branches of u and u must be chosen properly if correct
numerical values are to be obtained from (2.1). Further-
more, individual terms on the right-hand side of (2.1)
have singularities which cancel when all of the terms have
been added together to obtain I(a1,az, a3, a12, a23, a31).
Numerical evaluation of I at or near these singularities re-
quires that the singular u and u be transformed to forms
which permit the explicit analytic cancellation of these
singularities, as is discussed in more detail in Sec. III F.
This subsection will specify the branches of u and u, dis-
cuss the location and cancellation of singularities, and
provide formulas for the behavior near the singular points.

The first step is the specification of branch cuts for the
multiple-valued functions. The complex logarithm has
branch points at 0 and at oo. The branch cut for the log-
arithm will be taken to run from 0 to ap along the nega-
tive real axis, with the principal branch chosen so that its
value is given by

and fixes the branch, for the dilogarithm and for the func-
tions u and v. The dilogarithm function Liz(z) has branch
points at 1 and ~, its branch cut then runs from 1 to
+ m along the positive real axis. The function u(z) has
branch points at 0, 1, and ~, its branch cut then runs
from 0 to + oo along the positive real axis. The function
v (z) has branch points at 1, —1, and oo, its branch cuts
then run from 1 to + oo along the positive real axis, and
from —1 to —ap along the negative real axis. Ambigui-
ties in the value of u (z) and/or v (z) when z lies on a
branch cut must be removed by specifying whether z ap-
proaches the branch cut from the upper half-plane or the
lower half-plane. Values on the branch cuts are given by
the following formulas, in which x is real and e tends to
zero through positive values:

lim Liz(x+i e) = ,'7r —Li—z(x ') ——,'ln x+i ~lnx,
a~0+

x & 1 (2.12)

lim u(x+ie) = ——,
'm. +2Liz(x)+ —,'ln x+iir lnx,

a~0+

0 &x & 1 (2.13a)

lim u(x+ie)= —,'ir —2Liz(x ') ——,'ln x+irrlnx,
a~0+

x & 1 (2.13b)

lim v (x+i e) = —,
' Liz[2/(1+x)]+ —,'ln [2/(1+x)]

e~p+

——,
' Liz[2/(1 —x)]——,

' ln [2/(x —1)]

+ ,'iver ln[(x ——1)/(x +1)], x & 1 (2.14a)

lim v (x+ie) = —,'Liz[2/(1+x)]+ —,'ln [2/( —1 —x)]
@~0+

——,'Liz[2/(1 —x)]——,'ln [2/(1 —x)]

+ —,'iver ln[(1 —x)/( —1 —x)],
x & —1 . (2.14b)

Equations (2.1)—(2.8), with the choices of branch de-
scribed above for u and u, give correct, unambiguous
values of I(a1,az, a3, a, z, az3, a31) in the neighborhood of
the point a

&

——a2 ——a3 ——a &2
——a23 ——a» ——1, which will

hereafter be called the standard reference point (SRP). At
SRP, cr and all y 1''/cr are pure imaginary; all P 1g' are on
the unit circle in the complex plane. The arguments of u
and u are all well removed from the branch cuts at SRP
so that no ambiguity can arise. Either choice of branch
for the square root o. gives the same numerical value for I;
the arbitrary choice o = +i i/2 at SRP will be made. The
proper choice of branch at points other than SRP is deter-
mined by keeping track of the branch along a path from
SRP to the point in question. The rest of this section
records formulas which help with this branch tracking.
Examples appear in Secs. II D and II E below.

The following formulas exhibit the behavior of u and v

in neighborhoods of their singular points. In these formu-
las, the functions with the singular point as a subscript are
analytic at the singular point, e.g., uQ(z) is analytic at
z=0:
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u (z)= —,'ln ( —z)+uo(z),

where

(2.15a) u(z) = —,'ln( —z /4)ln[(1+z ')/(1 —z ')]+u„(z),
(2.16e)

uo(z):= ,'n. —+2Li2(z), z near 0;
u (z) = —21nz ln(1 —z)+u 1(z),

(2.15b) where

(2.15c) u „(z):= —,
'

[ Li2[2/(1+z)] —Li2[2/(1 —z)]

+ln (1+z ') —ln (1 —z ')I

z near oo .

where

ul(z):= ,'rr ——2Li2(1—z)+ —,'ln ( —z), z near 1; (2.15d)
(2.16f)

u (z) = —
—,
' ln ( —z)+ u „(z),

where

u (z):=—,'n. 2—Li2(—z '), z near m

u(z) = —,'ln [(1+z)/(1 —z)]+u 1(z),

where

u 1(z):= —,', m —Li2[ —,
'

( 1+z) ]——,
' ln [—,

'
( 1 —z)],

(2.15e)

(2.15fl

(2.16a)

In Eq. (2.16e), the branch with

—,
' ln( —z /4 ) = ln(

~

z
~

/2 ) + i ( argz —
—,
' ~) (2.17a)

—,'ln( —z /4)=ln(
~

z
~

/2)+1'(argz+ —,'lr) (2.17b)

should be chosen for z in the upper half-plane. The
branch with

z near —1; (2.16b)

(2.16c)

z near 1; (2.16d)

u (z) = —
—,'ln [(1—z)/(1+z)]+ u 1(z),

where

ul(z): = —
—,', m. +Li2[ —,'(1 —z)]+ —,'ln [—,'(1+z)],

should be chosen for z in the lower half-plane.
The above discussion shows that the u (y p' cr) terms in

(2.1) have singularities at o =0 and at y IJ'=+a. , i.e., at
(y' p') cr =0—. The u(po '130' ) terms have singularities
at these points and at some, but not all, of the points
where y 0 '+y I3" =0. The values of the a's for which o. is
zero can be obtained from the definition (2.5) of cr, which
can be rewritten in the form

=Q12[Q3+ —Q12 [Q12—Q12(al+Q2+Q23+Q31)+(al —Q31)(Q2 —Q23)] I

Q12 (Q2+Q12+Q23)( Q2+Q12+Q23)(Q2 Q12+Q23)

X (Q2+ a 12 —Ct23)(Q1+ Q12+ Q31)( —a 1 +Q12+ Q31)(a 1
—a12+a 31)(a 1 +a 12

—
a 31) (2.18)

Equation (2.18), which was obtained from (2.5) by completing the square with respect to a3, can be used to find the zeros
of cr regarded as a function of a3 with the other a's held fixed. Analogs of (2.18), obtained by completing the square
with respect to any of the other a' s, can be obtained by symmetry. The values of the a's for which the other singulari-
ties occur can be read off from the following formulas:

(yo ') —Cr = (a 1 +Q12+ Q31)( —a 1+Q12+ Q31)(Q2+ Q12+ QZ3)( —Q2+ Q12+ Q23)(Q3+ Q23+ a 31)( —Q3+ Q23+ Q31)

(yl ) Cr (Ql+Q12+Q31)( al+Q12+Q31)(Q2 Q12+Q23)(Q2+Q12 Q23)(Q3+Q23 Q31)(Q3 Q23+Q31)(0) 2 2

(y2 ) Q (a 1+a 12 Q31)(a 1 Q12+ Q31)(Q2+ a 12+Q23)( Q2+ a 12+Q23)(Q3+ Q23 Q31)(Q3 Q23+ Q31)
(0) 2 2

(y3 ) Cr (al+Q12 Q31)(al Q12+Q31)(Q2 Q12+Q23)(Q2+Q12 Q23)(Q3+Q23+Q31)( Q3+Q23+Q31)(0) 2 2

(yo ) Cr (al+Q2+Q3)( al+Q2+Q3)(Q2+Q12 Q23)( Q2+Q12+Q23)(Q3 Q23+Q31)( Q3+Q23+Q31)

(yl ) Cr =(al+Q2+Q3)( al+Q2+Q3)(Q2+Q12+Q23)(Q2 Q12+Q23)(Q3+Q23+Q31)(Q3+Q23 Q31)
(1) 2 2

(y2 ) ~ (a 1+Q2 Q3)(a 1 Q2+ Q3)(Q2+ a 12+Q23)(Q2 a 12+Q23)(Q3 Q23+Q31)( Q3+Q23+ Q31)

(y3 ) —Cr =(al+Ct2 —Q3)(al —Q2+Q3)(Ct2+Q12 —Ct23)( — Q2+Ct 12+CtZ )(3Q3+Q23+Q3)(1Q3+Q23 —Ct31)

(yo ) Cr (al+Q2+Q3)(al Q2+Q3)(al+Q12 Q31)( al+Q12+Q31)(Q3+Q23 Q31)( Q3+Q23+Q31)(2) 2 2=

(yl ) Cr =(al+a2 —a3)( —al+—a2+a3)(al+a12+Q31)(al —Q12+Q31)(a3+a23 —as&)( —a3+a23+Q31)(2) 2 2

(y 2 ') —o =(al+Q2+a3)(al —a2+a3)(al+a12+a31)(al —a12+a31)(a3+a23+a31)(a3 —Q23+a31)

(y3 ) tr (al+Q2 Q3)( al+Q2+Q3)(al+Q12 Q31)( a 1+Q12+Q31)(Q3+Q23+Q31)(Q3 Q23+Q31)(2) 2 2=

(2.19a)

(2.19b)

(2.19c)

(2.19d)

(2.19e)

(2.19fl

(2.19g)

(2.19h)

(2.19i)

(2.19j)

(2.19k)

(2.191)
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(y0 ) a ( 1+ 2+ 3)( 1+ 2 a3)( 1 12+ 31)( a]+ 12+a31)(a2 a]2+ 23)( 2+ 12+ 23)
(3) 2 2

(yl ) —a =(al —a2+a3)( a]+a2+a3)(a]+a]2+a31)(a]+a]2 a31)(a2 a]2+a23)( a2+a]2+a23)(3) 2 2

(y2 ) & =(a] a2+a3)( al+a2+a3)(a] a]2+a31)( a]+a]2+a31)(a2+a]2+a23)(a2+a]2 a23)
(3) 2 2

(y 3 ) & —(al+a2+a3)(a]+a2 a3)(a]+a]2+a31)(a]+a]2 a31)(a2+a]2+a23)(a2+a]2 a23)
(3) 2 2

y0 +) 0 ( a2+a]2+a23+)( a3+a23+a31)(a2+a3+a]2+a31)(0) (1)

yo +3 0 ( a]+a]2+a31)( a3+a23+a31)(al+a3+a]2+a23)(0) (2)

yo +3 0 =( a]+a]2+a31)( a2+a]2+a23)(a]+a2+a23+a31)(0) (3)

yl +yl =(a2 a]2+a23)(a3+a23 a31)(a2+a3+a]2+a31)(1) (0)

yl +yl —( al+a2+a3)(a3+a23 a31)(a]+a2+a23+a31)

y] +y] —( a]+a2+a3)(a2 a]2+a23)(a]+a3+a]2+a23)(1) (3)

y2 +y2 =(a]—a]2+a3])(a3—a23+a3])(a]+a3+a]2+a23)(2) (0)

y2 '+y2' =(a]—a2+a3)(a3 —a23+a3])(al+a2+a23+a3]),(2) (1)

y2 +y2 (a] a]2+a31)(a] a2+a3)(a2+a3+a]2+a31)(2) (3)

1 3 +y3 (a]+a]2 a31)(a2+a]2 a23)(al+a2+a23+a31)(3) (0)

y3 +y3 (a2+a]2 a23)(a]+a2 a3)(al+a3+a]2+a23)

y3 +y3 (a]+a]2 a31)(a]+a2 a3)(a2+a3+a]2+a31)(3) (2)

(2.19m)

(2. 19n)

(2.19o)

(2.19p)

(2.20a)

(2.20b)

(2.20c)

(2.20c1)

(2.20e)

(2.206

(2.20g)

(2.20h)

(2.20i)

(2.20j)

(2.201c)

(2.201)

The singularity at o.=0, and many of the singularities
at zeros of the right-hand sides of Eqs. (2.19) and (2.20)
cancel. The only singularities for finite values of the a' s
which survive in I(a, , a2, a3,a]2,a23, a») are at

a1 ++2+F3——0

CX1 +&12+&31=0

+2++12++23

+3++23++31=0

2+ 3+ 12++31

CX 1 + CX 3 + CX 1 2 + CX 23 =0

1+ 2+ 23+ 31

(2.21a)

(2.21b)

(2.21c)

(2.2 1d)

(2.22a)

(2.22b)

(2.22c)

The case in which one of the e's tends to infinity with
the others near 1 is discussed in Sec. II E. The fact that
all of the singularities except (2.21) and (2.22) must can-
cel can be seen from the original definition (1.3) of
I(al, a2, a3, a, 2, a23, a3, ). The integral in (1.3) is an ana-
lytic function of the o s in the interior of the set of a 's
for which it converges; it can be shown directly that the
integral in (1.3) converges at the singular points which
cancel. The fact that the singular points (2.21) and
(2.22) survive can also be seen from this point of view.
Existence of the singularity (2.21b) can be understood
from the fact that the condition a 1 +a 12 +a 3 1 )0 is
necessary for exponential decay of the integrand as
r 1, r 12, and r31 get large with r2, r3, and r23 bounded.
Existence of the singularity (2.22c) can be understood
from the fact that the condition a 1 +a2 +a23 +a3» 0 is

+ ( analytic function ) . (2.23)

The behavior of I(a„a2,a3, a]2, a23, a») in the neighbor-
hood of the singularity (2.22c) is given by

I(al, a2, a3 a]2 a23 a3])

= —32~3a - '1n(a, +a, +a23+ a» )1n(P."'Pl" )

+(analytic function) . (2.24)

The behavior of I at the singularities (2.21b) —(2.21d) and
(2.22a) —(2.22b) can be obtained from (2.23) and (2.24) by
symmetry.

D. Branch tracking: An example

This subsection will track the branches of u (Po ]Pg')
and U ( y g'/cr ) along a path from SRP to the point
a 1

——a2 ——a3 ——1, a 12
——+23 ——F31 ——0, which will hereafter

be called the auxiliary reference point (ARP). Specifying
the path from SRP to ARP is the first step. Let A. be a
parameter along the path. Let a 1

——o.'2 ——u 3
——1,

e 12
——a23 ——a 31

——k. Then SRP is at A, = 1, with ARP at
A. =0. It is convenient to introduce auxiliary functions z 1,
z2 z3 z4 and z 5 via

necessary for exponential decay of the integrand as
I 1 7 2 7 23 and r31 get large with r 12 and r3 bounded.
The other singularities which survive can be understood
in similar fashion.

