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A new approach is presented for determining the dynamical self-structure factor S,(q, co) for a
rnulticomponent dilute gas mixture. The starting point is the three-dimensional linear inhomogene-
ous Boltzmann equation with a Maxwell interaction potential. It is shown that the dynamical self-
structure factor can be expressed analytically in terms of a continued fraction of infinite but sparse
matrices. Although other methods and approximation schemes for calculating S,(q, co) via the
Boltzmann equation have been suggested so far, the method and the results presented here are new

in the following sense. First, to our knowledge there does not exist an analytical solution of the
Boltzmann equation covering the entire (q, co) range for S,(q, co) and yielding in particular the
correct dynamical self-structure factor S,(q, ~) for both the hydrodynamical limit (q~0) and the
free-gas limit (q~ oo ). Second, at least the example considered in this paper shows most clearly
that the cornrnonly suggested expansion of S,(q, m) in a continued fraction of scalars cannot be re-

garded as a useful expansion method.

I. INTRODUCTION

When describing the motion of a tagged particle in a di-
lute gas mixture the linear inhomogeneous Boltzmann
equation is a proper starting point. ' In the context of
the theory of stochastic processes the linear Boltzmann
equation can be viewed as a particular master equation
where the transition probability is given by Boltzmann's
Stosszahlansatz. " Although the Boltzmann equation
has been known for more than a hundred years there are
still a lot of predominately mathematical problems con-
cerning this equation. In general, these difficulties arise
due to the complexity of the transition probability
co(v~v') which, in order to make the Boltzmann equa-
tion amenable to an analytical solution, is often replaced
by a much simpler kernel.

Regardless of the special structure of the transition
probability co( v —+v') one can formally transform the
Boltzmann equation into a partial differential equation of
infinite order. This expansion is called the Kramers-
Moyal expansion. However, this equation is not easier to
deal with than the Boltzmann equation itself, unless one
breaks off the infinite series after a suitable number of
terms. Assuming that the third and all higher moments
of the transition probability are negligible and that the
first moment is proportional to the velocity and the
second moment is a constant, one arrives at the Fokker-
Planck equation of Klein-Kramers type which originally
was used to describe chemical reactions. It is evident
that with these approximations the influence of the in-
teraction potential on the distribution function h(r, v, t)
has been dropped. Although, compared to the Boltzmann
equation, the Klein-Kramers equation looks rather simple,
there are still quite interesting problems concerning this
equation. The problem of reducing the Klein-Kramers
equation to the Smoluchowski equation under the influ-
ence of an external force and also transforming the boun-

dary conditions for the reduced distribution function
h (r, t) correctly, should be mentioned here. ' In order to
take a realistic interaction potential between the colliding
particles into account, an approximation scheme, which
originally was developed to solve master equations, "
was applied to expand the Boltzmann transport equation
for inverse repulsive power laws in powers of the mass ra-
tio of the colliding particles. '

However, an analytical solution for both the homogene-
ous and the inhomogeneous Boltzmann equation for non-
trivial kernels co(v~v ) is only available in very few cases.
The most important nontrivial examples are the one-
dimensional inhomogeneous Boltzmann equations for a
system of identical hard rods' and the three-dimensional
homogeneous Boltzmann equation for a gas mixture of
particles interacting via a Maxwell (r ) potential. ', Al-
though the eigenfunctions of the transition probability
co(v~v') are explicitly known for a Maxwell potential,
they are of limited use for getting an analytical solution of
the q-dependent or inhomogeneous Boltzmann equation.
These eigenfunctions only allow an expansion of the dis-
tribution function h (q, v, t) in powers of q and, in general,
restrict the solution to small values of q. In order to
bypass this problem model equations have been suggested
which, roughly speaking, replace the kernel co(v~v') by a
finite number of its eigenfunctions. ' This idea has also
been applied to other interaction potentials like the hard-
sphere interaction potential yielding a good approxima-
tion to the Boltzmann equation for both small and large

18—20q.
In this paper we restrict ourselves to the inhomogene-

ous Boltzmann equation for a gas mixture interacting via
a Maxwell potential. It is not our objective to find a gen-
eral solution of this equation. Rather we once more re-
strict ourselves to the solution of the Boltzmann equation
for one particular initial condition, which enables us to
calculate the dynamical self-structure factor S,(q, co). As
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the central result of our paper, it will turn out that the
dynamical self-structure factor S,(q, co) can most natural-
ly be represented by a continued fraction of infinite ma-
trices [see Eq. (3.15)j. In the theory of memory function
equations an expansion of S,(q, co ) in a continued fraction
of scalars is sometimes suggested. ' At least the example
considered in this paper shows most clearly that the ex-
pansion of S,(q, co) in a continued fraction of scalars is
not the adequate representation for the self-structure fac-
tor, whereas the expansion in a continued fraction of ma-
trices seems more natural and straightforward.

The paper is organized as follows. In Sec. II we make
use of the well-known eigenfunctions of the transition
probability for Maxwell molecules in order to derive a
hierarchy of equations for certain averages ck 1(q,s) [see
Eq. (2.10)]. The function coo(q, s) is then closely related
to S,(q, co). This hierarchy of equations, the solution of
which plays the central role in this paper, was already ob-
tained by Wang Chang and Uhlenbeck about 40 years
ago. ' In Sec. III we solve this hierarchy of equations in a
new and very simple way. Furthermore, we show that the
dynamical self-structure factor can be represented by a
continued fraction of infinite matrices. In Sec. IV we
derive a memory function equation for the intermediate
scattering function F, (q, t) and present an explicit expres-
sion for the memory function itself. Finally we show that
our expression for S,(q, co) yields both the correct hydro-

, dynamic and the correct free-gas limit.

