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We consider the factorization of two vector constants of the motion C—+, which were recently in-
troduced for the Coulomb problem [O. L. de Lange and R. E. Raab, Phys. Rev. A 34, 1650 (1986)].
The operators C —+ are quantum-mechanical analogs of the classical conserved vectors (1+iL& )A,
where L is the orbital angular momentum vector and A, is the Laplace-Runge-Lenz vector. It is
shown that C—can be factored in two different ways to yield operators which, apart from their
dependence on the constants of the motion L and H, are linear in either p or r. In this way we ob-
tain 16 abstract operators. The properties of these operators are investigated and the following ob-
servations are made: (i) Twelve are ladder operators for the quantum numbers I, and l and m, in the
eigenkets

~

Im ) of L and L,. In linearized, differential form six of these operators are ladder
operators for the spherical harmonics in the coordinate representation, while the other six are the
corresponding operators in the momentum representation. (ii) Two operators factorize an operator
related to the Hamiltonian. In linearized, differential form they are the two ladder operators for the
radial part of the coordinate-space wave functions which were discovered by Schrodinger. (iii) Two
operators yield a factorization which is related to Hylleraas s equation. In linearized, differential
form they are ladder operators for the radial part of the momentum-space wave function.

I. INTRODUCTION

Recently we discussed two vector operators which com-
mute with the Hamiltonian

H =(2M) ' —A' (Ma) 'r

for the Coulomb problem. [a =A' (Mk) ' is the Bohr ra-
dius if k =e (4~en) '. ] These are the operators'

Hermitian form can be derived, ' the expressions (4) are
sufficient for our purposes. ]

It can be shown that if the operators g —are solutions to
the equation

L g +Ag —1=0,
that is, if

g
+—=2' '( I+2S)

C—=A+t'8—+ ,

where

(2)
where

A= —,A' a(LXp —pXL)+r 'r

is the Pauli-I. enz operator,

B+-=Fg +-(L ),
and

(4)

= r 'r&I +A apL

L=r&(p is the orbital angular momentum operator. [The
operators 8+—,unlike A, are not Hermitian. Although an

then C—+ are ladder operators for the quantum numbers l,
and l and m, in the eigenkets

~

nlm ) for the Coulomb
problem. '

( n labels the energy. ) Specifically, C;,
C~+ ——C» +iC» , and C~ =C~~ iCy —tra—nsfo—rm

~

nlm )
into

~
n, l+ l, m ),

~
n, l+ l, m +1), and

~

n, l+ l, m —1),
respectively. Thus the superscript (subscript) + or —on
C indicates the effect on l(m. ). The operators C+— are
quantum-mechanical analogs of the two classical con-
served vectors A, +iB„wh r eAe, =(Mk) 'LXp+r 'r
is the Laplace-Runge-Lenz vector and B,= A, )&L (k is
the constant in f= kr r. ) Apart fro—m their depen-

35 951 Q~1987 The American Physical Society



-952 O. L. de LANGE AND R. E. RAAB 35

dence on a constant of the motion (L ) the operators C—
are quadratic functions of the momentum operator p and
are also nonlinear functions of the position operator r.

The purpose of this paper is twofold. Firstly, we show
that by suitably factorizing C— we obtain operators
which, apart from depending on constants of the motion
such as I. and H, are linear functions of either p or r.
Thus we can derive linear operators by replacing constants
of the motion with their eigenvalues. Secondly, we study
the properties of the operators derived by factorization.

The factorizations are presented in Secs. II and III; they
yield a total of 16 operators. The properties of these
abstract operators are investigated in Sec. IV. Twelve of
them are shown to be ladder operators for the quantum
numbers l, and l and m, of the eigenkets

~

im ) of L and
I, After linearization (that is, replacing constants of the
motion with their eigenvalues), six of these operators are
linear in p, the other six are linear in r. The wave-
mechanical versions of the former are ladder operators for
the spherical harmonics in the coordinate representation,
and of the latter are the corresponding operators in the
momentum representation. Four of these differential
operators are related to those derived by Infeld and Hull
in their study of factorization of the Sturm-Liouville
equation.