The behavior of I(al, a2, a3,a]2,a23, a») in the neigh-
borhood of the singularity (2.21a) is given by

I(al a2 a3 a]2 a23 a31)

=32~ cr 'ln(al+a2+a3)ln( —PO )
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z, (A, )=A(8A. —3)(1—3A, )

z2(A, ) =(2+3K)(1—3/(. )

z3(A, )=(2—3R)(1—3k )

z4(A. ) = —k(1 —3A. )

z~(A )=[(1—3k )'/ —(2+3K.)][(1—3k )'/ +A]/I [(1—3A, )'/ +(2+3K)][(1—3A. )'/ —A] )

(2.25a)

(2.25b)

(2.25c)

(2.25cl)

((2.25e)

Equation (2.5) —(2.8) can be used to show that, on the
prescribed path from SRP to ARP,

yio'I~ =z, (~),
y'~1/cr =z2(A. ),

yI1' /o. =Z3(A. ),

yig /cr =z4(k),

P,"'Pg'=z, (X),

j =1,2, 3

j =1,2, 3

j~k, j =0, 1,2, 3,

j=1,2, 3 .

k=1,2, 3

(2.26a)

(2.26b)

(2.26c)

(2.26d)

(2.26e)

It follows from (2.1) and (2.26) that

I(1 1 1 g g g)=1647 (1 3g )

X [U(zi(k))+3U(z2(/(, ))+3U(Z3(k))

+9U(z4(A, ))+3u(z5(k))] (2.27)

on the path from SRP to ARP. The discussion of the
singularities of u and v in Sec. II C shows that the func-
tion u and all of the functions u in (2.27) are singular at
A, = I/&3, where o. is zero, and that u and U(z, ), 12(z3),
and U (z4) are singular at /(. = —,'. These are the only singu-
lar points of the functions u and v on the straight-line
path along the real axis from A, =1 to X=O. Because
I(1,1, 1, A, , X, X) does not have singularities at X= I/3/3
and at A. = —,', the choice of path in the neighborhood of
these singularities of u and v does not aff'ect that value of
I. The following path, which avoids the singular points of
u and U by passing beneath them, will be used, where 6 is
a small positive real number:

determined by using expansions of the auxiliary functions
zi z2 z3 z4 and z5 about the singular points A, = 1 /v 3
and k= —,

' to trace the behavior of the function u and the
functions U. These expansions are

+5e i0 (2+ 1/3 )2
—1/23 —1/45 —1/2" ~3+'

X exp[ i(4r+0—)/2]+0(5' '),
(2.29b)

z —+5 '11 =(2—3/3)2 —1/23 —1/45 —1/2

~3

X exp[ i (ir+0)—/2]+0(5' ),
(2.29c)

z4 +6e1

v'3 2
—1/23 —3/46 —1/2

X exp[i(ir —0)/2]+0 (5' ), (2.29d)

z —+6e 'B = 1+4( &3—1 )21/231/461/2
v'3

X exp[i(~ +)0 2/] +0(5' ),

i B 2
—1/23 —7/46 —1/2" ~3+'

X exp[i(ir —0)/2]+0(5' ), (2.29a)

1k=x, 1)x) —+6v'3

+6e',v'3
—~&0&0

X= —,'+6e', —~&0&0

—,—6&x &0 .

1k=x, ——6)x )—+6

(2.28a)

(2.28b)

(2.28c)

(2.28d)

(2.28e)

and

z, ( —,
' +5e' ) = —1 —1285 e ' +0(5 ),

z2( —,
' +5e' ) =7+0 (5),

z3( —,'+5e' ) =1+245 e ' +0(5 ),
z ( —,'+5e' )= —1 —45e' +0(5 ),
z, ( —,'+5e' )==„'5 'e ' +0(1) .

(2.29e)

(2.30a)

(2.30b)

(2.30c)

(2.30d)

(2.30e)

This path is sketched in Fig. 1(a). With this choice of
path, the square root o. is positive imaginary for
1 & A, ) 1/&3+ 6, and positive real for 1/&3 —6 )k)—,'+6 and for —,

' —6)k) 0. For 1)k) 1/&3+6, the
branches of the function u and the functions v are chosen
the same way as at SRP. The appropriate choice of
branch for the other straight-line segments of the path is

The paths followed by the z;(A, ), which are readily de-
duced from the definitions (2.25a) —(2.25e) and the expan-
sions (2.29a) —(2.29e) and (2.30a) —(2.30e), are sketched in
Figs. 1(b)—1(f). The values of I(1,1, 1,A. , A. , A. ) on the
remaining straight-line segments of the path, which are
deduced from Eqs. (2.13a)—(2.17b) with the aid of the
sketches in Figs. 1(b)—1(f), are
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l I
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FIG. 1. (a) The path from SRP to ARP in the complex A, plane. (b) The path from SRP to ARP in the complex z~ plane. (c) The
path from SRP to ARP in the complex z2 plane. (d) The path from SRP to ARP in the complex z3 plane. (e) The path from SRP to
ARP in the complex z4 plane. (fl The path from SRP to ARP in the complex z5 plane.
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I(1,1, 1,X, A, , A)=16m. (1—3A. )
' lim I v(z)()(.)+i@)+3v(z2()(.) i—e)+3u(z3(A, ) —ie)

g~O+

+9u(z4(k)+if)+3u (z3(A )+ i@)I, ——5 & )(, & —,
' +5,1

(2.31)

and

I(1,1, 1,A, , A, , A)=16Ir (1 —3A. )
' lim I

—Ir +u(z)(A, ))+3u(z2(A) —ie)+3u(z3(A)+ie)
0+

+9v(z4(A, ))+3u(z5(A, )) I, —,
' —5) 1,)0 .

Hence the value of I(a),a2, a3, a)2, a23, a») in the neighborhood of ARP is given by

(2.32)

16~I (a),a2, a3, a)2, a23, a31)= lim
0 e~O+

3 3

Ir + —g u (iso Po )+v (7o /a)+ g u((y,'~'/o ) i@)—

3 3

+ g v((yI)"/o)+ie)+ g g v() (g'/o)
j=Ok=]

j~k

(2.33)

The term Ir in Eq. —(2.33), which is not present in (2. 1), is a consequence of the fact that the path for z)(A, ) goes around
—1, which is a branch point of v, —, times. By tracking the branches of the functions u and v from ARP, the formula
(2.33) can be shown to be valid in the neighborhood of any point where a), a2, and a3 satisfy the triangle conditions

a]+ay —a3 )0

a] —a2+a3) 0

—a]+a2+a3) 0,

(2.34a)

(2.34b)

(2.34c)

with a)2 ——a23 ——a3) ——0. Values of I(1,1, 1,A, , A, , A, ) along the path from SRP to ARP are listed in Table I; the smooth
change of I(1,1, 1,A, , A, , A, ) as k changes confirms the consistency of the choices of branch for the functions u and u.

E. Large a3

This subsection will track the branches of u (po( )/3(((')) and u(yg('/o ) along a path from SRP to a point with a3 large
and positive and a], a2, a]2, a23, and a» all near l. Expansions about a3 ——ao will be discussed, and
11II1 a3I(a) a2 a3 a)2 a23 a3) ) evaluated

Specifying the path is the first step. Make the definition

a3 ~ — ( I[(a)+a)2+a31)( a)+a)2+a31)(al a12+a31)(a)+a)2 a31)]

+[(a2+a)2+a23)( a2+a)2+a23)(a2 a)2+a23)(a2+a)2 a23)] j +(al+a2 a23 a31) (2.35)

a3 ——x, 1&x &a3 —5

a, =a, +5exp[i(Ir 6)], 0&0&Ir-
a3=x, a3 +6 (x (a]+a2 —6

a 3 —a 1 +a 2 +5 exp [i (m0) ], 0 & 9 & m..—

a3 —x a] +ay+6 &x & ap3+a3] 5

(2.36a)

(2.36b)

(2.36c)

(2.36d)

(2.36e)

Equation (2.18) can be used to verify that o =0 at
a3 ——a3 . For a) =a2 ——a, 2

——a23 ——a31 —1 a3 —3/3
There are three branch points on the real axis between
a3 —I and large positive a3, located at a3 ——a3, at
a3 —a ] +a2, and at a3 —a23 +a3] It will be assumed
that a3 &a)+a2&a23+a3) (the case a3 &a23+a3)
&a, +a2 can be obtained via the interchange 0~3). The
following path will be used, where 5 is a small positive
real number:

a3 —a23+a31+5 exp[i (Ir —9)], 0 & (9 & Ir

a3 ——x, a23+a3] +6 (x ( oo

(2.360

(2.36g)

The square root o. is then positive imaginary for
1 &a3 & a3 —6, and positive real for a3 +6 &a3 ( oo.
The appropriate choice of branch for the other straight-
line segments of the path is determined by using
(2.6) —(2.8) to trace the behavior of the arguments of u and
v near the branch points, with the signs and relative sizes
of o and the y~(") deduced from (2.19) and (2.20). The re-
sults are as follows.

a3 +~ & a3 (a ] +a2 ~ ~ Qo /~ p3 /~ p ] /~
y(1)/o y(2)/o y(2)/a y(3)/ y(3)/a P(o)P(1)

less than —1; Po( 'Po( ' lies between 0 and 1. The value of
I is given by
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3

I(ai, az, a3,a)z, a23, a3))= lim [u(p0 'p0" +is)+u(p0 'p0 '+if)+u(p0 'p0 ' i e)+u((y0 '/o ) i—e}
0 a~0+

+v((yP)/cr )+)~)+ v((yz( '/(T )+ l e)+ v((y3(' /(T) —l e)

+V((y0 /CT )+lE') +V((yi /CT ) —le)+V((yz /0 ) —l E)+U((y3 /CT )+ lE)

+v((y() '/cr )+i@)+v((yp'/cT) —ie)+v((yz '/o ) —iE)+u((y3 'Icr)+i@)

+u((yo '/cr) i—e)+v((yI '/cr)+if)+ u((yz / cT)+is)+ u((y'3 /o ) —ie}] . (2.37)

The fact that the expression (2.37) for I is real, as of course it must be, can be confirmed with the aid of (2.9), (2.13),
(2.14), and the identities

and

p(0)p(0)p(0) p(0)

p(2)p(2)p(2) p(2)

p(3)p(3)p(3) p(3)

(2.38a)

(2.38b)

(2.38c)

(2.38d)

For a)+az+5&a3&a23+a» —13: y0 '/o, y3 /o. , y'i"/o. , yz '/o. , p0 p0, and p0 p0 are all greater than
+1 pp /0 pg /0 p~ /0 p 3 /0 po /0 and p3 /0 all lie between —1 and +1 p~ /0 pp /0 j o /0 po /0
yI '/o, and yz /cr are all less than —1; P0( 'P0 ' is negative. The value of I is given by

3

I(ai, az, a3,a)z, a23, a3))= lim [u(p0 p0 +iE)+u(p0 'p0 +i@)+u(p0 'p0 ')+u((y0 '/o) iE)—
0 a~0+

+v((yp'/o )+ie)+v((yz '/CT)+ie}+v((y'3 '/CT) ie}+—u((y()"/o )+ie)

+v((y", /o) )'e)+—v(yz"/cT) +v (y'3-' /cr)+v((y0"/o)+i~)+v(y)"/o)

+u((yz /o) —ie)+v(y3 /cr)+v(y0 /o')

+ v((y') lcr)+«)+ v((yz" l(T)+ie)+ v(y'3" lcr)] . (2.39)

The fact that (2.39) is real can be confirmed with the aid of (2.9a), (2.9b), (2.13), (2.14), and (2.38a).
For a23+a3)+5 & a3 & m, y'i" /o. , yz" /o. , y') /o y 2 /cr p0 p0 aild p0 p0 are all greater than + 1;

y0 /cr, y 3 '/o, y0" /cr, y3" /o, y0 '/o, y 3 '/cr, y0 '/(T, and y 3
'Io all lie between —1 and + 1; y ) '/cr, yz '/o,

y() '/o, and yz' )/cr are all less than —1; p0 'p0 ' lies between 0 and 1. The value of I is given by

3

I(ai, az, a3,a)z, a23, a3))= lim [u(p0 'p0" +if')+u (p0 'p0 '+is)+u(pt 'p0 '+is)+v(y0 'Icr)+u((yI Icr)+if}
0 e~O+

+ U((yZ /CT ) +l 6)+ U(y3 /CT )+V(y0 /Cr ) +U((yi /CT ) —lE)+ U((yZ '/CT )+le }

+u(y3" lo. )+u(y() 'lo )+u((y) 'Icr )+i@)+u((yz 'Icr ) i@)+v(y 3 '/cr )—
+v(y() lo)+v((y') lo')+ie)+u((yz 'lo )+i@)+v(y3 'lo )] . (2.40)

The fact that (2.40) is real can be confirmed with the aid of (2.9), (2.13), and (2.14).
The behavior for a3~+ oo, with the branches of u and u fixed by (2.40), will be discussed next. By using (2.15) and

(2.16) for the terms in (2.40) which have singular points at a3 ——oo, it is found that

I(a),az, a3, )2, 23, 3, —— , ), 2, 3, iz 23 31 3 2 ') 2, 3, 12, 23, 3)

where the functions I& and I2, which are analytic functions of a3 ' at e3 ' ——0, are given by

I) (a),az, a3,a)z, a23, a3) ) =(32vr /o )ln(P2" /P')")

(2.41)

(2.42)

and
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3

Iz(a), az, a3, a12,a23, a31)= lim u„(/3o'/3o ')+u „(/3o '/3o ')+[u(/3o '/3o '+i@)+irrln(Po 'Po ')]+v —1(yo 'I(r)
CJ a~0+

+u 1(yp /(r)+u 1(yz /(r)+v 1(y'3'/o )+v(yo"/o )

u((yI" I(r) is—)+ ln( —pI") + u((yz" Icr)+i@)— ln( —p 2' )
2 2

+ u(y' "3/ (r)+ u(y o(" /(r) + u((yp) /a )+ ie') —»( —Pp')
2

+ u((yz" /a) —i~)+»( —/32' ) +v (y3' /(r )
2

+vl(yo '/o )+v 1(y 1 /(r)+u 1(y—2 /(r)+u 1(y—3 /(r)

+ —,
' ln[(/3o 'p'1 "/3p')r33 ')/a3]ln(/32' '//3I))) —ln( —)(32' )ln( —/3p') (2.43)

The combination P(z" /P()') which appears in (2.42) has four equivalent forms:

/3(1)/P(1) /3(2)/P(2) (/3(1)P(1)) —1 (/3(2)P(2)) —1 (2.44)

Both I1 and I2 have power-series expansions in inverse powers of a3 which converge up to the nearest singularity. Equa-
tions (2.19) and (2.22) can be used to show that this singularity occurs at the nearest of the eight points
a3 '=(+a, +az) ', (+az3+a») ' for I„and at the nearest of the ten points a3 ' ——(+a, +az) ', (+az3+a31)
—(az+a, z+a») ', —(a, +a,z+a») ' for Iz. The leading terms of these large a3 exPansions are given by

I, (a),az, a3,a, z, a23, a3, )= —128~ a3 +O(a3 )
3 —3 —4 (2 45)

and

16~ 1+a31 12)(a2+a23 12)
Iz(a)iaz~a3~alz~a23~a31)~ 1™u + lE'

12 + ( 1+a31+ 12)(a2+a23+ 12)

(a 1+a31 a12)(a2+a23 a12)
+i~in (a)+a 31+a)z )(az+ az3+ a)z )

+v((a 1 +a 31 + (+)la '12) + u ((a)+a31 (+)/a )2)

+u((az+az3+ie)la(z)+u((az+a23 1e)/a(2)

a1+a 31 (212
ln

(X1+CX31+CX12

CX2+ CX23 —CX 12

&2+23+ &12
a3 +O(a3 ) . (2.46)

The large a3 limit can be taken directly on the original integral (1.3) to obtain

2

(r)r zr)z) exp[ —(a(+a31)r, —(az+a23)»2 —a»r»]«1«2 = lim I(a, ,a„a,, a „,a23 a3) )
2 2 —1

CX3

a,— 4Vr
(2.47)

An explicit formula for the integral in (2.47) can be had
by using (2.41), (2.45), and (2.46) to evaluate the limit in
(2.47). Because the evaluation of limiting cases such as
(2.47) provides a useful check on our results, we have
sketched a direct evaluation of the integral in (2.47) in
an appendix.