II. BOLTZMANN EQUATION
FOR MAXWELL MOLECULES

Let us consider a dilute gas mixture of particles with
masses mz, mz, . . . and number densities n~, nz, . . . ,
etc. Qur starting point is the Fourier transform of the
linear Boltzmann equation for the tagged particle 3,

h(q, v, t) —iq vh(q, v, t)

= —Pz(v)h(q, v, t)+ f co~(V~~V)h(q, v~, t)d v~,

(2.1a)

2
VT

A
(2.2b)

Then, by definition, the dynamical self-structure factor
S,(q, co ) is given by

S,(q, co) =—ReQ(q, ico),2
(2.3a)

where we have introduced an auxiliary function Q (q,s)

Q(q, s) = f e "F,(q, t)dt, (2.3b)

which is the Laplace transform of the intermediate
scattering function F, (q, t)

F,(q, t)= f d vh(q, v, t) . (2.3c)

Next we use the fact that for any repulsive interaction po-
tential the transition probability co(v&~v) is only a func-
tion of the tagged particle speeds v&, v and the angle be-
tween vi and v. Expanding both the distribution function
h(q, v, t) and the transition probability co~(v~ —&v) into
Legendre polynomials

h(q, v, t)= g PI(rt)hI(q, u, t),
I=p

(2.4a)

OO

co&(v, —+v)=
2 g (2l+1)P~(g)co~ t(u~ —+v),

4' V I 0

(2.4b)

with

vi'v
(2.4c)

8 l
g

I + 1

2l —1 21 3

= —P~(u)hi(q, u, t)

and inserting these expressions into Eqs. (2.1), one ob-
tains' the following infinite hierarchy of integro-
differential equations for the expansion coefficients
hh(q, u, t):

a11d

Pz(u)=+P&t3(u)=g f &co(v~ )dvv'
P P

(2.1b)

with

oo

+ ' du~
&

cog ~(v&~v)ht(q, v~, t)
0 V2

(2.5a)

cog (v&~v) =g cogp(v)~v)
P

(2.1c)
hi(q, u, 0) =5i af~ (u) for / =0, 1,2, . . . . (2.5b)

and cozen(v&~v) is the probability to change its velocity
from v& to v due to a collision with a B particle. As al-

ready mentioned above it is not our objective to solve Eqs.
(2.1) for a general initial condition. Since we are interest-
ed in the dynamical self-structure factor S,(q, co) alone, we
are only looking for a solution of Eqs. (2.1) subject to the
particular initial condition

Qo
f

U
&AB I ( V ) ~v)ll k, l0 VT

ia
~k, 1@,1

VT
(2.6)

A further simplification can be obtained by confining our-
selves to a Maxwell interaction potential for which the
eigenfunctions and eigenvalues of the kernel co~ ~(u~ —+v)
are known explicitly

h(q, v, t =0)=fz(u) = . u /UT
A

3/2 3

A

(2.2a) The eigenfunctions gk ~, which are related to the Sonine
polynomials SI+~/2 via
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7/Jk/(X)=x S/+//2(x ),k 2 (2.7) Finally, comparing Eq. (2.10) and Eqs. (2.3b) and (2.3c)
one easily proves the following relation:obey the following orthogonality relation:

r

V
fg(U)fk, / Q, / d U =Ak/5k, ,

~r„
(2.8)

+ (k + I + 2 )1//k l 1(x), (2.9a)

(2.9b)xQk, /(x) =
teak, /+1(x) 4 —l, 1+1(x)

Explicit expressions for the eigenvaIues A,k I can be found
in Ref. 16. Introducing coefficients ck l

c„,(q, s)= f die "fd'-U h/(q, v, r)yk/0
Uy

A

(2.10)

and making use of Eqs. (2.6)—(2.9), we can easily
transform Eq. (2.5) to the following hierarchy of equa-
tions:

where Akh are normalization constants. Furthermore, the
following recursion relations will be useful

xgk/(x) = (k+—1)/k+1/ 1(x)

Q (q, s)= co 0(q,s), (2.14)

which allows the determination of S,(q, o/) once that Eq.
(2.11) has been solved. However, at a first glance it is not
obvious how to compute co 0 by means of Eq. (2.11), since
it is an infinite hierarchy of algebraic equations for the
determination of the coefficients ck /. Wang Chang and
Uhlenbeck, ' who already derived Eq. (2.11) about 40
years ago, failed in finding its general solution. Neverthe-
less, they suggested an approximation scheme by rear-
ranging the elements ck I according to certain ad hoc rules
and then rewriting Eq. (2.11) as an infinite system of alge-
braic equations. Truncating this system of equations after
a suitable number of terms then defines the nth approxi-
mation of the coefficients ck l. Regardless of the fact that
no analytic solution is obtained, their approximation
scheme has the disadvantage that in order to take all
eigenvalues pk I up to an index n into account one has to
solve, roughly speaking, a system of n )&n algebraic
equations. In Sec. III we will show how one can bypass
this problem to obtain an analytic solution for co 0.

