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A novel approach to energy-density-functional theory, based on point transformations in coordi-
nate three-dimensional space, is advanced. These point transformations are discussed in the context
of one-electron densities and many-electron wave functions. In particular, the group properties of
these transformations are discussed and it is shown by incorporating some of the topological proper-
ties of the one-electron density, as discussed by Bader et al. , that the n-representability conditions
for densities may be reformulated. This is done in this paper for atoms. As a simple application of
this method, the local-density approximation is obtained by computing the point transformation for
a slowly varying density. Also the relationship between this method and the one based in equidensi-

ty orbitals is discussed.

I. INTRODUCTION

At present, density-functional theory (DFT) has become
a powerful and rather popular approach for studying
diverse properties of atoms (including ions), molecules,
and solids. ' A rigorous formulation of DFT has not
been achieved so far' and the problem of constructing
the correct energy functional remains unsolved. ' "

The basic idea of DFT is that of reformulating the sta-
tionary nonrelativistic quantum-mechanical Schrodinger
principle for the ground states of many-electron systems
in terms of a single variable, the one-electron density p(r)
[or p(r, o), when spin is included]. '

It has been stressed in the works of Blokhintsev, '

Macke, ' . and Rennert, '" March and Young, ' " and
Percus' ' ' that point transformations in coordinate space
may be of importance for attaining a rigorous formulation
of the energy variational principle in DFT. It should be
emphasized, however, that the class of point transforma-
tions employed in these works has not been sufficiently
general and hence, it has had a restricted range of applica-
bility. ' Spatial transformations of the most general
type, have been used rarely in quantum chemistry.

A novel approach, based on general point transfor-
mations in coordinate three-dimensional space, coupled to
the method of orbits ' introduced on a set of one-electron
densities, with respect to such transformations, has been
recently developed. A rigorous formulation of the varia-
tional principle for ground-state many-electron systems,
within the framework of DFT, may be achieved by this
new method. In addition, this method has turned out to
be rather fruitful as well as sufficiently simple, in a com-
putational sense, for processing data on p(r) obtained on
crystals.

Based on these concepts, the primary goal of the
present series of papers is to develop a unified approach to
DFT. In particular, the present paper is devoted to the

study of point transformations on a set of one-electron
densities. In Sec. II we discuss the most general type of
point transformations in coordinate space as applied to
the set of one-electron densities. In Sec. III we discuss the
case of n-electron wave functions. In Sec. IV the group-
theoretical properties of these point transformations are
investigated and we show by introducing some of the to-
pological properties of p(r) which have been established
by Bader et al. , that the n-representability problem for
p(r) may be reformulated in terms of conditions on these
general point transformations. In the present paper this
reformulation is restricted to the atomic case. In Sec. V
these results are discussed and illustrated by comparing
them to approaches based on equidensity orbitals.

II. POINT TRANSFORMATIONS
AND ONE-ELECTRON DENSITIES

Let us define a set of all functions of a type p(r) which
are given everywhere on the three-dimensional real vector
space E and which satisfy the following conditions.

(i) Non-negativity: p(r) )0 everywhere in E
(ii) Normalization

f,drp(r) & co, (1)

i.e., [p(r)]'r HL (E').
(iii) p(r) is a continuously differentiable function for all

rH E . We designate a set of all p's which satisfy condi-
tions (i)—(iii), by ~«L following Hohenberg and Kohn
and I.ieb. ' One can impose the subsidiary conditions on

leading to the subset ~HKL consisting of
p(r) E~«L and for which drp(r) =n with an arbi-

R3
trary integer n It is clear. that the set ~«L is convex;
that is, if p&(r) and p2(r) belong to it, so does

p(r) =czp&(r)+( I —ct)p2(r)

with 0&o.'& 1. We can further interpret the eleiIients of
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~HKL as one-electron densities of n-electron systems, al-
though realistic p(r) s satisfy also some additional condi-
tions (see Sec. IV).

Let us define the point transformations in the vector
space IR as a mapping of R into itself: for an arbitrary
and fixed vector r&IR the mapping (point transforma-
tion) A transforms it, in general, into a new vector
RE. IR by the following rule:

p(r) &~HxL

p(r)) W(p(r)):—p(R(r))DR{,) .