Information about the analytic continuation of I to the
negative real axis in the complex a3 plane, where I has a
branch cut, will be needed for Sec. II F. This information
is most easily obtained by tracking the branches of u and
u to the negative real axis along paths with

~

a3 i
large.

Formulas for I just above the branch cut can be obtained

by starting from (2.40) and tracking the branches along
the following path, where 5 is a small positive real num-
ber:

03 ——6 'e', 0& 0& ~

a3 ——X, —0 (X & —a2 —F12—a31 6s —1

(2.48a)

(2.48b)

a3 ———az —a)2 —a3)+5 exp[i(vr —9)], 0 & 0( m. (2.48c)

CK3=X, —A2 —&12—A'31+5 (X(—A1 —CX12 —&23 —5

(2.48d)
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a, = —a, —a» —a»+ 6 exp[] (]r—8)], 0 & 0 & ~ (2.48e)

a3 —x, —a] —a]2 —aq3+5 & x & —a23 —a3] 5 (2.48f)

TABLE I. Values of I(1,1, 1,A, , A, , X) along the path from
ARP to SRP.

a3 — a/3 a3, +'|]exp[i(n —9)], 0 & 8 & ]r

(x3 —x (x23 (x3] +6 &x & —a& —a2 —6

a3 ———a]—aq+5 exp[i(~ 0—)], 0 & 8 & vr

(x3 ——x, —e& —@2+6&x & —a3 6

(2.48g)

(2.48h)

(2.48i)

(2.48j)

Formulas for I just below the branch cut can be obtained
by starting from (2.40) with e replaced by —e (which re-
placement leaves I unchanged) and tracking the branches
along a path which is the reflection of the path (2.48) in
the real axis [obtained by replacing i by i i—n (2.48)].
The results are as follows.

For —ap &o'3 & (x/3 A3] 6 ~ y] /0 y2 /0 y] /0,(&) (&) (&)

and y2 '/0- are all greater than +1; yo '/o. , y3 /0,
yo /0 y3"/o. y' '/0 y' '/cr, yo '/0. , and y 3 '/cr all lie

are all less than —1; po 'po ' lies between 0 and 1; po] 'po
is greater than +1 for a3& —a2 —a]z —a3] 5 po /3o

(O) ( I )

lies between 0 and l for —az —a ]z —a 3] +6 ((x3

& —a23 —a» —6; po po is greater than + 1 for(O) (2)

a3& —a, —a]2 —a~3 —6; /3O P]] lies between 0 and 1 for(O) (2)

—a] —a&2 —+23+6 & a3 & —a23 —a3& —6. The values of I
above and below the branch cut are given by

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

4.3822 x 102

4.0579 x 10'
3.7668 x 10~

3.5047 x 10'
3.2677 x 10
3.0530x 10'
2.8578 x 10'
2.6799x 10'
2.5173x 10
2.3684 x 10'
2.2317x 10'
2.1059X 10'
1.9900x 10'
1.8829 x 102

1.7837 x 10'
1.6918x 10'
1.6065 x 10'
1.5271 x 10'
1.4532 x 10'
1.3842 x 102

1.3197x 10'
1.2594 x 10
1.2030x 10'
1.1500x 10
1.1002x 10'
1.0535 x 10

0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

1.0095 x 10'
9.6802 x 10
9.2892 x 10
8.9200 x 10
8.5712x 10
8.2412 x 10
7.9289 x 10
7.6329 x 10
7.3522 x 10
7.0858 x 10
6.8328 x 10
6.5923 x 10
6.3635 x 10
6.1457 x 10
5.9382 x 10
5.7404 x 10
5.5518x 10
5.3717x 10
5.1997x 10
5.0353 x 10
4.8781 x 10
4.7277 x 10
4.5837 x 10
4.4458 x 10
4.3136x 10

3

lim l(a],a2, a3 ie, a]2, aq3, a3])= lim[u (po 'po' +i@)+u (po 'p'o +iE)+u(po 'po '+is)+v (yo /cr)
e 0 0 e~O

+v((yp /cr)+ie)+v((rp '/cr)+i~)+v(y3 '/ )+o(yvo"/o)

+ v ((y']' /cr )+~~)+ v-('(y~" /cr )+]~)+v(y 3"/o )+ (yv/0)o
+v((y']"/cr)+i~)+v((y2"/cr)+]e)+v (y'3"/cr)+v (yo /cr)

+v((y']' /cr)+i~)+v((yp"/cr)+i~)+v(y'3' /cr)] . (2.49)

The u (Po Po' +is) term in (2.49) has a branch point at a3= —a2 —a]q —a3], the u (Po 'Pk] '+iE) term in (2.49) has a
branch point at a3= —a] —a]q —a&3. Equation (2.49) gives the branch correctly on both sides of these branch points
when used with (2.15) and (2.16).

For —o.'23 —a3]+6&u3 & —a~ —aq —6: yo '/o. , y3 '/o. , yq" /0. , y3"/0. , y'] '/o. , and y3 '/o- are all greater than + 1;
yo"/o. , y'~" /0. , yo '/0. , yq '/o. , yo '/o. , and y3 '/o. all lie between —1 and 1; y~ '/o. , yq '/o. , y'~ '/o. , and y2 '/0. are all
less than —1; Po 'Po", Po 'Po ], and Po 'Po are all negative. The values of I above and below the branch cut are given by

3

lim I(a],a2, a3+ie, a]2,a23, a3])= lim[u (/3o po' )+u(po po )+u (po po )+v((yo '/o. )+is)+v((yp /o)+i@)
e~O 0 e~O

+ v ((yP'/o ) +ie)+ v ((y 3"/c-r )+]~)+v (yo" /cr )+v (y']" /cT )

+ v((yp' /cr )+i@)+v((y'3" /o)+i E)+ v .(yo '/cr )+v((y P'/o)+is).
+v(y2"/cr)+v((y3"/o)+ie)+v(. yo' /o )+v((y]"/o )+ie)

+v((yP'/a)+ ie)+ v (y3"/o )] . (2.50)

For —a] —a2+6&a3& —a3 —6: yo /orP /o 'yo /o y] /cr y2 /o, y3 /o yo /o rI /cr, r2" /cr, r3
yo /cr, and y3 /o. are all greater than + 1; yp'/o. , y p'/cr, y]] ]/cr, and y]q ' are all less than —1; po 'po", po 'po ', and
Po 'Po ' all lie between 0 and 1. The value of I is given by
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3

I(al, a2, a3,a12, a23 a31)— lim[(/3o po +ie)+Q (po po +l'e)+cc (po po +ie)+U((yo /0')+le)
0 a~0

+u((yP'/cr) —ie)+u((y2 '/cr) —iE)+v((yP'/cr)+i@)

+ v((yo" /cr )+ie)+ U((y'1" /cr )+ie)+ U((y2" /o )+is)
+V((y3"/O)+i@)+V((yO '/O)+. iE)+V((yP'/Cr)+i@)

+U((y2" /cr)+ie)+ U((y("/o)+ie)+U((yo" /o)+i~)

+U((yl /o ) —le)+U((y2 /Cr) —lE) +U(( y3 /Cr)+le)] (2.51)

The fact that (2.51) is real can be confirmed with the aid of (2.9), (2.13a), (2.14a), (2.14b), and (2.38). The jump across
the branch cut which runs along the negative real axis from a3 ———ao to a3 ———a& —a2 when a&+a~(a~3++3]
(u~+a~2+Q23 (az+a&2+a3& is given by

0
lim [I(al,a2, a3+ie, a12, a23, a31) I(al, a2,—a3 —ie, a 12,a23, a31)j

64m i~ 0+

ln(P2 /Pl ), —oo &a3& a2 —a12 —a31(&) (&)

ln(pO /p3 ) a2 a12 a31 &a3 & al a12 a23(0) (&)

ln(pO p3 ) a 1 a12 a23 & a3 & a23 a31(0) (3)

pO ) a23 a31 & a3 & —a 1
—a2(0)

(2.52)

The corresponding formulas for some of the other possible orderings of the branch points —a2 —a &2
—a3],

—al —a12 —a23, —a23 —a31, and —al —a2 can be obtained from (2.52) via the interchanges 1~2 and/or 0~3.

F. Relation to molecular matrix element integrals

The three-electron generating integral (1.3) is related to the two-electron two-center generating integral

L(al, a2, a12,a23, a31,r3):= J(rlr2r12r23r31) exp( —alrl a2r2 —a—12r12 —a23r23 —a3lr31)d rid r2
—1 3 3 (2.53)

via the Laplace transform:

I (al, a2, a3, a12, a23, a31)

=4m r3L a& 2'viz a23 +3i r3
0

X exp( —a3r3 )dr3

by starting with (2.55).
Small r3 expansion. As was shown in Sec. II E, I can

be written in the form (2.41) where I 1 and I2 have
power-series expansions of the form

(2 54) Il(al a2 a3 a12 a23 a31)

The complex inversion formula for the Laplace transform
applied to (2.54) yields a formula for L:

L (al, a2, a12, a23, a31 13)
and

= g C2„"(al, a2', a12, a23, a31)a3 " (2.56a)
fl =3

1 a+i oo
exp(a31 3 )

8m r3i

XI(al, a2, a3,a12 a23 a31)da3

I2 ( al, 2a, 3a, a12, 2a3, 3a1 )

a„' '(al, a2, a12, a23, a31)a3 " (2.56b)
n =2

(2.55)

where a is chosen to make the path of integration run to
the right of all singularities of' I regarded as an analytic
function of a3 with cxI, e2, a~2, ~q3, and a3~ fixed. The
multicenter integrals which arise when Slater orbitals are
used for molecular calculations are notoriously difficult;
Eq. (2.55) provides an alternative starting point for the
evaluation of the two-center integral L and of those in-
tegrals which can be obtained from L by taking deriva-
tives with respect to the o. s. The rest of this subsection
outlines the kind of results which can be obtained for L

which converge for sufficiently large a3. Deforming the
integration contour in (2.55) until it lies in the interior of
the domain of convergence of (2.56a) and (2.56b) makes it
possible to insert (2.41), (2.56a), and (2.56b) in (2.55) and
integrate term by term. The result is

L (a l, a2, a 12,a23, a31,'r3 ) =L 1(a l, a2', a12, a23, a31,'r3 )lnr3

+L2(al a2 a12 a23 a31 r3)

(2.57)

where L ~ and L2 have the power-series expansions



1026 DAVID MELOY FROMM AND ROBERT NYDEN HILL 36

L~(a~, a2', a&2, ass, a3&, r3)= g b„(at,a2, air, az3, a3&)r3
n =1

(2.58a)

where t( is the logarithmic derivative of the gamma func-
tion:

and it(z) =d lnl (z)/dz . (2.60)

and

b 0 =a q /(4ir), (2.59b)

b„=[/(n +2) a„'+ 2+a„ I. 2]/[4 7(rn +1)!], n & 1,
(2.59c)

L2(al a2 a12 a23 a31 r3)= z, bn (al a2 alp a23 a31)r3(2j n

n=0

(2.58b)

The coefficients b„'' ', b,',
I in (2.58) are related to the

coefficients a„",a„' in (2.56) by

b„"'=—a„"+z/[4'(n +1)!], n & 1 (2.59a)

The series (2.58a) and (2.58b) converge for all finite r3. In
fact, the results above show that L1 and L2, regarded as
analytic functions of r3 with a], o,'2, u]2, o.'23, and +31
fixed, are entire functions of exponential type. Numerical
values of the coefTicients a,'" and a,' ' which appear in
(2.56) and (2.59) are readily computed via methods of the
kind outlined in Sec. III following.

An alternative representation for the integral I can be
obtained by deforming the integration contour in (2.55)
until it surrounds the branch cut of I on the negative real
axis in the complex o.3 plane. Let aQ be the smallest of
the four numbers u] +o 2, a23+ o.'31, o.'] +F12++23,
cx2+ cx12+0'3]. Then

1 oc'

L(a&,a2 a12, a23, a3l, r3)= exp( —aor3) exp( rx)l3i —m[I( ~a, &a, ao —x +i@,—az, a32a3])
8~ r3i Q e 0

I ( ~a, a, —2—ao —x —ie, a ~q, a23, a3~ )]dx . (2.61)

Equation (2.52) gives an explicit formula for the jump across the branch cut needed in (2.61) for one ordering of the four
numbers a]++2, +23++31, o.]+a]2+a.23, n2+o. ]2++3]. Formulas for some other orderings can be obtained by the in-
terchanges 1~2 and/or 0~3 applied to (2.52); formulas for orderings not obtainable via these interchanges can be ob-
tained via the kind of branch tracking which yielded (2.52). An asymptotic expansion of L for large r3 can be obtained
from (2.61) by expanding the jump across the branch cut in (2.61) for small x and integrating term by term. ' Equation
(2.61) is also a good starting point for the evaluation of L via numerical integration.