(s +Pk, /)ck, l 5k, 05/, 0

I 1=iq [—(k + 1)c/, +1 / 1+(k +I + , )ck /—2I —l III. MATRIX CONTINUED-FRACTION
REPRESENTATION OF Q (q, s}

1+1+
I 3 (ck, l+I ck —1,/+I) (2.11) Before discussing Eq. (2.11) in detail we perform the

following transformation:

where

ck I ——. 0 for k (0 or I (0 (2.12)

I (I + —,
'

)I ( —,
'

)
ck I —ck I 3 1' i' I-(k+I+-', )I.(-,') (3 1)

//k, /=g (~0, 0 —4, /) ~

AP AP

P
(2.13a)

which leaves Q(q, s) unaltered

Q(q»)=coo(q»)=coo(q») . (3.2)

9' =O'Ur Instead of Eq. (2.11) we then have

iq 4(i+1)2Pk / k l k 0 l 0=
2 k+1, / —1+ck / —1+ [ k +i + 2 ck /+1 —kck 1 /+/] (3.3)

Next we introduce the infinite vectors

C/ = (Co /, C1 /, C2 /r. . . )

lf= —e1 ~

S

e1 ——(1,0,0, . . . )

and the infinite band matrices

0, 1+1 O, l+1 0 0

(3.4a)

(3.4b)

(3.4c)

~~
Mi ————lg

2

0

0 0
0

2, I + 1
(3.5a)
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and

Po, t 0 0

2(l+1)
(21 +1)(2l +3)

0

—2cx2 1

0 —3CX3 1

(3.5b)

1
Ok, l =

S +Pk 1

cp ——Ap f.(1) (1)

(3.5c) Finally, assuming that the limit

(3.11)

k+~+ —,
'

s +9k, l
(3.5d)

With these quantities we are able to write Eq. (3.3) in a
more compact and transparent form

co=&oc, + f,
cl ™1—1cl—1+Xlcl+I, l = 1,2, . . .

(3.6a)

(3.6b)

lim cl ——0.l~ oo
(3.7)

Before we justify this statement let us study its conse-
quences. Assuming Eq. (3.7) to be valid, we need the fol-
lowing definition to solve Eqs. (3.6): the 1th approximant
of the vectors ck, denoted by ck", is the solution of Eqs.
(3.6) under the condition that c, =0 for
s =l+1,1+2, . . . . VA'th this definition the vectors ck'
can be determined from the following set of equations:

Let us briefly comment upon Eq. (3.6). It could be re-
garded as a recursion relation for the vectors cl, once that
the initial condition cp is given. But it is exactly the vec-
tor co (or strictly speaking its first element co o ) we want
to know. In order to resolve this problem we have to im-
pose an additional condition on Eq. (3.6). We therefore
require that the elements of the vector ct vanish for
l~ oo, i.e.,

(3.12)

exists (where the notation a =:b means b is defined by a),
we can summarize the above results in the following lem-
ma: the solution of Eqs. (3.6) subject to the condition
liml cl ——0 is given by

co=Aof (3.13)

where Ao is an infinite matrix continued fraction which is
most easily defined in terms of the recursion relation

Ak=[1+KkAk+1Mk] ', k =0, 1,2, . . . . {3.14)

The other coefficients ck (k = 1,2, . . . )—which are of no
interest here —can then be obtained successively via Eq.
(3.6b). Since the function Q {q,s) is given by the first ele-
ment of the vector co [cf. Eq. (3.2)], we obtain

=1T
Q (q, s) =—e1Aoe1 .

s
(3.15)

Introducing the q-independent matrices Ml and Xl via

Ml ———ill,
Xl ——iqX1,

(3.16a)

(3.16b)

we can write the q dependence of Q (q, s) in terms of the
infinite matrix continued fraction Ao

(1) (1)

ck ——Mk —~ck —~+~kck+&, k =1, . . . , I —1
(1) (1) (1)

(3.8a) At, =[1+q XkAk+1Mk] ', k =0, 1,2, . . .

or explicitly

(3.17)

cp ——%pc) +f'.(1) (1)

(3.8b)

(3.8c)

Al' ' ——1, I =0, 1

Ak +"=[1+~k Ak+ P6]
(3.10a)

(3.10b)

which, by means of Eq. (3.8c), yields for the 1th approxi-
mant of cp

This two-step recursion relation can be reduced to a one-
step recursion relation by the ansatz

(3.9)

Inserting Eq. (3.9) into Eqs. {3.8) one easily verifies the
following relations:

Ao ——[1+q Xo[1+q ~g1[ ] 'M1] 'Mo] ' . (3.18)

This is the central result of our paper. We have shown
that the dynamical self-structure factor S,(q, co), which is
«»ted to Q(q, s) by Eq. (2.3a), can be expressed in terms
of an infinite matrix continued fraction. In Sec. IV we
will study the limiting properties of Q(q, s) and S,(q, co),
respectively, and show that both the hydrodynamical limit
( q ~0) and the free-gas limit ( q ~ oo ) are correctly
described by Eq. (3.15). Before doing this we still have to
clarify one question: In deriving Eq. (3.15) we explicitly
assumed Eq. (3.7) to be valid. This, however, is not obvi-
ous and requires further justification. In Appendix 8 we
formally expand the matrix continued fraction Ap in a
powel' series of q, wlllcl1, via Eq. (3.1 5), 1s a fo1IIlal
Taylor-series expansion of Q(q, s). On the other hand,
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F, (q, t) =exp[ —(qt /2) ] . (3.19)

Expansion F,(q, t) in a Taylor series in q and taking the
Laplace transform term by term one finds

( )
1 ~( )„2„1 2n!
s „0 (2s)2" n! (3.20)

without using Eq. (3.7), we can directly start from Eqs.
(3.3) and (3.6) and expand the vector co in a power series
in q. When considering only the first element of the vec-
tor co one obtains a power-series expansion of Q(q, s).
This approach is outlined in Appendix A. It should be
-stressed once again, that the Taylor-series expansion of
Q (q,s), as derived in Appendix A, is a direct consequence
of the Boltzmann equation and does not make use of Eq.
(3.7). We therefore call it the Boltzmann moment expan-
sion of Q (q, s). If we compare the results of Appendix A
and Appendix B, we find that both the Boltzmann mo-
ment expansion of Q(q, s) [cf. Eq. (A22)] and the power-
series expansion of Q (q,s), which is obtained by expand-
ing the infinite matrix continued fraction A0 in powers of
q, are identical. This can be regarded as an a posteriori
justification of Eq. (3.7).