Two of the remaining four operators are linear in p,
apart from their dependence on I. . They factorize the
operator 2MH +A' a (S+—, ) [Eq. (44)]. Linearization
yields operators which factorize the radial Hamiltonian
[Eqs. (48) and (49)] and which are ladder operators for the
quantum number I in the eigenkets of this Hamiltonian. .

The corresponding wave-mechanical forms are the ladder
operators for the radial part of the coordinate-space wave
functions which were discovered by Schrodinger.

Finally, there are two operators which, apart from their
dependence on I. and H, are linear in r. They factorize
the operator fi r (p 2MH) + (2MH—)(2S+ 1) [Eq.
(52)]. Linearization yields operators which factorize the
radial Hylleraas operator [Eqs. (60) and (61)] and which
are ladder operators for the quantum number I in the
eigenkets of this radial operator [Eq. (63)]. The corre-
sponding wave-mechanical forms are ladder operators for
the radial part of the momentum-space wave functions.
As such they provide a simple method for calculating
these functions.

II. FACTORIZATIONS YIELDING OPERATORS
LINEAR IN p

U —=+ir 'r X L+ fir 'r(S+ —,
' ),

R —+ =+ir 'r p —A'(S+ —')r '+Ra '(S+ —,
'

)

and S is given by Eq. (8).
To prove Eq. (9) we first write out Eq. (13)

U +—=+ir 'r(r p)+irp+Rr 'r(S+ —,) .

(13)

[p, r '] =i%'r r,
and collecting terms we find

U +—g, +—=
I
—r r[(r p) —iA'r p+L ]+p(r p)

(16)

+ iR a '[r 'r(r p) rp—
+A' apL ][+Pi(S+ ,' )] ' . —(l7)

Use of the identity

L =r p —(r p) + iA'r p

and Eq. (3) shows that the term in curly brackets in Eq.
(17) is equal to fi a 'A. Comparison with Eqs. (4) and
(5) shows that the second term in Eq. (17) is equal to
i% a '8—+. This proves Eq. (9).

A noteworthy feature of the abstract operators (13) and
(14) is that apart from their dependence on L they are
linear in p. It is natural to inquire whether C—can also
be factored to yield operators which, apart from any
dependence on constants of the motion, are linear in r.
This is considered below.

III. FACTORIZATIONS YIELDING OPERATORS
LINEAR IN r

Again we state the results and then outline the proof;

C-'=i zA 'aV'P+g

from which it follows that

C,—= ~ —,A 'a V,
—P—+g —,

(19)

Now S is a function of L and therefore commutes with
all the operators in R —+ in Eq. (14). Multiplying out the
product U —R +—

, then using the commutators

(15)

We state the result of the first of the two factorizations
of C—+ and then outline the proof;

C+ ——i —,A 'a V+P+—g—+ ,

C—=i —,A 'a V—P—+g—+ .

(21)

(22)
C+—=A aU+—A—+ ,

from which it follows that

(9)

V+—=+ip 'p&L+fip 'p(S+ —,), (23)

C,—=A a U,—R—+ , (10) P =+if& 'p 'r.p(p ——2MH)+p '(p +2MH)(S+ —, )

C+ ——A aU+R —,
~ 2p '(p —2MH ), (24)

C—=A' aU —R+—.

Here

(12)
g

—are given by Eq. (7) and p = (p )'
The proof of these results is more cumbersome than
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that in Sec. II. It is useful to note that S, being a function
of L, commutes with all the operators in P + in—Eq. (24).
To prove Eq. (19) consider first the product of V- and
the second term on the right-hand side of Eq. (24). Writ-
ing p +2MH =2p —2' a 'r ', multiplying out, and
using Eqs. (2)—(5) yields ~

P+—
~

= (I —m + —,
' + —,

' )(I +m + —,
' + —,

' )a(-+, (36)

where the factors 13, y, and 5 commute with L and L,
These factors can be evaluated, either by using the
%'igner-Eckart theorem or from first principles. The re-
sults are

ih' 'aV —p "(p +2MH)(S+ —, )

=2(C— r'—r+iV pr— ')(g —
)

' 2ir—'r&L .