It is- proved trivially that under rather general assump-
tions on the form of the functions X~(x,y, z), Y~(x,y, z),
and Z~(x,y,z) the new function

r=(x,y,z)~ R—= (X, Y;Z)=R(r), (2)

where x,y, z and X, Y,Z are the Cartesian coordinates of r
and R, respectively. Moreover, the transformation (2) is
such that the inverse transformation A ' is defined and
exists in some neighborhood of rER . It is well known
that in order for the inverse transformation to exist in a
neighborhood of rER, it is sufficient that the Jacobian
of the transformation (2),

BX
Bx

D(X, YZ) BY
D(x,y, z) Bx

BZ
Bx

BX aX
Bg Bz

BF BF
Bg Bz

BZ ()Z
Bz

(3)

be nonzero at rH R: DR{,)&0. Due to the inverse func-
tion theorem, the mapping A' is one to one in some neigh-
borhood of rER '.

One should notice that the mapping W of the type (2) is
the most general one; in particular, it is not required that
it necessarily preserve any metric in R, such as, for ex-
ample, distances, angles, or other geometrical characteris-
tics. The sole constraint imposed on the class of transfor-
mations under study is that the mapping must be one to
one everywhere in IR . In other words, the Jacobian D~
is distinct from zero everywhere in IR . In a sense, the
transformation A of the type (2) supposes the existence of
three differentiable functions: X~ ——X~(x,y, z),
Y~ ——Y~(x,y, z), and Z~ =Z~(x,y, z).

The mappings A of the type (2), such that D~&0
everywhere in IR, generate the group H of point
transformations of the vector space R . The unit element
of the group, 8'E H, is defined as the identical mapping

g

r~ E(r)=r for all r&lR

For a given pair of elements A{ and A2 of H, their
group product A' = W

&
-A2 is defined as follows:

A(r)—:A {(A'2(r) )

for any r&lR . It is fairly easy to prove that with the.
given definition of the group composition law, the associ-
ativity rules are satisfied. An inverse element to any
WE H, defined as W 'E H, exists by definition. Hence,
H is, in fact, a group. Further, we assume that the group
involves only those transformations A' whose Jacobians
are positive definite on IR

%"e define the action of the group H on the given set
in the following way: for given W E H and

satisfies conditions (i)—(iii) of the definitions of ~H&L for
any AH H, i.e., an action of the group H on ~HKL, de-
fined by (5), does not come outside of the boundaries of
~HK~. In other words, the new function p~(r) is also the
density. Generally speaking, if %~8', the one-electron
density p~(r) differs from its A' preimage, i.e., it
represents a new electron density belonging to ~HKL
which has the same value at R(r) as the reference one-
electron density p(r) at r scaled by the magnitude of the
corresponding Jacobian D~ at rER . Notice that the
definition of action of H on ~HKL, defined above in (5),
somewhat differs from the traditional one, accepted in
mathematics where one assumes that under transforma-
tion AH H a volume element dr transforms to DR(,~dr.
Our definition of the action of the group H on the set of
one-electron densities seems to be more natural in view of
the quantum theory of many-electron systems [see, for ex-
ample, (34) and (35)], as it is generally assumed that under
the so-called dilation transformation A'~d which
transforms any rER to prER for positive pER+, a
given one-electron density p(r)H~HKL is transformed
into p&(r ) =pp(pl ) 'E~—H~L.

Let an arbitrary one-electron density p(r)E~HKL be
given. We designate by Hz the set of point transforma-
tions, belonging to H, which leaves p(r) unchanged, i.e.,

H —= [AeH
~

p~(r)=p(r) V relR'] .

It is clear that H p is a subgroup of H, because if A'{ and
A2 belong to M~z, so does A =&~ A'2, since

z(p(r)) =R {(p~ (r)) =W{(p(r))

Obviously, the group H for the atomic case contains all
the transformations of the special three-dimensional rota-
tion group SO(3). In that case the Jacobian of any
transformation A H SO(3) is equal to unity, and the
transformation (5) is just the well-known operation of "ro-
tation of one-electron densities. " Therefore, for a given
p(r)&~HKL the group H~ contains all the transforma-
tions of the point-symmetry group of p(r). One can de-
fine, naturally, Hz as the stationary group of
p(r) H~&KL, or isotropy subgroup of H.