It should be mentioned that at least for the free-gas lim-
it the Boltzmann moment expansion of Q(q, s) can be
shown to be a totally divergent series. In the free-gas lim-
it the collisions between the tagged particle and the bath
particles become negligible and therefore the Van Hove
self-correlation function F,(q, t) is determined by free
streaming only. In this limit the solution of Eq. (2.1a) is
given by

Next we introduce the dimensionless quantities s*, pk 1,
and q via the following relations:

2DQ
s

A

Pk 1 2D
I kl 2 j kl ~

P01

(4.2a)

(4.2b)

q
P0, 1 VT

(4.2c)

Inserting these expressions into Eqs. (3.15) and (3.17)
yields the following dimensionless quantity Q*(q*,s ):

Q (q,s) =
2

Q*(q*,s*),
UT

(4.3a)

S
(4.3b)

2(l + 1)'
(2l+1)(2l+3)

Po, t 0 0

At* ——[1+q' NI*Al+iMt'] ', l =0, 1,2, . . . . (4.3c)

The dimensionless infinite matrices Nt* and Mt* are given
by

which is totally divergent series. The arguments above
show that even if the expansion coefficients (e~ao „e~) of
Q(q, s) [see Eq. (A22)] could be found explicitly, they
were of limited use for calculating S,(q, co) for the entire
(q, co) range, since the power series diverges in the free-gas
limit.

We finally want to comment on the convergence of the
infinite matrix continued fraction A0. Although we are
not able to give a rigorous mathematical proof, the nu-
merical studies of Sec. IV suggest the convergence of Ao.
Furthermore, the numerical calculation of S,(q, co) for the
entire (q, co) range, which shall be presented in a subse-
quent paper, leaves no doubt as to the convergence of
Ao. Accepting these numerical studies as a proof for the
convergence of the infinite matrix continued fraction [Eq.
(3.18)], we claim to have found the analytical solution of
the Boltzmann equation for the dynamical self-structure
factor S,(q, co ).

x
0

—2cx2 1

1
1

———
2

where

+k, l
s +p

0, l + 1 +0,1+ 1

0

0

0

132, t

—20', 3 1

0

(4.4a)

0

0
)fc

~ ~ ~—O'2, 1+1

(4.4b)

(4.4c)

IV. LIMITING PROPERTIES OF THE DYNAMICAL
SELF-STRUCTURE FACTOR S,(q, co)

k + I + —,
'

S +Pk 1

(4.4d)

For the following considerations it is convenient to
scale Q(q, s) and S,(q, co) to the self-diffusion coefficient
Dz of species A. For Maxwell molecules Dz can be cal-
culated analytically yielding' CO= UT qX =@01q X (4.5a)

In order to scale the dynamical self-structure factor
S,(q, co) properly we make the variable transformation

2
UT

Dz ———, I ( (0)v(t)v)ddt=
0 2P0

(4 1)
S,(q, co)dco=R (q*,x)dx . (4.5b)

With the aid of Eq. (2.3a) and Eq. (4.3a) we readily find
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R (q*,x) =—q* ReQ*(q*,ixq*) . (4 6) and

There are two reasons for scaling co with q according to
Eq. (4.5). first, the normalization condition remains unal-
tered for the dimensionless quantity R (q*,x)

f S,(q, co)dc@= f R (q*,x)dx =1 . (4.7)

Second, for large q the so defined quantity R (q*,x) can
be obtained directly from the Boltzmann equation [cf. Eq.
(2.1)] as a power-series expansion in q yielding in the
limit q*~ac (free-gas limit) the well-known Gaussian
distribution function

lim R (q,x) = —X

q*~m 7T
(4.8)

and

lim q*ak ~(s*q*)=
g —+ oo

(4.9a)

lim q*/3k ~(s'q*)= „(k+l+—', ) .
s

(4.9b)

If we now insert Eqs. (4.9) into Eqs. (4.3) we readily find

lim q*Q*(q*,q*s*)= T FG
p e& = 'Tcp(s )

S

(4.10a)

After these prelin1inary remarks we are now in the posi-
tion to study both the hydrodynamical limit (q~0) and
the free-gas limit (q~ ac ) of the dynamical self-structure
factor.

Let us start with the free gas lim-it In th.is case the dis-
tribution function is determined by f'ree streaming alone,
and the influence of the collision operator becomes negli-
gible. In order to derive Eq. (4.8) from our general result
[Eqs. (4.3)] we first consider the limit q'~ ao of the ex-
pression q*Q*(q*,s*q*) for real s*. Replacing s* by
q's* in the arguments of ak ~ and Pk I, respectively, we
see that in the limit of large q* the matrices q*WI* and
q*MI' becomes independent of the eigenvalues pk ~

~FG ~FG
2

1

0

0 0
0

*2 2
lim q*Q*(q,q*-s*)=v'ere' 1 — —erf(s*)

=:T,„(s*) . (4.12)

The statement can be proved easily, provided the infinite
matrix continued fraction [Eq. (4.10b)] converges. One
only has to keep, in mind that the above limits [Eqs. (4.10)
and Eqs. (4.11)] can formally be obtained by putting in
our general expression [Eq. (4.3)] all eigenvalues pk~ ——0
and q*= 1. On the other hand, putting all eigenvalues
pkl ——0 implies that the transition probability co(v~v')
vanishes. One therefore can neglect the collision term in
the Boltzmann equation and solve Eq. (2.1a) for the free-
streaming term alone. The solution of this simple equa-
tion then yields exactly the right-hand side of Eq. (4.12).
Note, when putting s*=ix in Eq. (4.12) and using the
definition of R (q,x) [Eq. (4.6)] one immediately obtains
the free-gas limit given in Eq. (4.8). However, the above
arguments only hold if the infinite matrix continued frac-
tion converges. Since we are not able to give a mathemat-
ical proof for this convergence, we confine ourselves to a
numerical comparison of Eqs. (4.10) and Eq. (4.12). In
Table I we compare the exact result T,„(s*) with the

(4.11b)

Next we want to show that Eqs. (4.10), which were ob-
tained as the free-gas limit of our general solution [cf.
Eqs. (4.3)] are identical to the solution of the free stream-
ing term of the Boltzmann equation. In other words, we
want to show that the above limit is identical to the fol-
lowing expression:

with

g FG 1+ NFGg FG ~FG1
for l =0, 1,2, . . . .