(25)

~ y
—

~

=(I+m+ —,'+ —,
' )(I+m+ —,'+ —,

'
)a(—+,

~

5-
~

=(I+m+ —,'+ —,
' )(I+m+ —, + —,

' )ai-,

(37)

(38)

C —+=i 2 A 'a V—+P—+g
—++6—+g—+ ,

where

b, +—=(r 'r+iV-+p 'r ')(g —+) '+ir 'rXL

+ —,R aV +—

p '(r p —2ih')(p —2M&) .

If in Eq. (27) we substitute

V—+=+ip 'p('r p)+ipr+hp 'p(S+ —,
' ),

r&(L=r(r p) —r p,

(26)

(27)

Solving Eq. (25) for C+— and using Eqs. (24) and (7) we
find

where a~
———(2l+1)(2l +1+2) '. Thus we find that the

twelve operators W,—, W~+, and W ( W= U or V) are
ladder operators for the quantum numbers l, and l and m,
of the eigenkets

j
lm ).

If we replace the operator 5 by its eigenvalues l + —,
' in

Eq. (13), we obtain the ladder operators derived by Corben
and Schwinger. It is useful to express these linear opera-
tors in spherical polar forms using the canonical conju-
gates ps, g and p&, P. The latter obey the fundamental
commutation rules that a member of one pair commutes
with each member of the other pair and also that
[ps, e(g)]= i A'B—e/Bg and [p~, @(P)]= —i%'8@/BP,
where 8 and @ are arbitrary functions of 8 and P, respec-
tively. It can be shown that in terms of p& and p~

p —2MH =24' a - 'r

and use Eqs. (7), (15), (16), and (18) and the commutators

L= (r sing) '[ cape+—e~(ps+i ,
'

A cotg—)] (39)

IV. INTERPRETATION AND DISCUSSION

A. The operators U —and V—

Consider first the operators U — and V+— defined by
Eqs. (13) and (23). It is straightforward to show that

[L„W,—]=0,
[L„W+]=A'W+,

[L„W—
]= fiW—

[L,W —]=+2A'~W~(S+ —,),

(29)

(30)

(31)

where W= U or V. If
~

Im ) is an eigenket of the opera-
tors L and L„ it follows from Eqs. (28)—(31) and the
eigenvalue equation

that

S
~

lm ) = ( I + —,
'

)
~

Im ) (32)

W,—
~

lm) =fiP
~

I+1,m ),
W~

~

lm ) =A'y +—
~

I+ 1,m +1),
W-

~

lm) =fi6+( I+1,m —1), —

(33)

(34)

(35)

fr, p]=ihr 'r,

[r, p ]=2ifir 'r p+2R r

some manipulation yields h. +—=0. This proves Eq. (19).
Apart from their dependence on. the constants of the
motion L and H, the abstract operators (23) and (24) are
linear functions of r.

Lz =5'y

Using these expressions and x =r sing cosP,
y =r sing sing, and z =r cosg in Eq. (13) with S replaced
by I + —,

'
we find the spherical polar forms

UP =+i (sing)pe+A'(I + —,
'

) cosg,

U+ ——+e' [i(cosg)ps+%'(I + —, ) sing

—(p&+ —,
' fi)(sing) '],

U: =+e '~[ i (cosg—)pe+Pi(I + —,
'

) sing

—(p~ ——,
' A')(sing) '] .

(41)

(42)

(43)

From Eqs. (41)—(43) we can write down wave-
mechanical operators by substituting ps ———i'( —, cotg
+8/Bg) and p~ ———ikey/Bp. The resulting differential
operators are ladder operators for the quantum numbers l
and m of spherical harmonics in the coordinate represen-
tation; The differential forms of U,—which follow from
Eq. (41) are closely related to the operators derived by In-
feld and Hull in their study of factorization of the
Sturm-Liouville equation.