III. POINT TRANSFORMATIONS
AND n-ELECTRON WAVE FUNCTIONS

Let an n-electron system with the total Hamiltonian

H=T+ V (9)

be given. In Eq. (9) T is the kinetic energy operator (in
atomic units)
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(10a)

and V is the potential-energy operator (in the Born-
Oppenheimer approximation the constant term, corre-
sponding to the nuclear-nuclear repulsion energy, can be
omitted)

n —'l n n

V= g g ~r; —r, ~

'+g u(r, ), (10b)
i =1 j=i+l i=1

where u (r; ) is the external potential acting on the ith elec-
tron and possessing a multiplicative one-electron nature.
For an isolated electron system, u(r) corresponds to the
electron-nuclear attraction energy.

Let A z be the Hilbert space of n-particle antisym-
metric wave functions

such that (%'
~

T
I
'0) & co. We define the subset

W"&A z as the set of %(r&, r2, . . . , r„), belonging to ~~
and whose norm

~ ~

4
~ ~,

f,dry. f,dr„
i
%(r&,r2, . . . , r„) i

=1. (11)

Designating by H" the internal or diagonal product of
groups

H"=a % —= I(M, A', . . . , A')
~

We& I,
n times

W,
" =U W,"[a], (15a)

such that

For any p(r)G~&KL, the set Wz is certainly nonempty
and, in fact, there is a many-to-one correspondence be-
tween wave functions %H W" and the density p(r). This
statement, which is equivalent to saying that p(r) H~HKt
is pure-state n-representable follows from a theorem first
proved by Gilbert and later on extended by Harriman '
(see also Ref. 17). In either case, however, there is an in-
finity of single-determinant wave functions or, equivalent-
ly, of reduced first-order density operators which yield a
given particle density. The selection of the optimal densi-
ty for a given physical system may be accomplished by
imposing additional constraints which may be incorporat-
ed through a variational or a nonvariational procedure.
In Sec. IV we shall discuss how topological properties of
p(r) may be incorporated in order to restrict the search for
the density to a smaller set containing densities which are
not only n representable but which also satisfy the topo-
logical requirements dictated by the physical situation.

Consider now an electron density po(r) H~HKL and its
corresponding subset 8 P C: 8'". Let HP be the station-

Pp Pp

ary group of po(r). Then the action of the subgroup

Hz =SHz C:H" on Wz partitions Wz into noninter-
Pp Pp Pp Pp

secting, or disjoint, subsets, the so-called orbits, which are
transitive with respect to the action of the group Hz

let us determine the action of the group H" on 8'" in the
following manner: for arbitrary elements

Wz [a]A Wz [P]=P if a&13 (15b)

"Hp ( Wp [a])= Wp [a] . (15c)

V(r&, . . . , r„)H W",

we define

A"(%(r&,r2, . . . , r„))
1 /2

In a sense, the partitioning of Wz into Hz orbits means

that the symmetry group [the stationary subgroup of H
(isotropy subgroup), ' as defined by (5)] of one-electron
densities is smaller that the symmetry group [the station-
ary subgrou~ of H" in the sense of (12)] of any wave
function %z( E Wz [a].

It is clear that the actions of the group H" on 8'" and the
group H on ~HKL are consistent in the sense that if the
action of an element A"H H" on %(r&, r2, . . . , r„)E W" is
given by Eq. (12), the action of W E H on

pq(r) —=n f,dr2. f,dr„
i
+(ri, r2, . . . , r„)

i

'

~HKL (13)

is given by Eq. (5). The operation of reduction, Eq. (13),
can be interpreted as a mapping of W" into ~HKL. Let
us define the preimage of p(r) H~HKL under this map-
ping as the subset O'P" C: 8 ":