(4.10b)

0 0

~po 2(l + 1)
(2I + 1 )(2l +3)

0

0

0
7—2 l+—
2

0

(4.11a)

In Eq. (4.10b) we have introduced the free-gas limits of
the matrices Nl* and MI*, respectively, which, denoted by
the superscript FG, are given by

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

T„(s*)
1.433 95
1.188 94
1.006 41
0.866 91
0.757 87
0.670 94
0.600 41
0.542 29
0.493 74
0.452 68

TCF(s*)

1.432 78
1.188 03
1.006 23
0.866 66
0.757 57
0.670 82
0.600 36
0.542 27
0.493 73
0.452 67

8
6
6
4
3
3
3
3
3
3

100
100
50
50
20
20
20
20
20
20

TABLE I. Comparison of the exact value T,„(s*) [see Eq.
(4.12)] and its approximation by the truncated infinite matrix
continued fraction TcF(s ) [see Eq. (4.10a)] for different values
of s*. X denotes the dimension of the matrices considered and
I. the length of the matrix continued fraction.
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truncated matrix continued fraction TCF(s*) for different
values values of s'. In addition, to get a better feeling for
the convergence of the matrix continued fraction, both the
size N of the matrices NI" and M" and the length I. of
the continued fraction are presented in Table I. As ex-
pected, it turns out that the larger the values of s the
faster is the convergence of the matrix continued fraction.
In Table II we study the convergence of the infinite ma-
trix continued fraction TcF(s*). Keeping s* fixed we
compute the truncated continued fraction TCF (s *

) [see
Eq. (4.10b)] for different values of X and L. The exam-
ples considered show that the infinite continued fraction
(L = ao ) of infinite matrices (N = ac ) can be replaced by
a finite continued fraction (L (100) of finite matrices
(%(10) in order to achieve an accuracy of at least four
digits. In our opinion the above results clearly indicate
that TCF(s*) [Eq. (4.10a)] is a convergent representation
of the exact result [Eq. (4.12)]. Moreover, since—from a
numerical point of view —the free-gas limit can be con-
sidered as our worst case the above results also suggest a
convergence of our general expression for Q "(q*,s*) [Eq.
(4.3)]. However, the actual numerical evaluation of
S,(q, co) [via Eq. (3.18)] for the entire (q, co) range shall be
presented in a subsequent paper.

Finally, let us turn to the hydrodynamic limit of
S,(q, co). The hydrodynamic limit (q —+0) can be easily
studied by introducing a memory function equation for

the intermediate scattering function F, (q, t) [see Eq.
(2.3c)]

with

F, (q, t) = —q J D(q, t r)—F,(q, r)dr (4.13a)

F, (q, 0) =1 . (4.13b)

Taking the Laplace transform of Eq. (4.13a) the function
Q (q,s) can be expressed in terms of the Laplace transform

D(q, s) of the memory function D(q, t)

Q(q, s) =—1+q—1 2D(q, s)
(4.14)

D„=—lim limD(q, s) .
q-+0 s-+0

(4.15)

In this case Q(q, s) reduces to a solution of the diffusion
equation which justifies the term "hydrodynamic limit. "
It should be noted that by introducing the memory func-
tion equation [Eq. (4.13a)] as a generalization of the dif-
fusion equation for large values of q one, in general, has
only shifted the problem of finding a solution for F, (q, t)

The hydrodynamic limit of Q(q, s) is then obtained by re-

placing in Eq. (4.14) D(q, s) by the diffusion coefficient

TABLE II. Variation of the truncated infinite matrix continued fraction Top(s ) [see Eq. (4.10a)]
with X and I for (a) s*=0.2, (b) s =0.6, and (c) s*=1.0. X denotes the dimension of the matrices
considered and I. the length of the matrix continued fraction.