Similar results apply to the operators linear in r, Eq.
(23). The linearized, differential forms of V, , V+, and
V— are the same as the corresponding operators which
follow from Eqs. (41)—(43), except that now 8 and P are
the angular coordinates of p rather than r. These dif-
ferential operators are ladder operators for the quantum
numbers l and I of spherical harmonics in the momen-
tum representation.
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B. The operators R—

It is straightforward to show that

(R+)'R+=2MH+rP a '-(S+ ')--'

Pg~ =+i% 'p 'r p(p2 —2ME)+ p '(p +2ME)(S+ ,' )—

+2p '(p —2ME) .

Then it can be shown that

(53)

where R+—are given by Eq. (14), H by Eq. (1), S by Eq. (8)
and f denotes the adjoint operator. Thus the operators
R —+ factorize the right-hand side of Eq. (44). Qne can
linearize R —+

by replacing S with its eigenvalues l + —,
' in

Eq. (14). This yields the abstract operators

[(Pg ) +2p]PF—.=A' A~+(2ME)(2S+1)2,

where

AE ——r (p —2ME)

(54)

R(———+ip„—A'(/+ —,+ —, )r '+Ra '(l + —,+ —, )

where the operator

p„=r -'r.p —Mr -'

(45)

(46)

—2ih'p. r(p' —2ME)+44'~(pz —2ME) . (55)

The action of the operator AE on a ket
~

nlm ) is the same
as that of r (p —2MH), as is evident from expanding the
latter and using

is the canonical conjugate of r. From Eq. (45) one can
show that the adjoint operators are given by

(RI—)t=RI++) . (47)

r [H, p ]=2ifi (Ma) '(p. rr '+2i fir ') .

Thus, noting Eq. (1), it follows that

AE
I
nlm) =4 (56)

RI++. )R) =2MH(—+A' a (l + —, + —, )

Here

(48)

Replacing S with l + 2 in Eq. (44) and using Eq. (47)
we find

an equation which was first deduced by Hylleraas. '

We can obtain operators PEI which are linear in r by re-
placing both H and S with their eigenvalues in Eq. (24),

PFI =+i' 'r~(p 2ME)+(—/+ —,'+ —, )p '(p +2ME),
H/ —(2M) &[ 2+/ /(/+ I )r 2g a p ] (49) (57)

H& nl) = —A' (2Ma n )
'

~
nl), (50)

is the radial Hamiltonian obtained from Eq. (1) by usin~
the identity L =r p —r p„ to eliminate p in favor of p„
and then replacing L with its eigenvalues. The factoriza-
tion (48) has been discussed by Newmarch and Golding.
If

~
nl ) denotes a bound-state eigenket of HI,

where the operator

r, =p-'p. r+Mp-' (58)

is the canonical conjugate of p. From Eq. (57) one can
show that the adjoint operators are given by

(PEt ) PE, i+ i +2p (59)
it follows from Eqs. (47), (48), and (50) that

R~-+
~

nl) =fia '[(l+ —,'+ —,
'

) n]'
~
n, l+1) —. (51)

which differs from the corresponding result for the opera-
tors Rj~ in Eq. (47). The operators (57) provide the fac-
torization

[In Eq. (51) an overall phase factor has been set equal to
+ 1.]

One can obtain wave-mechanical operators by substitut-
ing

PE (+)PEI =A Ag(+(2/+ I+ I) (2ME),

where

(60)

p, = i Rr ' —i ABIBr—
in Eq. (45). The resulting differential operators were first
presented long ago by Schrodinger; the solutions to the
wave-mechanical form of Eq. (51) are the familiar radial
coordinate-space wave functions for the bound states of
the Coulomb problem.