G. Integrals which contain spherical harmonics

This subsection shows how certain more general three-electron integrals which contain spherical harmonics can be re-
duced to integrals of the form (1.2) by averaging over orientations of the coordinate system. Because products of spheri-
cal harmonics such as Y& „(0,$) Yl, , (0,$) can be written as a sum of spherical harmonics by using

(21, + 1)(2lg + 1)(21+1)
(0,P) Y(„, , (0,$)=g

l, m

lb l

m mb m

I, lb l

() 0 0 Yrm(0 P) (2.62)

it is su%cient to consider the integral

M(l), ~,mls, m2, l3, m3, n~, n2, n3, n~2, nq3, n3~', a~, aq, aq, a~q, a/3 a3/)
l l +n I

—1 l2+n2 —1 l3+n3 —1 n12 —1 n&~ —1 n31 —1

) 1 ~2 ~3 ~12 ~23 I 31

)& exp( —a&r& —apr2 —a3r3 —a)zr &2
—a23r23 —a3)r3) ) Y(, , (0&,P)) Y(, , (0p, gi) Yi, , (03,$3)d r)d rpd r3

3 3 3

(2.63)

The integral (2.63) vanishes if the integrand has odd parity; thus it is necessary to consider only the case where
l]+l2+l3 is an even integer.

Averaging over orientations of the coordinate system can be done by noting that the rotation of the coordinate system
specified by the Euler angles a, /3, y results in the replacement of Y~ (0,$) by Y~ (O', P') where

Yl, m(0' 0') = g Y~, m (0,4)Dm'm(a, P, y ) (2.64)
m' ——l

Here the D's are matrix elements of the rotation operator. If (2.64) is used for each of the three spherical harmonics in
(2.63), averaging over orientations can be carried out by integrating over a P, and y with the aid of the formula for the
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integral over the product of three D's. The result is

M(I1, m1, lz, mz, l3, m3, n1', nz, n3, n12, n23, n31', a1,az, a3, a12, a23, a31)

I1 lz 13

f n
1

1 n2 1 n3 1 fll2 1 n23 1 n3] 1

nfl 1 fly 2 Pl 3
~1 2 ~3 I 12 ~23 ~31 R ~ll l2 l3 r1 ~2 ~3 ~12 ~23 ~31 I

Xe&p( —a1r1 az—rz —a3r3 —a12r12 —a23123 a31r31)d r1d rzd r3,3 3 3 (2.65)

where R is given by

ll l~ 13R (1, , /z, l3, r, , rz, r3, r12, rz3, r31) ~ —r1 rz r3
l1 lz

Ul2 P73
ml, m&, m3

Y1~ ~~(01,$1)Y&z ~z(82, $2)Y( ~ (93pp3) . (2.66)

R, which is invariant under rotations, is a polynomial in
the six variables r1, rz, r3, r12, r23, and r31. Thus the in-
tegral in (2.66) is a finite linear combination of integrals of
the form (1.2). Explicit expressions for the invariant poly-
nomial R can be worked out on a case-by-case basis by
exploiting its rotational invariance to choose the direction
of one of the three vectors r1, rz, r3 as the direction of the z
axis.

III. NUMERICAL EVALUATION

This section will show how the result (2. 1) can be used
for the efficient recursive evaluation of a collection of in-
tegrals of the form (1.2). The obvious approach to
evaluating (1.2) would be to work out a formula for the
derivative needed in (1.4) by repeated differentiation of
(2. 1) with the aid of (2.2) —(2.9). However, such formulas

f'or derivatives grow in complexity at a rapidly increasing
rate; thus this approach is to be avoided. Explicit formu-
las for derivatives are in fact not needed, as has been em-
phasized by Moore; the needed numerical values of
derivatives can be obtained by working in efficient recur-
sive fashion with numerical values only. Because these
methods deserve to be more widely known, their applica-
tion to the evaluation of (1.2) via (1.4) will be outlined
here.

A. General formulas

This subsection records formulas for the derivatives of
a product and for the derivative of a function of a func-
tion which are suitable for recursive evaluation. The
formula for the derivatives of a product of two functions
of n variables x1,xz, . . . , x, is

n

, , k,-! ax,

k;

f(x1,xz, . . . , x„)g(x1,xz, . . . , x„)

kl kP

11 ——0 l2 ——0 l =0
n

a
xi

nf (x1,xz, . . . , x„)
j=l J J)' xj

g(X1rX2& . . iXn) . .

(3.1)

If the function f depends on the single variable g where g is a function of the n variables x1,xz, . . . , x„, the derivatives
are given by

a
xi

f(g « l, xz~ xn ))= g h(1k, k, z, nkvd i tlx~ x, zxn )
1 d'f (g) (3.2)

where

k=g k; (3.3)

with

h(0, 0, . . . , 0;0;x1,x, , . . . , x„)=1, (3.4)

n

h(k, , k, , . . . , k„;1;x,,x, , . . . , x„)=
, k;! (3x;

g (x1~xzr . . ) xn ) ~ (3.5)

and
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h(ki, kp, . . . , k„;l;xi,xp, . . . , x„)
kl k2

=X X
ttl ——0 12

——0
g h (li, li, . . . , l„;m;xi,xp, . . . , x„)

1 =0n

Xh (k~ —li, kq —lq, . . . , k„—l„;1—m;xi, xi, . . . , xn ), 1 &m & 1 —1 . (3.6)

Equation (3.1) can be recognized as the rule for con-
structing the coefficients when two power series in n vari-
ables are multiplied; the coefficients are just the Taylor
coefficients for functions of n variables. Equations
(3.2) —(3.6) can be easily established by expanding
f (g +bg) in powers of Ag. Equation (3.6), which is ob-
tained by multiplying the power series for (b,g) by the
power series for (hg)(™,is again the rule for construct-
ing the coefficients when two power series in n variables
are multiplied; thus the same computer code can be used
for (3.1) and (3.6). Equation (3.6) with m =l —1 should
be used to calculate the coefficients h needed for (3.2) via
recursion on l, with starting values provided by (3.5). The
code will be more efficient if it is written to work with
Taylor coefficients rather than derivatives, because the fac-
torials will then be absent from the product code and the
function of a function code.

It is important to realize that these formulas are to be
used for the recursive calculation of numerical values, and
not for the derivation of analytic formulas. Thus (3.1)
gives numerical values of the derivatives of the product fg
assuming that numerical values of the derivatives off and

g have already been computed; (3.2) gives numerical
values of the derivatives of f (g) assuming that numerical
values of the coefficients h and the derivatives d'f /dg' are
already available.

where w =1—z ' for 1 &z &2; and

2

Re[Liq(z)) = —Liq(w) ——' ln z+2 3
(3.7e)

where w =1/z for z &2.
In each case w will lie between ——,

' and —,
' if z lies in the

specified range. Liq(w) can be evaluated by using the
power series

N

Lip(w)= g n w" +R~(w)
n =1

(3.8)

with the value of N chosen large enough to make the er-
ror bound

I

R (w)
I
&(&+1) '(1 —

I
w

I
)

'
I

w
I

(3.9)

u (e' ) =2iCli(0) (3.10)

small enough to guarantee the required accuracy. Be-
cause the radius of convergence of the series (3.8) is 1, it is
rapidly convergent for w between ——,

' and —,'.
The case o. &0: The argument of u is on the unit circle

in the complex plane, and the argument of v is purely
imaginary. The definitions (2.2) and (2.3) of u and U can
be brought to the forms

B. Evaluation of u (z) and U (z)

For a~, e2, a3, +~2, +23,a3] all real, two cases must be
considered: o &0 and o &0.

The case o &0: The arguments of the dilogarithms
which appear in the definitions (2.2) and (2.3) of u and U

are real. The transformation theory for the dilogarithm
should be used to reduce the problem of evaluating these
dilogarithms to the problem of evaluating dilogarithms
whose argument lies between ——,

' and —,'. The identities
needed for the different ranges are

and

U (iy) =i Clp(vr+2P), (3.11)

Clp(co)= —f ln
I

2 sin(t/2)
I
dt,

0

can be calculated by using the identities

(3.12)

Cli(co) =Cia(co+2m ) = —Clp(2ir —co) = —Clp( —ai)

where y =tang. Clausen's function Clq, which is defined
b 19

2

Liz(z) =Liz(w)+ —,
' lnw ln(z w)—

6

where w =(1—z) ' for z & —1;

Liq(z) = —Liq(w) —
—,'ln ( —w/z),

where w =z /(z —1) for —1 & z & ——,';
.2

Liq(z) = —Liq(w) —lnz lnw+
6

where w =1—z for —,
' &z & 1;

2

Re[Liq(z)] =Liq(w) —lnz lnw ——' ln z+

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(3.13)

to reduce the problem of evaluating the C12 to the prob-
lem of evaluating a C12 whose argument lies between
——', ~ and —', ~. For co between ——', ~ and —', n., this evalua-
tion is carried out by using the series

1 )n —lg 2n

Clp(co)=co 1 —ln
I

ai
I
+ g +R~(ai)

2n (2n +1)!

(3.14)

together with the error bound
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2N+2

i
co (2m . (3.15)

R~(co) ( 2 Cc)

—(2N +1)(2N +3) 2~
1—

Because the radius of convergence of the series (3.14) is
2~, it is rapidly convergent for ~ between —2w/3 and
2w/3. For co between 2~/3 and 4~/3, the evaluation is
carried out by using the series

( —1)" 'B2„
C12(co)=(co—7r) —ln2+ g, (2 "—l)(~ vr)—"+R„(co)

, 2n (2n +1)! (3.16)

together with the error bound

R~(co) ( 2

(2N + 1)(2N +3)
l—

2N +2

(3.17)

The series (3.16) can be derived from (3.14) with the aid of the identity C12(u)= —,'C12[2(co—ir)] —C12(~—ir).
the radius of convergence of the series (3.16) is vr, it is rapidly convergent for cu between 2~/3 and 4vr/3. The series
(3.16), rather than the series (3.14), was chosen for ~ near m because C12(cu) has a zero at n The .Bk which appear in
(3.14)—(3.17) are the Bernoulli numbers, defined by

z (e' —1) ' = g Bkz "/k! .
)!& =0

(3.18)

The reader should be warned that there are several nonequivalent definitions of the Bernoulli numbers in common use;
this can be a pitfall for the unwary.

C. Derivatives of u (z)

The case cr & 0: The following formulas, which are obtained by differentiating the definition (2.2) of u (z) with the aid
of (2.4), can be used for the numerical evaluation of the Taylor coefficients of u (z):

du (z)
dz

1 d u(z)
dz'

1 du (z)
2z dz

1+z
2z (1—z)

= ——ln[ —(1—z) /z],
z

(3.19)

(3.20)

1 d u(z) 1

n ' dz" 6z (1 —z)

(n —2)[(3n —7)z n+2]—+ 2n (n —1)z (1—z)

d" (1+z) (n —3) 1 d" u(z)+dz" n (n —1)z (1 —z) (n —3)' dz"

1 d" M(z)

(n —2)! dz"

(3n —5)z —2n +3+
nz (1 —z)

1 d" 'u (z)
(n —1)!

n)3 . (3.21)

These formulas are to be used recursively, with numerical
values of lower Taylor coefficients obtained from previous
steps used on the right-hand side of (3.21). Formula
(3.21) is derived most easily by multiplying (3.20) by
z (1 —z) and taking n —2 derivatives with respect to z.

The case o. (0: The following formulas, which are ob-
tained by differentiating the formula (3.10) for u (e '

) with
the aid of (3.12), can be used for the numerical evaluation
of the Taylor coefficients of —iu (e' ).

n & 2 (3.23)

bO 2
————,',

b „=—[(n —2m)b

+(n —2m —2)b „ i]/(2m) .

(3.24)

(3.25)

d n [(n —1)/2]

~I dO' [ iu (e' )]= —g b „[cot(0/2)]"

d0 [ iu (e' )]=——21n
t
2 sin(8/2) I (3.22) In formula (3.25), which is to be used with the initial con-

dition (3.24) for the recursive evaluation of the coefficients
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b„needed for (3.23), the term (n —2m)b ] „]is to
be counted as zero for m =0, and the term (n —2m
—2)b „]is to be counted as zero for m =[(n —1)/2].

D. Derivatives of v(z)

The case cr )0: The following formulas, which can be
obtained from (2.3) and (2.4), can be used for the numeri-
cal evaluation of the Taylor coefficients of U (-).

1 d "U(z)
n! dz"

n —1

Uf (m;z) v~ (n —m —1;z),
n(1 —z )" 0

(3.26)

Uf(0;z) = 1,
Uf(1;z) =2z,

Uf(m;z) =2zvf(m —1;z)+(1—z )Uf(m —2;z),

(3.27)

(3.28)

m )2 (3.29)

Ug, (0;z)= 1,
Ug, (1;z)=z,
Ug, (rn;z) =2zvs, (m —1;z)+(1 —z )vg, (m —2;z),

(3.30)

(3.31)

m &2 (3 32)

us(0, z) =ln
/

(1—z )/4
/

Ug(m;z) = —2ug, (m;z)/m .

(3.33)

(3.34)

The polynomials vf(m;z) and U~, (m;z), which appear in
(3.26) —(3.32) and (3.34), are related to the Chebyshev po-
lynomials of the first and second kinds T and U by

vf(m;z)=(z —1) ~ U (z(z —1) '~ ),
Ug, (m;z)=(z —1) T (z(z —1) '

) .

(3.35)

(3.36)

The recursion relations (3.29) and (3.32) follow directly
from the recursion relations

U (x)=2xU ](x)—U 2(x),

T (x) =2xT ](x)—T 2(x),

(3.37)

(3.38)

which are usually used for the computation of Chebyshev
polynomials. The recursion relations (3.29) and (3.32)
and the formula (3.26) can be shown to be numerically
stable.

The case o. (0: Formulas which are suitable for
the numerical evaluation of the Taylor coefficients of

iv ( —iz—) can be obtained from (3.26) —(3.34) by replacing
z by —iz.

E. Putting it all together

The recursive evaluation of the derivatives in (1.4) can
be carried out via the following steps.