2
5

10
15
20
50
100

2.739 43
0.904 56
1.746 62
1.20041
1.515 84
1.404 73
1.389 65

2.645 96
0.973 24
1.747 29
1.227 78
1.543 83
1.428 79
1.414 36

(a) s =0.2
2.592 15
1.018 99
1.726 11
1.246 22
1.551 00
1.436 91
1.423 77

T„(s*)=1.433 95
2.535 54
1.080 19
1.676 13
1.276 34
1.546 21
1.444 18
1.430 61

2.508 07
1.119 19
1.634 79
1.301 01
1.533 99
1.447 83
1.432 78

2.492 88
1.145 32
1.603 49
1.321 30
1.521 08
1.449 14
1.433 70

2
5
10-
15

50
100

1.105 10
0.978 30
1.001 89
0.997 28
0.998 38
0.998 16
0.998 16

1.098 41
0.989 00
1.007 10
1.003 25
1.004 29
1.004 06
1.00406

(b) s =0.6
1.095 36
0.993 26
1.007 86
1.004 87
1.005 76
1.005 55
1.005 55

T,„(s ) = 1.00641
1.093 11
0.996 66
1.007 56
1.005 81
1.006 39
1.006 23
1.006 23

1.092 47
0.997 83
1.007 19
1.006 10
1.006 46
1.006 36
1.006 36

1.092 26
0.998 28
1.006 97
1.006 23
1.006 46
1.006 39
1.006 39

2
5
10
15
20
50
100

0.773 07
0.755 16
0.756 23
0.756 17
0.756 17
0.756 17
0.756 17

0.773 27
0.756 79
0.757 61
0.757 56
0.757 57
0.757 57
0.757 57

(c) s *= 1.0
0.773 24
0.757 14
0.757 83
0.757 79
0.757 80
0.757 80
0.757 80

T,„(s ) =0.757 87
0.773 20
0.757 29
0.757 88
0.757 86
0.757 87
0.757 86
0.757 86

0.773 19
0.757 32
0.757 88
0.757 87
0.757 87
0.757 87
0.757 87

0.773 19
0.757 33
0.757 88
0.757 87
0.757 87
0.757 87
0.757 87
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to the problem of finding a closed equation for the
memory function D (q, t) .However, our description of
F,(q, t) on the footing of the Boltzmann equation for
Maxwell molecules provides a nontrivial example for an
analytic determination of the memory function D (q, t).
With the aid of Eq. (3.15) and Eq. (3.17) we can write

Q(q, s) in the following form:

Q(q, s)= —e)(1+q NOH)MO) 'e) .
s

(4.16)

In analogy to Eq. (4.14) we can define a memory matrix

D(q, s)

D(q, s)=sUT NOH&MO, (4.17)

where the infinite matrix 2& is explicitly given by Eq.
(3.17). It is convenient to scale D(q, s) according to Eq.
(4.2)

D(q, s) =D„D*(q*,s*), (4.18)

where the dimensionless memory matrix D'(q*,s*) is
given by

D*(q*,s *)=2s No A ) Mo (4.19a)

with

gt ——[1+q" Ni*A(*+iM( ] for I =1,2, 3, . . . .

(4.20)

which implies for the hydrodynamic limit of the memory
matrix D'(q*,s*)

Dqyd ——lim lim D'(q*, s*)
q* os 0

1

0 0
0
0 (4.21)

According to Eq. (4.16) we are now able to express the hy-
drodynamic limit of Q*(q*,s*) in terms of Dh„d

Qhd(q s ) „el 1+ Dh d
s 2$

(4.22)

Due to the special structure of the infinite matrix Dhyd we
can easily invert the matrix (1+aDh„d ) yielding

(I+aDhyd) '=

1

1+a
0
0

a
1+o.

1

0

0

0
1

(4.23)

and

(4.19b)

Keeping in mind that pk ~ & 0 for (k, l)&(0,0) and po 0
——0

we readily find the following relation:

lim lim A) ——1,
q~~o s*~o

(g g)hydq ~s =
~ ~zs +q /2

(4.24)

Combining Eq. (4.24) and Eq. (4.6) one obtains the well-
known Lorentz distribution for the hydrodynamic limit of
R(q, x)

Rh„d(q*,x)=—2 q*/2
~ (q*/2) +x

(4.25)

Recalling Eqs. (4.5) we can easily express the dynamical
self-structure factor S,(q, co) by means of the scaled func-
tion R (q*,x). On summarizing the above results, we can
claim to have found an explicit solution of the Boltzmann
equation for Q (q,s) yielding both the correct hydro-
dynarnic limit and the correct free-gas limit. In a subse-
quent paper a detailed numerical analysis for the entire
(q, co) range of S,(q, co) shall be presented.

Finally, we briefly want to comment upon the question
why we did not try to expand Q(q, s) in a continued frac-
tion of the following form

Q(q, s)=—I
s noq

2

cxiq1+ + ~ ~ ~

(4.26)

where the o.„are scalars. ' It is exactly this expression
which is commonly suggested by memory function tech-
niques. ' At a first glance this idea seems reasonable, for
the Boltzmann equation allows an expansion of Q (q,s) in
powers of q (see Appendix A). One could then imagine to
transform this series to the above continued fraction of
scalars. However, this idea has to be abandoned for two
reasons. First, as can be seen from Eq. (A22), it is rather
difficult to find the generating law for the expansion coef-
ficients of the power series of Q(q, s). In Eq. (A23) we
formally expressed each coefficient as one particular ma-
trix element of products of infinite matrices. When actu-
ally evaluating the first few coefficients (e~ao „e~) one is
easily convinced that a generating law is unlikely to be
found. Second, only for a rather restricted class of power
series one can find their convergent representation in
terms of a continued fraction. In our case we failed to
find the generating law for the expansion coefficients e„
of the continued fraction. To put it differently we have
actually calculated the coefficients O.„up to n =2. It
turned out that the e„'s become rapidly involved with n

increasing and a generating law or the explicit dependence
of a„on n could not be found. However, making use of
the special generating law for the matrices ao „[see Eq.
(A23)], we could, quite naturally, transform the power
series expansion of Q(q, s) to a convergent infinite matrix
continued fraction.

In subsequent papers we shall apply this method to cal-
culate the dynamical structure factor S(q, co), starting
from the Boltzmann equation for Maxwell molecules.
Again, an analytic expression for S(q, co) covering the en-

tire (q, co) range will be presented. Furthermore, we
shall consider a one-dimensional model where the above
expansion of Q (q,s) in terms of a scalar continued frac-
tion is indeed valid.
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V. DISCUSSION

Starting from the irihomogeneous Boltzmann equation
for Maxwell molecules we have derived an explicit expres-
sion for the dynamical self-structure factor S,(q, co) in
terms of an infinite matrix continued fraction. In con-
trast to the kinetic model approach, ' which is commonly
regarded as an effective method for extracting time-
correlation functions from kinetic equations, we did not
alter or approximate the collision kernel in order to deter-
mine S,(q, co). Rather we presented an analytical solution
for S,(q, co) taking into account the entire collision kernel
and therefore all eigenvalues of the self-part of the
Maxwell collision operator. %'e have shown that the ex-
pansion of the infinite matrix continued fraction in
powers of q is identical with the Boltzmann moment ex-
pansion of Q (q,s). The representation of Q (q,s) in terms
of an infinite matrix continued fraction was checked nu-
merically for the case of a free gas, where the solution of
the Boltzmann equation is known explicitly and where, in
addition, the Boltzmann moment expansion does not con-
verge. It turned out that in order to get a reasonable accu-
racy (up to four digits) the infinite continued fraction
(L = oo ) of infinite matrices (X= oo ) can be replaced by
a finite continued fraction (I. &100) of finite matrices
(%&10).