=n dr2 . dr„~ 'Ii(r~, rz, . . . , r„)
~I 8

IV. STRUCTURE OF THE GROUP H

A rigorous formulation of the ground-state variational
principle for many-electron systems within the framework
of energy-density-functional theory could be developed by
establishing a one-to-one correspondence between point
transformations in R and one-electron densities (natural-
ly, to within a stationary subgroup). In that sense, the
group H of point transformations of the type (2) seems to
be overcomplete. In fact, an arbitrary transformation
WHH is determined uniquely, in general, by three in-
dependent functions X~, Y~,Z~, each of which depends
on rH 8 . Moreover, the set ~HKL, defined as consisting
of "densities" is not adequately characterized since in ad-
dition to the conditions imposed above, realistic one-
electron densities p(r) of many-electron isolated systems
possess other important properties, which are traditionally
omitted in the energy-density-functional theory literature
and which have been determined on the basis of extensive
analyses of real one-electron densities, carried out by
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Bader and co-workers. These conditions refer to proper-
ties of p(r), its associated vector field Vp(r), and its La-
placian V p(r). In what follows, we single out one of
these conditions, the fact that p(r) must generate a closed
curve in IR, as we are interested in developing, at this
particular stage, a density-functional theory applicable to
atoms. It is clear that for molecules, the paths generated
by p(r), although closed, satisfy additional constraints and
thus we find in that case that there arise closed density
curves surrounding several nuclei, but that there also exist
others which only surround a subset of nuclei, until final-
ly, in the inner regions of the virial fragments, such curves
only surround a single nucleus.

Let C be an arbitrary non-negative number CUR+,
where R+ is the positive part of R ', including zero.
Then a set of vectors rEE such that p(r) =C, generates
for a given one-electron density p(r) a closed curve in E
or a path

~c[p(r)l —= lr+E
I
p(r) =C+E '

I .

We also define for a given one-electron density p(r) its set
(domain) of values

M[p(r)] =—ICE E + ~

p(r) =C,r&E 3I .

Let us redefine ~H~L as the set of densities satisfying
conditions (i)—(iii) given in Sec. II, and for which any
path Wc[p(r)] for any CE~[p(r)] is a continuously
differentiable function of rH IR and is a closed one. We
denote this subset of ~H&L as ~H&„.

The condition of closeness of a path Wc[p(r)] for an
arbitrary density p(r)H~HKL and for any CP~[p(r)]
is obviously equivalent to the following one. Let a radius
vector rpEIR be given and fixed. It determines the unit
vector e[ro]—:r/~ r

~

defined in the spherical coordinates
by the angular part rp&Q of the vector rp. Then, it is
clear that

m[p(r)) = Ip(r)
~
r=re[ro] b' r e E 'I .

In other words, selecting the unit vector in R and taking

rj—+ R:—
~

R
~
e[r], (18)

where
~

R is the length of the radius vector REE '. It
is clear that the transformations of the type (18) generate
the subgroup ~ of the group H which was introduced in
Refs. 28, 30, and 32.

Therefore, we prove that restrictions may be imposed
on the set of one-electron densities by means of transfor-
mations of the group u. It is clear that the transforma-
tion (18) takes the vector r PE with the Cartesian coor-
dinates x,y, z into the vector RE IR with the coordinates

xX(x,y, z) =—R (x,y, z),
r

Y(x,y, z) = —R (x,y, z),r
(19)

Z (x,y, z) = —R (x,y, z) .
r

The Jacobian of the transformation AEu of the type
(18) becomes

into account all values of p(r) along it, one obtains
the whole ~[p(r)] for p(r) E~HKL.

Therefore, choosing and fixing any unit vector
eo

—=e[ro] H 0, one can represent two arbitrary one-
electron densities p&(r) and p2(r), belonging to ~HKL by
one-parameter curves

, (r) =p, (r, e[r,])
and

p2(r) =p2(" e[rol) .