Step I: Multiply the a's by a (positive or negative)
power of 2 to obtain rescaled a's which are not unreason-
ably large or unreasonably small.

Step 2: Check for singularities. Are any of the terms in
(2.1) at or near a singular point (see Sec. II C)'? If so, the
procedure must be modified as outlined in Sec. III F.

Step 3: It is convenient to store numerical values of
Taylor coefficients in one-dimensional arrays. Construct
pointers which can be used to go back and forth be-
tween the single array index and the six indexes
n&, n2, n3, n&z, n23, n3] which specify a particular Taylor
coefficient.

Step 4: Use analytic formulas obtained by squaring (2.5)
and differentiating the result to compute numerical values
of all needed Taylor coefficients for the Taylor expansion
of o about the point a~, aq, a3, a. i2, +23,a3i.

Step 5: Use analytic formulas obtained by differentiat-
ing (2.6) and (2.7) to compute numerical values of all
needed Taylor coefficients for the Taylor expansions of
the polynomials yP' about the point a],aq, a3, a]2,a&3,a3]
for j =0, 1,2, 3 and k =0, 1,2, 3.

Step 6: Since the formulas used for o. positive are
different from the formulas used for o. negative, the
procedure splits into two branches at this point. If o. is
positive, use the results of step 4 and the function-of-a-
function formulas (3.2) —(3.6) with f (g) =g ' and
g =o. to compute numerical values of all needed Taylor
coefficients for the Taylor expansion of 1/o. about the
point a&, a2, a3, a&z, a23, u3i. If o. is negative, use the re-
sults of step 4 and the function-of-a-function formulas
(3.2) —(3.6) with f (g) = ( —g) ' ~ and g = cr to compute
numerical values of all needed Taylor coefficients for the
Taylor expansion of i /rr

Step 7: If cr is positive, use Eqs. (2.2), (3.8), (3.9), and
(3.19)—(3.21) to compute numerical values of all needed
Taylor coefficients for the Taylor expansions of the func-
tion u at the three points po] ]/3o'", j =1,2, 3. If cr is nega-
tive, use Eqs. (3.10), (3.13)—(3.17), and (3.22) —(3.25) to
compute numerical values of all needed Taylor coefficients
for the Taylor expansions of the function i u (e' )—
=2Clq(&) at the three points 0= —i[in(f}'I] )+in(PI]' )]
=2[arctan(iy 0 '/a)+arctan(i@I]" /o )],j=1,2, 3.

Step 8: If o is positive, use Eqs. (2.3), (3.8), (3.9), and
(3.26) —(3.34) to compute numerical values of all needed
Taylor coefficients for the Taylor expansions of the func-
tion U(z) about the 16 points z =y) /o, j =0, 1,2, 3,
k =0, 1,2, 3. If o' is negative, use Eqs. (3.11), (3.13)—
(3.17), and (3.26) —(3.34) as modified by replacing z by—iz to compute numerical values of all needed Taylor
coefficients for the Taylor expansions of the function

iv ( iz)—abo—ut the 16 points z =]yIJ /o, j =0, 1,2, 3,
k =0, 1,2, 3.

Step 9: If u is positive, use the results of steps 5 and 6
and the product rule (3.1) to compute numerical values of
all needed Taylor coefficients for the Taylor expansions of
yp'/o about the point a],a2, a3,a]i,a23, a3] for j
=0, 1,2, 3 and k =0, 1,2, 3. If o. is negative, use the re-
sults of steps 5 and 6 and the product rule (3.1} to com-
pute numerical values of all needed Taylor coefficients for
the Taylor expansions of iyIJ]/o

Step 10: If o. is positive, use the results of steps 8 and 9
and the function-of-a-function formulas (3.2}—(3.6) with
f (g) =v (g) and g =yP'/cr to compute numerical values of
all needed Taylor coefficients for the Taylor expansions of
v (yP'/o ) about the point a],a2, a3,a]2,a23, a3] for
j =0, 1,2, 3 and k =0, 1,2, 3. If o. is negative, use the re-
sults of steps 8 and 9 and the function-of-a-function for-
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mulas (3.2) —(3.6) with f(g)= —iu( ig—) and g =iyP'Icr
to compute numerical values of all needed Taylor
coefficients for the Taylor expansions of —iU (yP'Icr).

Step 11: If cr is positive, use the results of step 9 and
the function-of-a-function formulas (3.2) —(3.6) with

f(g) =(1—g)/(1+g) and g =yP'Io to compute numeri-
cal values of all needed Taylor coefficients for the Taylor
expansions of Pg" about the point a~, a2, a3, a~q, aq3, a3~ for

j =0, 1,2, 3. If o. is negative, use the results of step 9 and
the function-of-a-function formulas (3.2) —(3.6) with
f(g)=2arctan(g) and g =y)'Io to compute numerical
values of all needed Taylor coefficients for the Taylor ex-
pansions of i ln—(/3I/') =2 arctan(iyI/'/o ).

Step 12: If o is positive, use the results of step 11 and
the product rule (3.1) to compute numerical values of all
needed Taylor coefficients for the Taylor expansions of
Po 'PI/' about the point a~, aq, a3, a~2, aq3, a3~ for j =1,2, 3.

If cr is negative, add the corresponding Taylor coefficients
for 2arctan(iyo '/o ) and 2 arctan(iyoI "/cr) which were cal-
culated at step 11 to obtain numerical values of all needed
Taylor coefficients for the Taylor expansions of

i —ln(Pq ')Po'") =2[arctan(iyo 'lo ) +arctan(iyg'/cr ) ].
Step 13: If o. is positive, use the results of steps 7 and

12 and the function-of-a-function formulas (3.2) —(3.6)
with f(g)=u(g) and g =Po 'PI/' to compute numerical
values of all needed Taylor coefficients for the Taylor ex-
pansions of u (Po PI/') about the point a~, a2, a3,
o. ]2,nq3, +3' for j =1,2, 3. If o. is negative, use the re-
sults of steps 7 and 12 and the function-of-a-function for-
mulas (3.2) —(3.6) with f (g) = —iu (e'g) =2Clq(g) and

g = —i 1n(P~o 'Po'") =2[arctan(iy~o /cr ) +arctan(iyI/'/o )]

to compute numerical values of all needed Taylor
coefficients for the Taylor expansions of iu (—/3o 'PI/').

TABLE II. Values of J(nl, n2, n3, n 12, n&3 n», a&,e2, a3, +12,a&3,F31) at the standard reference point
a~ =aq=Cz3=al2=a23=a» = l.

nl

0
1

2
1

0
3
2
1

1

1

0
4
3
2
2
2
2
1

1

0
0
1

5

4
3
3
2
3
2
3
2
2
1

1

0
1

1

0
2
1

n2

0
0
0
1

0
0
1

1

1

0
0
0
1

2
1

1

0
1

0
0
0
0
0
1

2
1

2
1

2
0
1

0
1

0

1

0
0
1

n3 n23 n»

4.313 608 359 247 323 132 40 X 10
2.156 804 179 623 661 566 20 X 10
1.700 846 212 355 526 103 63 X 10
1.414 143 540 752 485 463 30 X 10
1.269 796 343 129 178 307 95 X 10
1.848 753 666 796 548 493 78 X 10
1.381 285 044 223 778 297 52 X 10
1.196054 211 143 383 165 86 X 10
1.067 939 76443451062004X 10
1.022 076 819 868 488 467 79 X 10
1.130 337 218 085 968 834 30 X 10
2.572 920 829 541 445 51900 X 10
1.792 270 667 926 595 963 91 X 10
1.620 685 263 846 488 063 36 X 10
1.438 101 395 236 904 542 12 X 10
1.181 872 501 819 159 450 47 X 10
1.174469611 543 26621474X 10
9.540 070 270 498 617 896 13
1.080 310 824 970 255 550 55 X 10
1.350 518 499 531 461 588 03 X 10
1.110261 509 103 329 215 59 X 10
8.893 556 036 274 299 11651
4.376 590 752 867 569 281 36 X 10
2.901 314 739 016 179 954 21 X 10
2.465 826 611 956 565 607 76 X 10
2.224 981 698 764 935 326 73 X 10
2.064 846 448 745 239 042 65 X 10
1.714 262 898 094 924 412 27 X 10
1.470 822 563 109 573 875 07 X 10
1.743 209 216 821 168 787 08 X 10
1.254 289 852 738 491 732 55 X 10
1.438 737 305 578 736 155 13 X 10
1.203 455 464 925 934 917 68 X 10
1.496 299 510 832 397 659 32 X 10
2.028 596 097 857 829 534 80 X 10
1.108 619 782 943 060 525 78 X 10
1.223 039 963 164 420 655 22 X 10
1.439 835 355 532 810 944 12 X 10
1.092 023 747 347 238 940 71 X 10
9.286 971 180015 268 093 64
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Step 14: If o. is positive, add the corresponding Taylor
coefficients for the Taylor expansions of U ( y P'/o. ),
j =0, 1,2, 3 and k =0, 1,2, 3 obtained at step 10 and
u (Po 'Po"), j=1,2, 3 obtained at step 13. If cr is negative,
add the corresponding Taylor coefficients for the Taylor
expansions of iv —(yP'Icr ) and iu—(Po' 'Pg ).

Step 15: If 0. is positive, use the results of steps 6 and
14 and the product rule (3.1) to compute numerical values
of all needed Taylor coefficients for the Taylor expansion

of the sum computed at step 14 multiplied by 1/o. . If o.

is negative, use the results of steps 6 and 14 and the prod-
uct rule (3.1) to compute numerical values of all needed
Taylor coefficients for the Taylor expansion of the sum
computed at step 14 multiplied by i lo

Step 16: Multiply the Taylor coefficients obtained at
step 15 by 16~, by the factorials needed to convert the
Taylor coefficients to derivatives, and by

n &+n2+n&+n &2+n2&+n»+3—( —v) ' ' ' " " " where v is the scale factor

TABLE III. Values of J(n &, nz, n&, n», n2&, n»', al, a2, a&,a&2, azz, a» j at the auxiliary reference point
al =a2=ay = 1, al2 =a2q =a» =0.

nl n2 n3 n l2 n23 n»

4.382 174 441 144 904 256 32 X 10
4.382 174441 144904256 32K 10
5.708 767 958 017 266 102 00 K 10
7.260 097 789 286 319204 61 K 10
5.134 299 987 646 648 91033 X 10
8.110 199736 802 551 385 28 K 10
6.614 672 358 463 961 637 43 K 10
1.204 780633 933 561 275 04K 10
9.922 008 537 695 942 456 15 X 10'
1.747 012 312 662 465 058 98 X 10
9.415 182 909 903 472 716 64K 10
6.841 134 118426299 118 36K 10
1.826 714 954 848 235 598 82 X 10
1.181 061 790 129 579 501 23 X 10'
1.047 323 123 423 460 592 59 X 10
1.212 689 932 385 059 633 53 X 10
2.241 806 586 686 905 851 06 X 10
1.540 289 996 293 994 673 10X 10'
3.574 813 512 644 218 635 98 X 10
1.488 301 280 654 391 368 42 K 10'
1.984 401 707 539 188 491 23 X 10'
2.630 054 872 257 844 588 82 X 10'
5.654481 570724 335 948 68 X 10'
2.413 796 152 625 227 202 59 K 10
1.867 086 769 631 596 603 73 K 10
1.368 226 823 685 259 823 67 K 10'
5.745 062 179 200 062 564 21 K 10
2.697 977 235 696 121 183 34 K 10
2.517 250 314 193229 845 36K 10
1.690 416 269 385 234 640 68 X 10
2.076 272 156 962 299 069 53 X 10'
3.123 595 280 385 759 662 12 K 10
6.452 065 068 563 902 253 75 X 10'
3.900 864 887089 675 738 18K 10'
3.097 909 564 467 857 11442 X 10
3.045 920 848 828 253 809 75 X 10
8.275 566 545 764 150426 21 X 10
4.897 747 984 337 010963 47 K 10
1.379 097 380 008 742 23 1 51 X 10
3.472 702 988 193 579 859 65 X 10
2.976 602 561 308 782 736 85 K 10
5.953 205 122 617 565 473 69 X 10'
2.480 502 134423 985 614 04 K 10'
4.795 637 459 886 372 187 14 K 10
6.882 149 691 876 199454 70 X 10
4.102 542 081 784 495 891 09 X 10'
9.425 908 110811 145 333 34 X 10
8.504405 304091 791 989 25 K 10
3.968 803 415 078 376 982 46 X 10
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by which the e's were multiplied at step 1. The result is
the collection of integrals J defined in Eq. (1.2).

The steps outlined above have been programmed in
FORTRAN 77. Some numerical results obtained by run-
ning this program on an IBM 3081 are presented in
Tables II and III, which list results for the integrals J at
the standard reference point (SRP) and at the auxiliary
reference point (ARP). Because these are points of high
symmetry, all derivatives through the fifth order at SRP,
and all derivatives through the fourth order at ARP, can
be obtained from these tabulated results by permutation
of the a' s.

The FORTRAN program was checked by comparison
with the numerical results given by Ho and Page. ' The
results at SRP and at ARP presented in Tables II and III
have been checked by computing Taylor series at a se-
quence of points along a line connecting the point
n I ——n2 ——4 72, u3 ——5 '72, a~2 ——+23 ——+3~ ——0, at which
agreement with Ho and Page was obtained, to ARP, and
along a line connecting ARP to SRP. The Taylor series
at each point was used to compute values of
I(a~,a2, aq, a~q, a23, a3~) and all of its derivatives through
third order at the next point. Because the signs of all
derivatives are known, rigorous remainder bounds for the
truncated Taylor series could be computed; values ob-
tained from the program were found without exception to
lie between the upper and lower bounds obtained from the
truncated Taylor series about an adjacent point. All of
the results listed in Tables II and III were obtained by
running in quadruple precision (about 30 significant di-
gits) and rounding to the number of digits shown. At
ARP (Table III), a comparison of these quadruple pre-
cision results with the corresponding calculations in dou-
ble precision showed a loss of one significant digit in the
worst case; thus there is no problem with numerical sta-
bility at ARP. Such a comparison at SRP (Table II)
showed a loss of four significant digits in the worst case;
thus there is a mild problem with numerical stability at
SRP. In both cases, the tabulated results should be accu-
rate to the number of significant digits shown.