The advantage or special feature of our infinite matrix
continued fraction representation of Q(q, s) relative to the
kinetic model approach' can be seen from the following
two arguments. First, whenever one is looking for certain
limiting properties of Q(q, s), one approximates an exact
expression [Eq. (3.15)]. This has been demonstrated in
Sec. IV for both the hydrodynamic limit (q —+0) and the
free-gas limit (q —+ ca ), where we arrived at exact expres-
sions [see Eq. (4.10b) and Eq. (4.24)] in either case, using
no approximations but the respective limiting processes.
In contrast, kinetic models successively approximate the
collision kernel. The starting point for any calculation is
a model equation —not the exact Boltzmann equation-
and therefore any limiting process, like the hydrodynamic
limit or the free-gas limit yields approximate results only.
Second, from a mathematical point of view our result is
very simple. In actual computations one only has to in-
vert rather small matrices and running a short iteration
procedure in order to get highly accurate results.

For the sake of transparency we confined this paper to
a mathematical analysis for S,(q, co). In a subsequent pa-
per we shall present a detailed numerical analysis of
S,(q, co) for the entire (q, co) range including a calculation
of the linewidth. Furthermore, we shall present a detailed
numerical analysis of the dynamical structure factor
S(q, co), which in the low-density limit is given by essen-
tially the same infinite matrix continued fraction as
S,(q, co). One only has to replace the eigenvalues by those
of the full collision operator. It will turn out that in the
hydrodynamic limit our infinite matrix continued fraction
reduces exactly to the well-known Landau-Placzeck ' for-
mula with the respective thermodynamic coefficients of
the dilute Maxwell gas. Since, from a mathematical point
of view, there is no difference between S,(q, co} and
S(q, co}, when using the Boltzmann equation as a starting

point, we presented the mathematical tools for calculating
S,(q, co) in this paper and postpone a detailed numerical
analysis to a subsequent paper.

APPENDIX A

Here we want to derive the forrnal Taylor-series expan-
sion for Q(q, s) in powers of q. According to Eq. (2.14)
Q(q, s) is given by the first element of the vector co. So
we can concentrate on a Taylor-series expansion of the
vector cl in powers of q. . With the aid of the matrices Xl
and MI [see Eqs. (3.5) and (3.16)] we can write [cf Eq.
(3.6)]

ct=iq(Mt tcI ~+Nlc&+&), I =1,2, . . .
1

cQ
——iqXQc&+ —e~ .

s

(A 1)

(A2)

Since for q —&0 the Boltzmann equilibrium distribution
function is the only solution of Eq. (2.1a) subject to the in-
itial condition [(2.1b)], we obtain [cf. Eqs. (2.8) and (2.10)]

co(q =O,s) =—e~,
1

s

cI(q =O,s) =0 for I & 1 .

(A3)

(A4)

Next let us expand the function cl in a Taylor series in q

ct= g (&q)"cI"'.
n=0

(A5)

Inserting Eq. (A5) into Eqs. (Al) and (A2) and comparing
equal powers in q yields the following relations for the ex-
pansion coefficients cI"'.

cl"'=Mr —]cl—] +&lcl+.i, n =1,2, . . . , I- =0, 1, . . .

(A6)

cl — ~l, oer, l =0, 1, . . .(0)

s

where, by definition,

cI"'=0 for /&0.

(A7)

(A8)

Equations (A6)—(A8) can be solved successively, starting
with cl and then computing cl, cl, etc., according to(0) ~ (&) (2)

Eq. (A6). However, a closed and explicit form for the
coefficients cI"' is not easily obtained in this way.

Let us first rewrite Eq. (A6) by introducing matrices I' t
PP=1 Pl=Ml ]Ml 2

' ' MQ

and new coefficients y~"'

(n) (n)=Plyl

(A9)

(A 10)

Since the matrix Ml is regular, Pl is regular too, and Pl
exists. Inserting Eq. (A10) into Eqs. (A6) and (A7) we ob-
tain
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(n) (n —l. ) (n —1)
yl —yl —1 Hlyl+1 (Al 1)

with

(0)
&l,oe1s

(A12)

Hl ——Pl NlPl+1 .—1 (A13)

By induction the following relations can be easily shown:

which will be presented in a subsequent paper (see also
Table I). In Appendix 8 we will show that the power-
series expansion of the continued fraction is identical to
Eq. (A22). Finally it should be mentioned that the evalua-
tion of the coefficients (e~a0 „el) in Eq. (A22) requires
only a finite number of operations due to the special
structure of the infinite matrices Nl and Ml [see Eq.
(3.5)].

yln =0 for I &n and I &0,
(2l + 1) (21)

y21 =y2l+1=0-

(A14)

(A15) APPENDIX 8

(n) (n —1) (n —1)y. —y. -1 =H.y. +1 =o (A16)