C. The operators P—

The properties of the operators P—+ can be analyzed in a
similar manner to those of R +—. Starting from Eq. (24)
one can show that

AEI =[r~+p R /(l+1)](p —2ME)

—2ihp. r(p —2ME)+4k' (p —2ME) . (61)

Equations (60) and (61) follow directly from Eqs. (54) and
(55) if we use the identity L =p r —p r to eliminate r
in favor of rz in Eq. (55), then replace L and S by their
eigenvalues and use Eq. (59). It is clear that the manner
in which the radial operator AE~ [Eq. (61)] is obtained
from the operator A~ [Eq. (55)] is analogous to the way in
which the radial Hamiltonian HI [Eq. (49)] follows from
the Hamiltonian [Eq. (1)].

Let
~

nl ) denote a bound-state eigenket of the operator
A~i with E = —A (2Ma n )

(P+ )tP =Pi r (p 2—MH) —+(2MH)(2S—+1) (52) A~~
~

nl ) =4' a
~

nl ) . (62)

which is the analog of the factorization in Eq. (44).
From Eq. (24) one can obtain operators Pg~ by replac-

ing H with its eigenvalue E:

[For notational convenience we do not distinguish be-
tween the eigenkets of Eqs. (50) and (62).] Then it follows
from Eqs. (60) and (62) that
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Operator

TABLE I. Summary of operators and their matrix elements.

Matrix elements'

1. W+- =+in)& L+An(5+ 2 )

(If n=r 'r, W=U [Eq. (13)];
if n=p 'p, W=V [Eq. (23)].)

(l'm'
~
~.—

~

lm ) =&[{i—m+ —,+ —,)(l+m+ ,'+ —,
'

)ai—]'—'5I, /+, 5~ ~
(l'm'

~
W+

~

lm ) =A'[{1+m + z +
z )(1+m+ 2+ z )ai—)' 5t, t+y5~, ~+~

( l'm '
I
II:

I
lm ) =h'[{1+m + z +

2 )(1+m + 2 + 2 )ai+]' —5r t+ ~5~,~

ai———(2l + 1)(2l + 1+2)

&+
2. Ri' ——+i@,—W(l + —,

' + —, )r

+A'a '(l+ —,+ —, )
' [Eq. {45)]

(nl'
)
Rl

(
nl ) =fia '[(l+ 2

+
~ ) —n ] 5r, t+i

3 I'E& =+iA' 'r~(p' —2ME)

+( l+ I'+
2 )p '(p2+2ME) [Eq. (57)]

(nl') PFt (
nl) =2%a '[1—(1+ , + —2 ) n ]' 5g t+)

(i) Phase factors have been omitted. (ii) In the matrix elements for RI—,
~

nl ) denotes a bound-state eigenket of Hl [Eq. {50)]. In the
matrix elements for Pz~,

~

nl ) denotes a bound-state eigenket of Aet [Eq. (62)].

(63) where

The coefficients in Eq. (63) can be evaluated by a straight-
forward calculation. The results are

a+—=2fia '[1—(l + —'+ —') n ]' (64)

where an overall phase factor has been set equal to + l.
The wave-mechanical versions of the abstract operators

PEt are found by putting rz ——imp '+iRB/t)p in Eq. (57),

PEt ——+(p —2ME) + (l + —, + —, )p

+(1+ , + , )(2ME)p—— (65)

If Eqs. (64) and (65) are substituted in Eq. (63), the result-
ing first-order differential equations can be readily solved.
The normalized wave functions obtained in this manner
are

z=(n p —Aa )(n p+fia )

and T~~(z) denotes a Gegenbauer polynomial. " These are
just the radial momentum-space wave functions for the
bound states of the Coulomb problem. They were first
calculated by Fourier-transforming the coordinate-space
wave functions. ' Momentum-space wave functions have
also been derived by solving Hylleraas's equation (56) in
spherical polar coordinates' and in toroidal coordinates, '

and by solving an integral equation for the Coulomb prob-
lem. "

We conclude by giving a summary of the 16 operators
derived in this paper, together with their matrix elements,
in Table I.
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