The question of numerical stability for the computa-
tional procedure outlined above has not yet been explored
in any systematic way. The formulas which are clearly
stable at ARP, and mildly unstable at SRP, could turn
out to be severely unstable at some other point of interest.
However, the many identities known for the dilogarithm
function, together with identities such as (2.9a)—(2.9c),
(2.19a)—(2.19p), and (2.20a) —(2.201), should make it possi-

ble to find alternate formulas for use at points where nu-
merical stability problems are encountered. Section III F
shows how this can be done at and near points where in-
dividual terms u (p&'p'pg') and v (ysj'/cr) in (2.1) are singu-
lar. In any event, the numerical stability at ARP shows
clearly that the Taylor series methods advocated in this
section should not themselves be a source of numerical in-
stability.

The amount of computer time required to evaluate a
given collection of integrals J (n „nq, n 3,n, 2, n 23, n 3],
a&,az, a3, a~q, a23, a3/) is determined primarily by the time
required to compute derivatives of products, which is pro-
portional to the square of the number of derivatives need-
ed, and by the time required to compute derivatives of
functions of functions, which is proportional to the square
of the number of derivatives needed multiplied by the or-
der of the highest derivatives. Thus the efficiency of the
entire program depends primarily on the code which mul-
tiplies two Taylor series. This code, and the storage for
the Taylor series coefficients, should be constructed to
make this multiplication as efficient as possible. In some
cases where two or more of the parameters e are equal,
the efficiency of the computation can be improved by us-
ing symmetry to eliminate unnecessary duplication of
effort.

F. Modifications near singularities

Individual terms u (P~o 'Pg') and v(yP'/cT) in (2.1) can
be singular at points where their sum is not singular, as
was pointed out in Sec. II C. Numerical evaluation at or
near such cancelling singularities requires that the cancel-
lations be performed analytically before the numerical
evaluation is carried out; this prevents the excessive
round off error which would otherwise occur at step 13 of
Sec. III E due to near-cancellation between almost equal
large positive and negative terms. Since the discussion of
this section is meant to be illustrative rather than exhaus-
tive, only two cases will be considered: the points
a3=a3 +5 and a3=a~+aq —5 on the path (2.36) from
SRP to e3 ——~.

As a3 approaches a3, all y)'/cT approach oo and all
po 'po" approach + 1. Thus it is appropriate to use
(2.15c), (2.15d), (2.16e), (2.16f), and (2.17) for u and v,
with branches specified by (2.37). Combining the singular
pieces from (2.15c) and (2. 16e) with the aid of (2.9) and
(2.38) yields

3 3

I(ccrc ct2 ~3 cc12 ct23 cc31)= ' g [ ln (Po Po ) 21n(PO Po )ln
~

( 1 —Po Pp )/o'
~

—2Li2(1 —Po Pd )1
j=1

3 3

g [—ln
~

yP'
~

ln( —PP')+ v „(yP'/o-)], .
j=0 k =0

(3.39)

By Taylor expanding the pp in powers of cr, it is easy to verify that each term in the curly bracket I j in (3.39) vanishes
linearly with o as cT~O; such Taylor expansions should be used for the numerical evaluation of (3.39) when o is very
close to zero.

As a3 approaches a[+f2, yq" /o. , y'~ '/o-, y0 '/o-, and y3 '/o. all approach + 1, y3" /o. and y3 '/o. approach —1, and
po 'po' ' approaches 0. Thus it is appropriate to use (2.15a), (2.15b), (2.16a), (2.16b), (2.16c), and (2.16d) for the singular u
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and v, with branches specified by (2.37). Combining the singular pieces from (2.15a), (2.16a), and (2.16c) with the aid of
(2.9) and (2.38) yields

3

I(a],a2, a3 a]2 a23 a3] ) = lim [u (po po" +i e) i I—r ln(po 'po")+ u (]330 'po '+ i@)
e 0+

1 (P'o'Po"')+ (Po''Po"')+ ((yo''/ ) —'
)

+ —,
] iIr ln( —pI] ]}+v((yp'/o )+i@)+—,

]
iver ln( —pp])

+v((y2 '/o)+. i e)+ ,'in—ln(.—p]2 ')+ v((yp'/IT ) —iE)

+ —,'im. ln( p—]3 ])+v((yo"/Ir)+is)+ —,'iIrln( —f)'o]")

+v((y']" /o. ) iE—)+ —,'iIr ln( —p']")+v](y]2"/o. )

+ v —] ( y 3
' /Ix ) + v ( ( y 0' /I7 ) + I & ) + ,' I Ir in( ——'Po

+v](y'] '/cr )+v((y2 '/c)7i e)+—,'ill—n(—. p2 ')

+v ](y'3 '/Ir)+v](yo '/o )+v((y'] '/o)+i@)

+ ,'inln( ——p. '] ')+v((y2 '/o )+is)+ ,'iII ln—( —132 ')

+v](y3 '/o )+ —,'ln( —pI")ln(pp'p' ')

+ —,'ln( —]332 '}in(p2 'p3 ) —1II( pp )ln( p2 )] (3.40)

The combining of terms at the other cancelling singularities is similar to the combining which yields (3.40).

IV. DERIVATION OF RESULTS

This section will derive the results recorded in Sec. II by using a Fourier integral representation of r exp( —ar) to
bring the generating integral (1.3) to the form

I(a],a2, a3,a]2,a23 a3])= 3 J d k]d k2d k3[(k]+a23)(k2+a3])(k3+a]2)[a]+(k2 —k3) ][a2+(k3 k])']

X [a', +(k]—k2)'] j (4. 1)

A. Fourier transformation, coordinates, and notation

The form (4.1) is obtained from (1.3) by using the
Fourier integral representation

—1 1 exp( ik r)—r exp( ar )=- d k
2m. k +a (4.2)

for r]2 exp( —a]2r]2), for r23 exp( —a23r23), and for—I

1 3]
' exp( —a3]r3] ). The expression (4.1) is then obtained

by integrating over ri, r2, and r3 with the aid of the for-
mula

Angular integrations over the directions of k&, k2, and k3
are carried out first. Contour integration is then used to
integrate over the magnitudes k~, k2, k3 of the vectors
k&, kz, k3 and complete the job. The following derivations
assume that all the a's are real and non-negative; analytic
continuation can be used to extend the result (2.1) to a
larger domain.

f r 'exp( —ar+ik r)d r=4Ir/(k +a ) . (4.3)

X sin83]d 83]dpk ]dk] k2dk2k 3dk3 (4.4)

cos823 =cosO] 2cos83 ] +s]I]8]2s]I]83]cosp (4.5)

where 0;, is the angle between k; and k~. With these
coordinates, the integrand in (4.1) is independent of 8], P],
and $2, so that these coordinates can be integrated im-
mediately to obtain 8~ .

Make the definitions

The integrations over k], k2, and k3 in (4. 1) are done by
using spherical polar coordinates, with the ki direction
chosen as the z axis for the k2 and k3 integrations, and
with the angle $3 replaced by /=$3 $2. Then—
d k]d k2d k3 ——sinO]dO]dp]dp2sinO]2dO]2

c](k2 k3 a]):=(a]+k2+k3)/(2k2k3)

~2(k3 kl a2) —(a2+k3+k 1)/(2k3k1 }

(4.6a)

(4.6b)
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and

c3(ki, k2, a3):= (a3+ k 1 + f 2 )/(2k ik2 )

1 2~ dgD (Oi2, 83i, c 1 ):=-
7T 0 C 1

—COS023

~ D (812,831',c 1 )sm83id831E( 812 «C 1 ~ C 2 ) =
0 C2 —COS031

E (812,c1,c2 )sin812d 812
F(ci,C2, C3):=

0 C 3
—COS012

dk1
G(ai, a2, a3,a23 k2, k3):=2 f" F(ci(k2, k3', ai), c2(k3, ki, a2), c3(ki, k2, a3)),

k1+a23

dk2
H(ai, a2, a3 23 a31 k3).—2

2 2 G(ai, a2, a3, a23 2 3),
k 2++31

(4.6c)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

where cos823 in (4.7) is given by (4.5). Then

dk3I(ai, a2, a3, a12, a23,a») =2
2 2

H (a1,a2, a3,a23 a31 k3)
k 3+a12

(4.12)

The integrations will now be performed in the order
Ijkp 831r 812,k 1,k2, k3.

B. Integration over P

The result

D (8,2, 831,c 1 )

=2sgn(ci)(cos 8,2+cos 83'1 2cicos812cos831

where X =x +Px+y, to evaluate (4.8). Formula (4.17)
is applied with x =cos831 —c2 and p=2(c2 —cicos812).
Keeping track of the branch of the logarithm in (4.17) re-
quires a knowledge of the signs of the quantities which
appear. These signs can be established as follows. The
argument given in Sec. IV B to show that

I
ci

I
& 1 can be

repeated to show that
I
c2

I
& 1 holds for a2&0. It fol-

lows that x has the same sign as —c2 on the entire path of
integration. Equation (4.16) can be rearranged to

2 1)
—1/2 y=(

I
ci

I I
c2

I
) +[2

I
c1c2

I

1 —sgn(cic2)cos812]
(4.13)

can be obtained by applying the integration formula
X [1—sgil(cic2)cos812] (4.18)

dP 2'
o a +b cosg a [1—(b/a) ]' (4.14)

which shows that y )0 as a consequence of
I

c 1 I
& 1 and

I
c2

I
& 1. The definitions of /3 and y can be used to ob-

tain /3 4y = —4(c—1
—1)sin 812, which shows that

to the definition (4.7) with a =c 1
—cos812cos831 and

b = —sin812sin831. The condition
I

a
I

&
I
b I, which is

necessary for the validity of (4.14), can be established by
using k2+k3 —2

I
k2k3

I

=(
I
k2

I

—
I
k3

I
) )0 to show

that
I
c 1 I

& 1 holds for a1&0. The positive square root is
to be taken in (4.13); sgn(ci) is + 1 or —1 as c1 is posi-
tive or negative.

/3' —4y &0 . (4.19)

=(4y —P )x (4.20)

Formula (4.19) implies that X&0. The easily established
identity

[2(yX}'~2—(Px+2y)][2(yX)'~ +(/3x+2y)]

The result

C. Integration over 83~

c 1 c2 —cos012 +P
1/2

1/2c1c2—cos812 —y
E (012,C1,C2) =2y ' ln (4.15)

combined with (4.19) now shows that the argument of the
logarithm in (4.17) is non-negative on the entire path of
integration.

The result of applying (4.17) with integration limits
x1 (x (x2 where

with

p =cos 012—2c 1c2cos6 12+c 1 +c 2
2 2 2 (4.16)

and

x1.'= —1 —C2 (4.21a)

can be obtained by using the indefinite integral formula
r x2.——1 —c2 (4.21b}

1 2(yX)' —(Px+2y)
2y'" 2(yX)'"+(Px+2y)

(4.17) can be simplified to the form (4.15) with the aid of the
identities
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2(yX) )' +px) +2y

=2(c2 —1) '[c)c2 —cosO)2 —y' sgn(c))]

dF(c),c2,c3)=4
g +2(c)c2 —c3)g+(c) —1)(c2—1)

)&[c)—c2cosO)2 +y' sgn(c))],

2(yX) )' —Px) —2y

(4.22a) ~ln '

(c) —1)(c2—1)
(4.28)

=2(c2 —1) '[c]c2—cosO)2+y' sgn(c) )]

+ [ cI +c2cosO]2+r'"sgn(c) )] (4.22b)

There are two candidates g), and g)b for the lower limit

g) in (4.28), and two candidates g2, and $2b for the upper
limit g2. These are

2(yX2)' +Px2+2y

=2(c2+1) [c)c2—cosO)2+r sgI](c])]

)& [c )
—c2cosO) 2+ y

' 'sgn( c ) )], (4.22c)

g), = —(c) —1)(c2—1),
g)b = —(c)+1)(c2+1),
(2, = —(c) —l)(c2+1),

(4.29a)

(4.29b)

(4.29c)

2( yX2 ) —Px 2
—2y

=2(c2+1) '[c Ic2 —cosO]2 —y' sgn(c I )]

)& [—c I +c2cosO)2+ y
' sgn(c ) ) ] . (4.22d)

(2b= —(c)+1)(c2—1) . (4.29d)

The values of y' which correspond to these four values
of g are obtained from (4.27). In an obvious notation they
are

In the identities (4.22), X; stands for X evaluated at x;.
All square roots are non-negative, so that X1
=

~
c)

~

+sgn(c))cosO)2 and X2 ——
~

c)
~

—sgn(c))cosO)2.
The logarithm in (4.15) is to be taken on the principal
branch [specified by (2.11)]. Since the logarithm is on the
principal branch, the result (4.15) is independent of the
branch chosen for the square root y'

D. Integration over 0~2

The result

yla =C1+C21/2

r)b = —(c)+c2)1/2

r2"'= —(c) —c2),

2b =C1 —C2
1/2

(4.30a)

(4.30b)

(4.30c)

(4.30d)

The obvious way to choose between g), and g)b, and be-
tween g2, and $2b, is to make the choice which keeps y'
positive on the entire path of integration. This is awk-
ward because the signs of y1, , y~~, y2, , and y2q de-
pend on the signs and relative magnitudes of c1 and c2.
Fortunately these choices do not matter; the change of
variables

F(c),c2, c3 )= 4$ [u{(1+c]+c2+c3 )/s)

+u((1+c I
—c2 —c3 )/s )

+ u{(1—c] +c2 —c3)/s)

+u((1 —c ] —c2+c3)/s )], (4.23)

g~g'=(c I
—1)(c2—1)/g

can be used to show that

f 0ib d

g +2(c)c2 —c3)g+(c I
—1)(c2—1)

(4.31)

with

s:=(cI+c2+c3—2c)c2c3 1)2 2 2 1/2 (4.24)

~ln
(c I

—l)(c2 —1)
=0 (4.32)

g= —c ) c2 +cosO]2+r '

which implies that

cosO)2=c)c2+(2g) '[g +(c) —1)(c2—1)]

(4.25)

(4.26)

and u defined by (2.3), can be obtained via a rationalizing
substitution and certain formulas obeyed by the diloga-
rithm function. The rationalizing substitution changes the
dummy integration variable from 8)2 to g via

for i =1,2. Under the change (4.31), the integrand of
(4.32) is carried into itself while the path from g;, to g;b is
carried into the same path traversed in the opposite direc-
tion from i";b to g;, . This shows that the integral on the
left-hand side of (4.32) equals its negative, and hence must
be zero. Thus either g), or g)b can be used for g), and ei-
ther g2, or $2b for g2, without changing the numerical
value of F as given by (4.28). The partial fraction decom-
position

and

y' =(2g) '[g —(c) —1)(c2—1)] . (4.27)

[g +2(c)c2 —c3)g+(c) —1)(c2—1)]
= (2S) '[(g+ c)c2 c3 s)

Using the result (4.15) and the substitution (4.25) —(4.27)
in the definition (4.9) of F yields

—(g+CIC2 —C3+S) ]

and the integration formula

(4.33)

f (a +bg) 'In(c +eg)dg= —ln
b

bc —ae
ln

a +b&2

,

a+bg)
——Li2

b

e (a +bg2) 1 e(a +bg) )+—Li2
ae —bc b ae —bc

(4.34)
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1+C) +C2+C3+S—Li2
(c i + 1)(c2+1)

can be used with g] =g], , g3= gq, to evaluate the integral in (4.28) and obtain the result

4 c]c3—c3 —s (c3+ 1)(c3—1)
F(c],c3,C3) = —

—,'ln ln
s c]c2 —c3+s (C3 —1)(c3+1)

+Li2
1+Ci +C2+C3 —S

(ci + 1)(cq+ 1)

+Li2
—1 —Ci +C2+C3+S

(c]+1)(cp —1)
—Li2

—1 —Ci +C2+C3 —S

(ci+ 1)(c3—1)
(4.35)

(4.36)

The result (4.35) for F can be brought to the form (4.23) with the aid of the identities

The integration formula (4.34) can be verified by differentiating with respect to the upper limit g3 and using the definition
(2.4) of the dilogarithm to show that

dLi2(z)/dz = —z 'ln(1 —z) .