Putting I =n in Eq. (Al 1) and using Eq. (A14) yields In order to get a power-series expansion of the contin-
ued fraction given in Eq. (3.15), we start with the se-
quence of matrices Ak, Xk,Mk (k =0, 1,2, . . . ) defined by

which implies Ak(z) = (1 zXk A—k+,Mk ) (81)

yn =yO ———e1, n )0 .(n) (o)

s
(A17) We are looking for a power-series expansion of Ak(z) in

powers of z

next, putting l =n —2 in Eq. (All) and using Eq. (A16),
we find Ak(z) = g z "ak „.

n=0
(82)

(n) (n-1) (n-1)
yn —2 yn —3 Hn —2yn —1 ~n —2 1 ~s

implying
n —2

y'„"',=—g H), e„n)2.
s » ——0

(A18)

(A19)

Multiplying Eq. (81) with [1—z&kAk+&Mk] from the
left, inserting Eq. (82), and comparing equal powers in z,
yields the following recursion relation for the coefficients
0'-k, n:

eko=1
(83)

Continuing this process we finally arrive at the following
expression:

1 n —2l»+ 4 —i+
y'„"'„=—y y . . . y H), H, , H), e,s ji =»2 Jl=

for n )2I, I ) 1 . (A20)

n —1

k, n g +k k+1,!Mkak, n —I —1

1=0
n:1y2p ~ ~ ~ ~

Equation (83) can be solved starting with ak 0 and then
computing successively o.k „ for n =1,2, 3, . . . . The gen-
eral expression for 0;k „ turns out to be

In order to get the Taylor-series expansion of Q(q, s) we
use Eq. (2.14)

Q(q s) co,o Co, o el. CO el y (lq) C0
n=o

elk 0= 1

ji+'
ak, .=Pk &

with

(84)
~n —i+1

H) H) . H) Pk ',
j„=k

=e', g (lq)"y,'"'. (A21) Hl ——Pl Nl Pl+1
—1 (85)

Finally we make use of Eqs. (A15) and (A20) and obtain
Po= 1 Pl =Ml 1Ml 2 Mo (86)

Q(q, s)=—g ( —1)"q'"(e,o0„,),s n=0

where the matrix ao „ is given by

(A22) Proof. For the first few n it is easy to show that the
ak „,given by Eq. (84), fulfill Eq. (83). In order to prove
Eq. (84) for all n we first split up Eq. (83) as follows:

0

ao, n

j) ——0

j)+1

j2 ——0

jn —i+1
H), H) . H)

g„=o
(A23)

The Taylor-series expansion of Q(q, s) can only be con-
sidered as a formal series in powers of q, since in general
it does not converge. A convergent representation of Eq.
(A21) is given by the continued fraction of the matrices

and Ml [see Eq. (3.15)]. Although we lack a
mathematical proof for the convergence of this continued
fraction we are convinced by numerical computations,

k, n Nkk+1, n —1~k +Nk~k+k, n —1

n —2

+ g &kak+l, lMkak, n-l —l .
1=1

(87)

Next we assume that for s =0, 1, . . . , n —1 and for all k
the ak, 's are given by Eq. (84). Since the right-hand side
(rhs) of Eq. (87) depends on ak, with s =0, 1, . . . , n —1

only, we can prove by induction that Eq. (84) is valid for
all n. We first consider the coefficient uk+1 „1on the
rhs of Eq. (87). According to Eq. (84) we can write
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jr+1
ctk+1, n —I —Pk+1

j)——k+1 j2 ——k+1

Jpg 2+ 1

j„ I
——k+1

—1~J HJ ~J ~k+

k+1
—Pk+1

ji ——k+1

j„3+1

j„2——k+1

2+1

Hj . . HJ. ,HJ,Pk+i
j„1——k

k+1
Pk+& X

ji ——k+1

j„3+1 k

HJ . . . HJ g HJj„)——k

k+1
—Pk+1

ji ——k+1

Jn —3+ Jn —2+ —1 —1J„, g„,Pk+I ctk+—i, n 2Mkctk, iM k
in —2,=k+1 jn 1=k

(BS)

JI —i+ '

ji ——k+1 I k

k
~ ~ ~ '0 ~ ~

for I =n 2, n——3, . . . , 2, (89)

we finally obtain the following relation:

Continuing this process of splitting up the first term in
Eq. (88) according to

k Jo+'

jo ——k Jl k

j„2+1

HJ HJ HJ ,Pk ',
j„1——k

—1 —1
~k+ 1~k =~k

we can rewrite (811) in the following form:

(813)

(814)

0'k+1, n —1

k+1 JI+ j. 2+
=Pk+, g g . g H Hi . . HJ Pk+i

jj k + 1 j2 k J

which is identical with Eq. (84); and this completes our
proof.

With the aid of Eqs. (3.14)—(3.16) and the above results
we obtain the following power-series expansion for
Q (q, s):

lf —2

k+ l, 1~k+k, n —l —1~ k
l=1

(810) Q (q, s) =—g ( —1)"q "(ei ere „e&),
S n=o

where

(815)

k+1 jr+1
NkPk+ i

ji ——k+1 J2=k

ji+'
+NkMkPk g

jj ——k J2 ——k

Now using the relations

j„2+1

HJ HJ, . . . HJ Pk+iMk
j„1——k

j„2+1

(811)

&kI'k+1=&k~kI'k =I'k~k (812)

If we now insert Eq. (810) into the right-hand side of Eq.
(87) we find it equal to the following:

Jn —i+

j„=0
(816)

Comparing the results of Appendix A and Appendix B
we find that the power-series expansion of the continued
fraction representation of Q(q, s) is identical with the
Taylor series expansion of Q (q,s). Furthermore, a de-
tailed analysis shows that replacing the infinite matrices
Xl and Ml by their nth principal minors and truncating
the infinite continued fraction after n terms gives the
correct-power-series expansion of Q(q, s) up to order q ".
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