It follows from the definition of ~HKL that these curves

p, (r) and p2(r) are continuously differentiable functions of
r &E '. Hence, p&(r) and p2(r) are homotopically
equivalent, i.e., there exists such a transformation, or de-
formation, which transforms p, (r) into pq(r). By varying
e[ro] over the whole 0, as a result we obtain the point
transformation A from the group H of the following
type:

1 x2 x BR
r r rBx

xy y BRR+-
r3 r Bx

xzR z BRR+-
r rBx

xy x BRR+-
r3 r By

—R — R+—1 y2 y BR
r r3 r By

yz z BRR+-
r r By

xz x BR+r3 r Bz

yz y BR+r3 r Bz

1 z zBR—R — R+-
r r r Bz

R BR BR BRx +y +z
Bx By Bz

1 B B Bx +y +z R
3r3 Bx By Bz

r-VR1 3

3r
(20)

Since we fix the unit vector e[r], which is defined in
spherical coordinates by the angles 0 and P, it is con-
venient to express the Jacobian D~ of the transformation
(18) in the same coordinates. One obtains

DR( )
= R (t', 9,$)=1 B

3r Br

2
R (r, 8,$) dR(r, 8,$)

r Br

(21)
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A(p(r)) —=p~(r) = R(r) p(R(r))

2
R (r, 0,$) M(r, 0,$)

r Br

Hence, choosing A to belong to the group ~ and tak-
ing Eq. (21) into account, one can rewrite relation (6) in
the following way:

under the conditions that A' H M and that
poE~HKL. Let us prove now that for any electron densi-

ty p(r)H~HKL there exists a transformation A' from ~
such that p(r)H~HKL. For this purpose, we choose an
arbitrary unit vector ep ——ep[rp] HQ and fix it. We define
the transformation A EM on the ray eo & Q, determined
by the angles Op and Pp, as the solution of the following
first-order nonlinear differential equation:

Xp(R (r, 0,$),0,$),
p(r) EMHKr . (22)

3r p(r, Op, bo)
R (r, Oo, go)=

dr '
po(R (r~Oo~go). Op~go)

(25)

In particular, if p(r) is represented in the form of the
spherical-harmonic expansion series,

p(r)=g g pt (r)&~ (0,$),
1=0m = —1

p~(r) for A H~ takes the following form:

p~(r) =p~(r, O, y)

I =0m = —1

R (r, 0,$)
r

pt (R (r, 0,$))Y( (0,$) .BR (r, B,Q)

{23)

For fixed 0=Op and P=Po from Q, or e[r]HQ, the rela-
tion (22) can be represented as follows:

r 2
R (r, Op~go) ~R (r~Oo~go)

p~(r Oo, do) =
r Br

&&p(R (r Oo 0o) Oo 0o) .

Therefore, it is shown that the transformations of the
space R 3 from the group ~, which were denoted in pre-
vious papers ' ' as local-scaling transformations, are
rather general, in the sense that H D~, and that they
uniquely determine electron densities from ~HKL.

Theorem 1. Let an arbitrary one-electron density
pp(r) H~~KL with the corresponding stationary subgroup

M& C:M be given. There exists a one-to-one correspon-

dence between the representatives of cosets W/M and
Po

one-electron densities p(r)H~&KL under which the unit
class (1) corresponds to po(r) H~HKL.

Proof. It proceeds by reductio ad absurdum. I.et us as-
sume that the transformations A& and Az from ~ belong
to different cosets of ~ /~ z, and for a given

P(1 ) EMHKL

p(r) =~~(po(r)) =~2(pp(r))

then

po(r) =~i '~2(po(r)),

i.e., W] A'2H~ z . A contradiction results. Further, it isl'0'

clear that any element of the form A'(po(r)) belongs to

(

which satisfies the condition of Theorem 1 of Ref. 40 due
to the properties of p(r) and po(r)&p(r) from ~HKr. .
Therefore, Eq. (25) has a solution, i.e., the required
transformation A'Ha /az along the fixed ray co&A,
and this solution is unique. Varying Op and pp over the
whole space 0, due to the properties of ~HKL, we obtain
the total required transformation W H ~ which
transforms pp(r) H~HKL into p(r) E~HKL Q.E.D.