Liq(z) —Li2(w) = v
Z +W +v 2zw —z —w

Z —W

W —Z—Li2
1 —z

1 —z——,
' ln

1 —w

1 —z——,
' ln

1 —w
+ln +ln(1 —z)+ln(1 —w) (4.37)

Liq(z)+Liq[ —z/(1 —z)]+ —,'ln (1 —z) =0,
(1+c]+c3+c3 s)(c]cg c3 —s)= (c]+1)(c2+1)(1 c] c3+c3+s)
(1+c]+cq+c3) —s =2(c]+1)(C3+1)(C3+1).

(4.38)

(4.39)

(4.40)

The dilogarithm identities (4.37) and (4.38) can be established by differentiation: The derivatives with respect to z of the
two sides of (4.37) can be shown to be equal with the aid of (4.36). The derivatives with respect to w of the two sides of
(4.37) can be proven equal in similar fashion. Hence the two sides of (4.37) can differ by at most a constant. By setting
z=2w, taking a limit as w~0, and using Li2(0)=0 and U( —3)= —U(3), it can be shown that this constant is zero. A
similar argument establishes (4.38). The identities (4.39) and (4.40) follow from the definition (4.24) of s. The identity
(4.37) is used with

w =(1+c]+c2+c3+s)/[(c]+ 1)(c2+ 1)]
and

z =(1+c]+cq+C3—s)/[(c] +1)(c3+1)],
and the expression z (1—w)/(z —w) simplified with the aid of (4.39), to obtain

1+CD +C2+C3+S—Li2 (c]+1)(c2+1)
1+C]+C2+C3 —S

+Li2
(c]+ 1)(c3+1)

2$= —U((1+c] +c3+c3)/s) U((1 c] cQ+c3)/s) —L12
C]C2 —C3+S

ClC2 C3 —$——,'ln'
C&C2 C3+S

+ —,
' ln

CiC2 —C3 —S

C]C2 —C3+$
ln

1+C & +C2+C3+$
2s

+ln
1+Ci+C2+C3 —S

—2s

Cic2 —C3 —$ C]C2 —C3+S
+ln +ln(c]+1)(c3+1) (c]+1)(C3+ 1)

(4.41)

Replacing c2 and c3 in (4.41) by —c3 and —c3 yields

Li2
—1 —C] +C2+C3+S

(c]+ 1)(c3—1)
—Li2

—1 —ci+c2+c3 —s

(ci+ 1)(c3—1)

—2s= —U((1+c]—c2 —c3)/s) U(( 1 —c] +c2 c3)/s) —L]2
C]C2 —C3 —S

C]C2 —C3 —S——,'ln'
C&C2 —C3+S

——' ln
2

C ic2 —C3 —$

C ]C2 —C3+S
1+Ci —C2 —C3+S

ln
2$

1+Ci —C2 —C3 —S

—2$

C1C2 C3 —S
+ln +ln

(c] + 1)(c3—1)
C&C2 —C3+S

(c i+ 1)(c2—1)
(4.42)
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The identity (4.38) is used with z =2s/(clcz —c3 —s) to
obtain

2$ ~
—2$

Li2 +Li2
C1C2 —C3+S C1C2 —C3 —S

v ( —z) = —v (z), which is obvious from (2.3), shows that
(4.23) is independent of the branch chosen for the square
root s when the branch for v (z) is chosen as described in
Sec. II C.

2 C1C2 C3 —S
+ —,

' ln2
C1C2 —C3 +$

=0 (4.43)

Adding (4.41), (4.42), and (4.43) and simplifying the result
with the aid of (4.40) yields the identity needed to bring
(4.35) to the form (4.23). The branches of the multiple-
valued logarithms and dilogarithms which appear in the
manipulations described above can be kept track of by do-
ing the calculations for C1,c2,c3 all large compared to 1;
in this limit F(cl,cz, c3)=8/(elczc3), as can be seen
directly by neglecting the cosines in the denominators of
(4.7) —(4.9). The result (4.23) can then be extended to a
wider domain via analytic continuation.

The fact that F(cl,cz, c3) is invariant under any permu-
tation of 1,2,3 is obvious from (4.23) and (4.24), which
also show that

E. Additional notation

In order to clarify the relationship of the final result
(2. 1) for the generating integral I to the results for the in-
termediate integrals F, G, and H defined by Eqs.
(4.9)—(4.11), it is convenient to introduce the following
notation. The symbols oF, yz~k, pFOk, Pz~k stand, respec-
tively, for the quantities o, y1k~), p)k~), Plkj' defined by
(2.5) —(2.8) evaluated at a 12

—— ik—3, a23 = ik 1,—
a31 = ik—z Th. e symbols crG, y'~k, p "„, PGk stand, re-
spectively, for the quantities o, yk~', p'k~, P'„" evaluated at
alz= —ik3, a31= ikz —The. symbols oH, yH', )u"', PH'k

stand, respectively, for the quantities o., y'k', pk~', P ' eval-
uated at &12———ik3. With this notation, o.F ———pros and

"'
(4)

izFk pFock w—hen the ck are given by (4.6), so that the re-
sult (4.23) for F can be written in the equivalent form

F( —cl, —cz, c3)=F(cl, —cz, —c3)

=F(—c l, cz, —c3)

=F(el, cz, c3) . (4.44)

F(cl(kz k3 al) cz(k3 k'1 az), c3(kl, kz, a3))

3

=4PFo&F v (QFo/rrF)+ g v (yFk /&F )

k=1
The property (4.44) implies that F(cl,cz, c3) is even in kl,
kz, and k3 when the c; are given by (4.6). The fact that (4.45)

F. Integration over k~

The result

G(al, az, a3, a23~kz, k3) 77a23 tF(cl(kz, k3, al), cz(k3, kl, az), c3(kl, kz, a3)}+F(al,az, a3,'kl, kz, k3)]k)

with F defined by

F(al a2 a3 kl k2 3) izFoaF [ll (PF1/PFo)+& (+F1 PF1) & (PF1/PF2) lz (PFl /PF3)1

(4.46)

(4.47)

can be obtained via complex integration. The combinations PF'1'/PF, " and PF'1'PF)' which appear as arguments of the func-
tion u in Eq. (4.47) have four equivalent forms:

(4.48a)

(4.48b)

(4.48c)

(4.48d)

The derivation of (4.46) and (4.47) begins by using the fact that the function F in the integrand of (4. 10) is even in kl.
Thus (4.10) can be replaced by

dk1
G(al a2 a3 a23 k2 k3) —

2 2
F(cl(k2 k3 al) C2(k3 kl a2) C3(kl k2 a3))

k1+a23
(4.49)

The function F is analytic in k1 except for branch points at k1 ——+k2+ia3 and at k1 ——+k3+ia2. The behavior of F in
the neighborhood of these branch points can be deduced from (4.6), (4.24), (4.35), and the fact that F(c l, cz, c3 } is invari-
ant under any permutation of 1,2,3. The dilogarithm (Liz) terms in (4.35) are not singular at c3 =+1; only the logarithm
term is singular at c3 ——+1. Hence the behavior of F at the k1 ——+k2+io;3 branch points is given by
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2F(c](k2,k3, a]),c2(k3, k]', a2), c3(k],k2', a3))= —ln
s

c]c2—c3 s (k] —k2 ]a3)(k] k2+]a3)
ln

c]c2—c3+s (k]+k2 —]a3)(k]+k2+«3)

+analytic function, k] near +k2+ia3, (4.50)

with the understanding that the c; are given by (4.6). The behavior of F at the k] ——+k3+ia2 branch points is obtained
by interchanging 2 and 3 in (4.50). It follows that the branch cuts associated with these branch points can be taken to
connect —k2+ia3 to k2+ia3 and —k3+ia2 to k3+icz2 in the upper half-plane, and to connect —k2 —EA3 to k2 —io'3
and —k3 —ia2 to k3 —ia2 in the lower half-plane. These branch points, and the poles at kI ——+ia23, are the only singu-
larities of the integrand in (4.49). Thus the integration contour can be closed over the upper half-plane to obtain G as the
sum of three terms: a contribution G23 from the pole at k~ ——io.'23, a contribution G2 from the branch cut which runs
from —k3+in2 to k3+ie2, and a contribution G3 from the branch cut which run from —k2+ia3 to k2+ia3. Explicit-
ly

G (a],a2, a3, a23 k2, k3) =G23+ G2+ G3 (4.51)

where

G23 = F(c](k2,k3, a]),c2(k3, k],a2), c3(k],k2, a3))k,
&23

(4.52)

k3+ ta2
G2 ———4+i

"&+' & (k]+a23)s
C3Ci —C2 —S

C3C~ —C2+S
(4.53)

~2+&&3 dk1 C&C2 —C3 —S
G3 ———4m ln

k&+ta3 k
& +~P3 s c]c2—c3+s (4.54)

The jump across the branch cut needed for (4.54) is obtained from (4.50); (4.53) is obtained from (4.54) by interchanging
2 and 3. It can now be seen that the first (F) term in (4.46) comes from G23. The second (F) term will come from
G2+ G3.

G3 will now be computed via a rationalizing substitution and certain formulas obeyed by the dilogarithm function.
The rationalizing substitution changes the dummy integration variable from k

~ to q via

9 al (kl +a23 )+&F2 2 (4.55)

which implies that

k] a23+(rI aG)l[2a]( 9 8)] (4.56)

and

o F =(ri 2rIB +erg)/[2—(7l —8)], (4.57)

where

8 = —,'a](2a23+a] —a2 —a3)+ —,'a] '[(a]+a2 —a3)k2+(a] a2+a3)k3] . (4.58)

Using (4.55) —(4.58) in (4.54) yields

G3 ——S~k2k3
( ) 2 2

ln
~Gl 'g —0 g

(8 +ygo)(il+ygI)(rl+yg3)
(8 +yg3)(rl yg2)(rj+ygo)—

(4.59)

Remark: The integrand in (4.59) is invariant under the transformation ilail': =(Bri erg )l(il 8). Th—is transfor—ma-
tion carries the lower limit —ygI into —y'go, the upper limit y'g3 into —yg), k] into k], and a.F into —aF. Thus the
limits —ygI and yg) could be replaced by —ygo and —y'g2 if desired; this is just the fact that either branch of the
square root could be chosen for s and aF. This transformation appears to show that the integrand in (4.59) integrated
from —yG~ to —yGo is zero. This conclusion is, however, not correct because the image under the transformation of the
original path from —ygI to —ygo is not the original path (traversed in the opposite direction), and cannot be deformed
to coincide with the original path without crossing singular points of the integrand.

The integral (4.59) can be evaluated by performing a partial fraction decomposition of (rl —o.g) ' and using the in-
tegration formula (4.34). The result is
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(2)o G
—yG1

(3)~G yGO

—Li2
oG yG1

(2)

+L12
oG yG1

(2)o G+yG] + L12
o G+yG]

2 (2) 2

G3 4)rk2k3crg ln
2 (2) 2 ln(pgipg2)+I 12

(3) (3)

ag —() G3)
—Li2

o G+yG3(2)

(3)o G —yG1

+G +yGl(2)

o G+yGo(3)

r

—Li2

o G+yG3(2)

=Li2
(3)G yGO

(2)o G —yG3

o G+yG1(3)

(2)o G
—yG3

+Li2
~G+yGO

—Li2
o G

—yG1 . o G+yG1(2) (2)+L12(3)L1
o G+yG2 o G yG2

oG yG1 . oG+ j G1
(2) (2)

2 (3) + 2 (3) + 2
o G —yG3 o G+yG3

(2)~G+ yG3

oG yG3
(3)

—Li2

(2)o G+yG3 + L12
o G+yG2

oG yG3
(2)

oG yG2
(3)

o G yG3
(2)

o G+yG3(3) (4.60)

The result (4.60) can be rewritten in terms of the function u with the aid of the identities

1+x
Li2

1+y
1 —x—Li2
1 —y

(1 —x)(1+y)= —0 (1+x)(1—y)
—u (x)+u (y+ie)

+-,'iirln[(i —ly l

')/(1+ ly l

')]+—,
' »[(y —I)/(y+1)]in[(y' —1)/(1 —x )l

lx
l

&1, ly l
)I, e 0+, (461)

1+x
Li2

1 +y+l E
—Li2

1 —x
1 —y+ie

(1—x)(1+y+iE)
(1+x)(1—y + ie)

—u(x)+u(y)+ ,(iver ln[(—1—y )/(1 —x )]

+ —,'ln[(1 —y)/(1+y)]ln[(1 —y')/(1 —x')]
l

x & 1
l y l

& 1 & 0+ (4 62)

and (2.28d). The identities (4.61) and (4.62), in which it is assumed that x and y are real, can be established by
differentiation. The branches of the multiple-valued functions can be kept track of by keeping a],a2, cz3 all near 1 with
a23, k2, and k3 all near 0. o G is then near 1, yG1, yG3, yG1, yG2 are near 0, and yGo, yG2, yGo, yG3 are near 2. Identity
(4.61) is applied with x = —y'Gilcrg y = —)'Go/crg, with x =yg3/crg y = —1'Go/crg, with x =egg/crg y =yg)/crg
and with x = y'G3/—cr G, y =y G3/cr G. Identity (4.62) is applied with x = —y'GI /cr G, y = —

y GI /cr G, with x = yg3/erg,
y = —yG1/o. G, with x =yG1/o. G, y = —yG2/o. G, and with x = —yG3/o. G, y = —yG2/o. G. The logarithm terms can be
shown to cancel with the aid of (2.28d). The result is