It should be noticed that the proof of Theorem 1 is due
partially to the results of Refs. 28 and 30. As follows
from Theorem 1, for any pp(r) H~HKL

~HKL ~ /~ p (po(r)) (26)

Theorem 1 provides a possibility of reformulating the
conditions .of n-representability of one-electron densi-
ties ' ' ' belonging to ~~KL. %'e emphasize here that
this is a reformulation as the n-representability problem
for one-electron densities has been solved some time ago
by Gilbert, using a very particular construction for p(r),
and more generally by Harriman, ' using equidensity or-
bitals (see also Ref. 17). By definition (see, for example,
Refs. 41 and 17), a given one-electron density
p(r)H~HKL is pure-state n representable if there exists
an n-electron wave function 0'(r„r2, . . . , r„)H W" such
that the associated density p+(r) is just p(r). As a first
step we formulate the statement whose proof is trivial.

Theorem 2. The set of n-particle antisymmetric wave
functions is represented as a union of ~ /~ "

Po[:—(~ /~z )"]orbits

W"= U W"[a], (27)

where pp(r) H~HKL and

W"[a]=—~ "/~ " (0 ' ')
l'O i O

with %z( lP Wz. In the frame of each M "/M~ orbit of
W" there exists to one-to-one correspondence between (i)
n-electron wave functions from W"[a] and one-electron
densities from ~HKL—in the sense of the mapping (13),
(ii) n-electron wave functions from W"[a] and transfor-
mations from ~ "/~z with fixed pp(r)E~HKL —in the

sense of the action (12).
Corollary I. The definition of the orbits of 8'" with

respect to the group M "/Mz, is independent of the choice

of the reference electron density pp(r) H~HKL.
This statement follows trivially from the fact that for a
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given po(r) H~HKt and W &~ the density
p(r)—:%(po(r) ) possesses the stationary subgroup

P

Corollary 2. Each orbit W"[a] contains a unique n
particle antisymmetric wave function whose one-electron
density is just p(r) H~H~L (to within the group M &).

In order to reformulate the n-representability condi-
tions for ~HKL of one-electron densities, let us consider
an orbit W"[a](:W" with respect to M". One can as-
sume that a given orbit W"[a] is generated by a given n
electron wave function 4'0 (r(, r2, . . . , r„) ("the generator
configuration") with the associated one-electron density
po(r) &~H~L. Naturally, one can suggest the existence of
one-electron density p(r)H~HKL different from po(r).
Solving the nonlinear first-order differential equation (25)
for all pairs (00,$o)&fl, one obtains the transformation
W H ~ /~ z such that p(r) =%(po(r) ).

Then the following n-electron wave function

(r&, r2, . . . , r„)—:0'0 (R(r(),R(r2), . . . , R(r„))
1/2

It is important at this point to establish the relationship
between the results of this paper and the transformations,
considered by other authors, generated by Slater deter-
minants consisting of plane-wave orbitals. An important
work in this respect is that of Zumbach and Maschke. '

It may seem, however, that the orbits introduced by these
authors are a particular case of the orbits defined by Eq.
(27), although rigorously speaking, the term "orbit" in the
former case is not justified and applicable, because the set
of transformations given by Eq. (3) and in Appendix A of
Ref. 21, does not form a group, since it does not contain
unit and inverse elements.

We show in what follows how the ideas developed in
the present paper may be applied in order to obtain a
local-density approximation and equidensity orbi-
tals. ' ' ' ' Consider the Slater determinant

I k,. I
0'o ' (r(, r2, . . . , r„)

=(n!) '
det[gk, (r(),gk, (r2), . . . , Pq (r„)],

(29)

g DR(r;) (28) where the single-particle functions are plane-wave orbitals

Pk(r;)=V '~ exp(ik; r;)
belongs to the orbit W"[a] and has the one-electron den-
sity p(r). Hence, due to the arbitrariness of the choice of
p(r) H~HKL we prove the following.

Theorem 3. Any one-electron density p(r) E~HKL is
pure-state n representable.

It should be emphasized that above we have proved the
statement that any one-electron density belonging to~HKL is n representable inside an arbitrary orbit
W"[a)C: W", a fact that would guarantee pure-state n

representability, as in general, for a mixed state, the dif-
ferent wave functions

~
+; ) making up the expansion of

an ensemble nth-order density operator

f'"=X,
I
+; & &+;

I

would in principle fall into different orbits. In other
words, the preimage of the reduction mapping of W" into

determined by Eq. (13), exists and is unique.
(within a stationary group) in each orbit W"[a].

=(n!) det[f„, (r, )@„(r) . . f„(r„)],
(3O)

y, '(r)=
'2 1/2

Rz(r) BR&(r)
I" BI"

V '~ exp[ik R (r)]P

(31)

1/3

and V is the normalization volume. The Slater deter-
minant given by Eq. (29) generates in W" the orbit
Wp ~[Ik; I], determined uniquely by the set of wave
vectors Ik; I,

"
( and the volume V and consisting of the

following determinants:

I k,. I%'~' (r(, r2, . . . , r„)
P

V. DISCUSSION Rz(r, 0,$)= 3V rf dr'(r') p(r', 0,$) (32)

In the present paper, some of the ideas already intro-
duced in previous works, ' have been further developed.
The main advantage of the method employed here, which
was initially proposed by Petkov and Stoitsov, consists
in that an explicit use is being made of the Jacobian
transformation involved in the definition of the transfor-
mation of the vector space I on ~HKL and O'". This
provides the possibility of applying some rigorous state-
ments of the theory of ordinary first-order differential
equations, to the quantum chemical energy-density-
functional theory. In addition, we have made an incipient
connection between these point transformations with the
topological properties of p(r), which as discussed by
Bader et al. , provides a very adequate framework for
the description of chemical phenomena.

with p(r)C~H+L and A'&HER. In Eq. (32) the lower
boundary of integration is taken as zero, for simplicity.

Equation (32) is just the restatement of Eqs. (21) and
(22)

p~(r)
3r2 Br

' '
p[R (r, 0,$),0,$]

R (r, 0,$)= (33)

where we assume that the density in the denominator is
constant and is given by n/V. Integrating Eq. (33), one
obtains Eq. (32).

If we assume that p(r', 0,$) of Eq. (32) is spherically
symmetric and also that it varies slowly with r (for exam-
ple, as in the Thomas-Fermi model ), then we may take
p(r', 0,P) outside the integral sign and obtain



MANY-ELECTRON ENERGY-DENSITY-FUNCTIONAL THEORY: 963

R~(r) —= —p(r)
V
n

' 1/3

p(r) 'E~t DA (34)
satisfies the relation

I @;(r) I
'=p(r)/n, (40)

where in view of the fact that these conditions define a
subset ~LDLL of ~Hatt which corresponds to a local-
density approximation (LDA), the p(r) of Eq. (34) belongs

to this subset. The orbital fqe(r) takes the following
form:

n

p(r)=g If;(r)I', (41)

i.e., it is an equidensity orbital. It follows that if
p(r) H~HKL is represented by a single Slater determinant

1(„'(r)= p(r)
n

1/2
V

exp i —p(r)
n

1/3

k.r (35)
then

m

pc(r) = g A,;
R; BRi

(37)

One may conclude, therefore, that all the results of Refs.
12—19 and 21—22 refer to the class of orbits of the
plane-wave type. It is also interesting to not:ice that the
orbitals given by Eq. (31) are equidensity orbitals since
they satisfy the relation

(r)
I

=p(r)/n . (36)

As a final consideration, let us take an arbitrary one-
electron density po(r) E~H~L represented in terms of its
natural orbital expansion IX;(r), i = 1, . . . , m; m & n I

m

pc(r) = g X;
I
X;(r)

I

' .
i=1

For a fixed p(r)H~Hxz, one obtains the transformation
A';H~ such that

n i=1

R; BR;
(42)

r t)r
(43)

If we select the arbitrary p(r) to be precisely pc(r), then it
follows that the necessary condition for a density which
was originally represented by an expansion such as (37),
which is obtain generally from a linear combination of
Slater determinants, to be exactly represented by a single
Slater determinant with orbitals I@;I is that

p(r)/n = R;(r) BR;(r)
I
X;(R;(r))

I

',
r Br

(38)

However, the representation in this case is not unique, as
any n of the m equidensity orbitals t/r; may be selected to
fulfill Eq. (41).

where i runs over the whole sum in Eq. (37). Obviously,
the orbital ACKNOWLEDGMENT
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2 1/2
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r Br
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