G3 4irk2k3crg ( & (PGO/PG( ) i( (PG3)PG3) + (PGOPG3) + (PG3/PG1)

+ & (PG2PG1) & (PG1PG3) & (PG2/PG3) + ii (PGl/PG1) ) (4.63)

A consistent choice of branch at o. ] ——o.2 ——n3 ——1, o;23 ——k2 ——k3 ——0 can be had by giving small positive imaginary parts to
ygI and to yg2 when they appear in p'G( and pg2. The arguments of the functions u which appear in (4.64) each have
four equivalent forms, provided by the identities (4.48) for the first four, and by the identities

p(( ) /p(0) p(0) /p(1) p(3) /p(2) p(2) /p(3)

(4.64a)

(4.64b)

(4.64c)

(4.64d)

for the last four.
The verification of identities such as (2.9), (2.38), (4.48), and (4.64) from the definitions (2.5)—(2.8) becomes tedious

very quickly. Fortunately there is an easier way. The definitions (2.5)—(2.8) are used to show that Po Po =P3 PI( ',
which is the second equality in (2.9a). Interchanging 0 and 1 then yields the first equality in (2.9a); interchanging 2 and
3 yields the third equality in (2.9a). With (2.9a) verified, (2.9b) can be obtained from (2.9a) by interchanging 1 and 2;
(2.9c) can be obtained from (2.9a) by interchanging 1 and 3. Formula (4.48a) can be obtained from (2.9a) by replacing a2
and a3, respectively, by —a2 and —a3. Formula (4.48b) is (2.9a). Formula (4.48c) can be obtained from (2.9a) by re-
placing a(2 by —a)2. Formula (4.48d) can be obtained from (2.9a) by replacing a31 by —a31. Formulas (4.64a) —(4.64d)
can be obtained from (4.48a) —(4.48d) by replacing a2 by —a2. Formula (2.38a) follows from the first equalities in (4.64b)
and (4.64c). Finally, (2.38b) —(2.38d) follow from (2.38a) by symmetry.

A formula for G2 analogous to (4.64) can be obtained from (4.64) by interchanging 2 and 3. This formula is
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G2 )rk2k3(XG [ u (PG0~061) u (PG3PG3)+u (PGQPG2)+u (PG2~PGI )

+u (PG3PG1) u (PG1PG2) u (PG)~PG2)+u (PG1~PGI )] (4.65)

The identities (4.48) and the relation u (z) = —u (z ') can be used to show that the first four terms add and the last four
terms cancel when (4.63) and (4.65) are added to form G2+G3. Comparing the result with (4.47) and using the
definition (2.7a) of (Mo(

' then shows that

G2+G3 =n(X23'F(a), a2, a3,'ia23 k2, k3) . (4.66)

The result (4.46) now follows from (4.51), (4.52), and (4.66).
Extended remark: An alternative route to the result (4.46) begins with the observation that F(a),a2, a3,'k), k2, k3) is

an odd function of ki. This implies that (4.49) can be replaced by

dki
G((.x),a2, a3, cx23, k2, 'k3)=

2 2
[F{cI(k 2, k 3', a I),c 2( k3, k(,'u 2), c 3(k I, k2', a 3)) +F(a I, a 2, a 3', kI, k2, k3)] .

—~ k]+op3
(4.67)

It can be shown that the sum F+F has no singularities in the upper half-plane. Hence a pole at k& ——iaz3 is the only
singularity of the integrand of (4.67) in the upper half-plane. The result (4.46) then follows from closing the contour over
the upper half-plane and extracting the residue at ki =ia23 Th. is route to (4.46) can, of course, only be used after the
function F has been obtained.

G. Integration over k2

The result

H{cx I (x 2 (x3, (x 23 (x 31 k 3 ) = 16m ik 3 o H
' [—u ( PHoPH o ) u( PH aPHo ) +—u (PH I ~OH 2 )

+ u (PB2~PH1) —U (yH1~&H ) U (1 H2~~H ) U (QH1 ~G H ) U ( YH2~~H )] (4.68)

can be obtained via complex integration. The arguments of the functions u which appear in (4.68) each have four
equivalent forms, as can be seen from (2.9a), (2.9b), (4.48), and

g(2) yp(O) p(O)p(2) p( I ) yf3(3) p(3)13( I ) (4.69)

The identity (4.69) can be obtained from (2.9b) by replacing a)2 by —(x )2.
The derivation of (4.68) begins by using the fact that the function G in the integrand of (4.11) is even in k2. Thus

(4.11) can be replaced by

dk2
H((XI, (X2, (X3,a23, a», k3)=

2 2
G((XI,(X2, (X3,a23 k2, k3) .-- k~+a23)

(4.70)

The function G is analytic in k2 except for branch points at k2=+i (a 3+a 2)3, at k2 =+k3+ia), and at
k2 —+k3+i (a2+a3). The most obvious route to follow in evaluating (4.70) is the one used to compute G in Sec. IV F.
H can be written as the sum of a term from the pole at k2 ——icx3] plus contributions from the jumps across the branch
cuts of G in the upper half-plane. Unfortunately this approach fails; the branch cut jumps associated with the branch
points at k2 =+k3+ i (a2+a3) lead to intractable integrals.

The method which succeeds is based on the extended remark at the end of Sec. IV F. A function
G(a), a2, xx3, (x23 k2, k3) is sought which is odd in k2 and which has the property that 6 +G has no singularities in the
upper half-plane. Then (4.70) can be replaced by

dk2
H(a), a2, (X3,a23, a3), k3)= "

2 2 [G(a),a2, a3, a23', k2, k3)+G(a), (X2, (X3,(X23, k2, k3)] .
k 2++3(

(4.71)

The integral (4.71) can be evaluated by closing the contour over the upper half-plane and extracting the residue at
kq ——ia3~. The result is

H (a), (X2, (X3,a23, (X3I,'k3) =Vra3 '[G (a),a2, a3, a23, ia3), k3)+G(a), a2, a3, a23'„ia3) k3)] . (4.72)

The difficult part of this method is finding G and verifying that it has the desired properties. The symmetry of the prob-
lem makes this task much easier. Because only the integration over k3 remains to be done once H has been obtained, H
is invariant under interchange of 1 and 2 and under interchange of 0 and 3. This invariance indicates what functions
should be considered when searching for G. The required G is
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G(al, a2, a3,a23, k2, k3) =8~k2k3o. g '[—u (p'Gofg'Go) —2u (p'GQ'Go)+u (pgI/13G2)

+2u (PG2/PG1)+u (PGl/PGQ) u (PG1/PG3)

U ( y GO/CX G ) —U ( y G 1 /CC G ) U ( y G2/Cr g ) + U (y G 3 /C7 G )

—2U (ygl/0 g ) —2U

(yg2/erg�)]
.

The result (4.68) follows from (2.7a), (4.45) —(4.47), (4.72), and (4.73).

(4.73)

H. Integration over k3

The result (2.1) for I is also obtained via complex integration. The derivation of (2.1) begins by using the fact that the
function H in the integrand of (4.12) is even in k3. Thus (4.12) can be replaced by

dk3
I(al, a2, a3,a12,a23, a31)— 2 2 H(cx1, a2, cx3,a23, a31,k3)

k 3+a]2
(4.74)

The function H is analytic in k3 except for branch points at k3 =+i (al+a31), at k3 =+i (a2+a23), at
k3=+i(al+a3+a23), and at k3 ——+i(a2+a3+a31). Thus I could be written as the sum of a term from the pole at
k3 ——i+~~ plus contributions from the jumps across the branch cuts of H in the upper half-plane. Unfortunately this ap-
proach fails just as it did in Sec. IVG; the branch cut jumps associated with the branch points at k3=i (al+a3+a23)
and at k3=i (a2+a3+a31) lead to intractable integrals. This difficulty is circumvented in the same way as in Sec. IV G.
A function H(al, a2, a3,a23, a31,k3) is sought which is odd in k3 and which has the property that H +H has no singular-
ities in the upper half-plane. Then (4.74) can be replaced by

dk3
I(al, a2, a3, a12, a23, a31)= 2 2 [H ( aala23, 2a3, 3a1', k3)+H( la, 2a, 3a, 2a3, 3a1,'k3)]

—- k3+&1z

which is evaluated by extracting the residue at k3 ——ia &2 to obtain

I(al, a2, a3,a12, a23, a31)=ma12'[H (al, a2, a3,a23, a31,ia12)+H(al, a2, a3, a23, a31,ia12)] .

(4.75)

(4.76)

The hard part is finding H. Again symmetry comes to the rescue; I is invariant under the permutation group on the four
indexes 0, 1,2,3 as was discussed in detail in Sec. II B. This invariance indicates what functions should be considered
when searching for H. The required H is

r

H(al, a2, a3,a23, a31 k3) =16m ik3o H' —u (pHg/3H'O) —u (pHppHO) —2u (pHOI3HO)

—u (pH1/pH2) —u (pH2/pH1) —U (yHO/CTH )

3

U (yH3/CrH ) (yHO/CJH ) U (yH3/aH ) g [U (yHj /aH )+U (yH, /CXH )]
j=0

(4.77)

The result (2. 1) follows from (4.68), (4.76), and (4.77).
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APPENDIX: DIRECT EVALUATION OF A LIMITING CASE

This Appendix will sketch a direct evaluation of the integral K (f31,)c)2,1312) defined by

I~ (Pl p2 012):= I (r lr zr 12 ) 'exp[ 131r1 P2r2 Pl & 2—]12d&l d—&2 (A 1)

Equation (2.47) shows how K can be obtained as a limiting case of the integral I. To facilitate comparison with (2.47),
the evaluation will be carried out for p12 near + 1 and pl, p2 both near + 2. If r12 exp( —p12r12) is represented by the
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Fourier integral (4.2), the integration over rl and rz can be carried out, followed by integration over the direction of k.
The result is

dk P 1 + lk P2+ 1k
K (pl, pz, plz) = —8m.

"
ln ln

o k 2+P'„,—la P, 1k— (A2)

In (A2) the branch of the logarithm which makes the logarithm zero when k=O is to be chosen. Branch cuts for the log-
arithms run from +ipl to +i oo and from +ipz to +i &x& in the upper half-plane, and from —ipl to i —oo and from

ip—z to i—~ in the lower half-plane. With this choice of branch, the integrand in (A2) is an even function of k, so that
the integral in (A2) can be replaced by half of the same integrand integrated from —co to ao. The integration contour
can then be closed in the upper half-plane to obtain

I( (Pl)P2)P12) —+12(pl)P2)pl 2)++1(Pl)P2)P12)++2(pl)pz)plz) (A3)

where Klz is the contribution from the pole at k =iplz, Kl is the contribution from the jump across the branch cut
which runs from +ipl to +i oo, and Ez is the contribution from the jump across the branch cut which runs from +ipz
to +i oo. It is convenient to separate the branch cuts and the pole by assuming /31& pz & plz and adding +i@ to pl and

ie t—o pz. Then it is found that

4m' Pl —Plz Pz —Plz
&12(pl, pz, plz) = — » ln

12 1+ lz 2+
(A4)

'm +1 Pl+'~ pz —'~ p») = —8+ f [»(Pl —Pz+y) —»(Pl+/32+y) —iver][(pl+y) —pz ] 'dy
a~0+ 0

4~' . Pz —Plz
Li2

Pl 2 Pl +pl 2

Pz+P»—LI2 +LI2
Pl —Plz Pl —plz

Pz+Pl2 . , Pl+P»—LIq +le ln
P 1 +P12 pl —pl 2

(A5)

lim Kz(pl+is, pz ie,p»—) = —81r f [ln
l pz —pl+y

l

—ln(pl+pz+V)][(pz+y)' —pzlz] 'dy
a~0+ 0

8l 7T 2 +y —
~~ dy

4m.

Plz

r

Pl+Plz . Pl —Plz—LIq +LI2
P2 P12 p2+ pl 2

Pz —Plz—LI2
Pl P12

Pz+Plz
+LIq

Pl +P12
Pz+Plz ——,

' ln
Pz —Plz

Pl —Plz

r

Pl +P12—im ln
Pl —Plz

(A6)

The integrations in (A5) and (A6) have been performed with the aid of (4.34) and the dilogarithm identity

Liz( —z ') = —Llz( —z) —-'ln (z)—
2 (A7)

The result for K which is obtained by inserting (A4) —(A6) in (A3) is not immediately comparable with the result ob-
t»ned from (2.47), but can be transformed into it with the aid of dilogarithm identities. Equation (A7) and the identity

7T2
Liz(z}+Liz(1 —z) = —lnz ln(1 —z)+

6

can be used to show that

P Plz-——,
' 1n

P+Pl z
lim[v((p+ie)/plz}+ v((p —iE)/plz)] = —2Liz

P Ply-
~00 P+Plz

(A9)

holds for p& plz. Identities (A7), (A8), and

Liz(zw) =Liz(z)+ Liz(w) —Liz[z (1—w)/(1 —zw)] —Liz[w (1—z)/(1 —zw)] —ln[( 1 —z)/(1 —zw)]ln[(1 —w)/(1 —zw)](A10)

with z =(pl —plz)/(pl+plz) and w =(pz —plz)/(pz+plz) can be used to show that
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Pz —Plz

Pl+Plz

pz+ p1z

—Li2

Pl +Plz
pz —plz

—Liq

2 2
7T 0

3

(Pl P12)(P2 P12) . . (Pl PI2)(P2 P12)
lim u +re +i~ 1n

E 0+ (Pl +P12)(P2+P12) (Pl+P 1Z)(PZ+P1 2)

Pl —Plz . Pz —Plz=2L12 +2L12 +Llz
1+ 12 2+ 12

Pl —Plz

Pz+Plz

pz —plz

——,
' 1n

pz+ plz

Pl —Plz

Pz —Plz

Pl P12

(Al 1)

Identities (A9) and (Al 1) can be used to show that the result for the integral. K obtained from (2.41) and (2.45) —(2.47)
agrees with the result obtained from (A3) —(A6).
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