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The high-density solution of the hypernetted-chain equations for charge-cluster plasmas, as
mapped on the Onsager charge-smearing optimization, defines “Onsager molecules.” These are
natural generalizations of the ion-sphere (Thomas-Fermi) “atom.” The self-energy of these mole-
cules and their dissociation properties provide the key for the first accurate calculation of the

screening potentials in fluid classical plasmas.

Following Widom,! the m-body correlation function
g('")(rl,rz, ...,Im) of a fluid can be expressed through the
free-energy change upon fixing the positions of m fluid
particles in the appropriate configuration to form an m-
interaction-site molecule. As a special case, the zero-
separation theorem? relates the » =0 value of the plasma
pair-screening potential

H () =Inlg (r)exp(Bp(r))]

to the thermodynamics of plasma mixtures.® This relation
is the starting point for calculating enhancement factors of
nuclear reaction rates.* It played a key role in the study of
the short-range behavior of the bridge functions, notably
their universal characteristics.> The application of
Widom’s relation for calculating the complete pair corre-
lation function g (r), not to mention higher-order correla-
tion functions, has been out of reach of existing theories®
for the thermodynamics of molecular fluids. A new theory
for the statistical thermodynamics of interacting charged
particles’~!0 is, however, of the required accuracy and sim-
plicity to enable such a calculation. This theory is applied
here to a molecular fluid composed of clusters of positive
ions in a uniform neutralizing background charge density.
We calculate the m -particle screening potentials in classi-
cal plasmas. The results reported below represent the first
accurate calculation of fluid many-body correlation func-
tions from a theory for the thermodynamics of molecular
fluids.

To simplify the presentation we consider specifically
the three-dimensional (3D) one-component plasma
(OCP),*!!12 containing N positive point ions of charge Qe,
at temperature kg7 =B !, in a uniform neutraliz-
ing background of volume V (eventually N,V — oo,
n=N/V), characterized by the coupling parameter
I'=p(Qe)*/a. The Wigner-Seitz radius a =(3/4zn)??
serves as the unit of length in this paper, Bo(r) =I/r.

For pair correlations, the OCP potential of mean force
w(r)=—Inlg ()] is given by'?

w(r)==BIF§(N-) —Ff*(— ,N—2)1 . (1)

F§*(IV-) is the excess free energy of the OCP containing
N point ions. F{* is the excess free energy of a OCP in
which one pair of ions is kept at fixed separation r. That
is, F{* corresponds to an infinitely dilute solution of the
two-site point-charge molecule (-——) in a fluid of one-

s

site point-charge ions, altogether in a uniform background.
Ff* contains the electrostatic interaction between different
point charges in the molecule, i.c., (Qe)?/r, so that the
screening potential H (r) = —w (r) +I/r is finite for r =0,

From the exact diagrammatic expression one obtains*>
H@#)=h(@)—c@)—B(r), where h(r)=g(r)—1. The
direct correlation function ¢ (r) is related to 4 (r) by the
Ornstein-Zernike (OZ) equation, which in k space takes
the form é&(k)=h(k)/[1+né(k)]. B(r), the bridge
function, is expressed in terms of graphs with 4 (r) bonds
and at least triply connected field points. B(r)=0 defines
the hypernetted-chain (HNC) approximation. The mod-
ified-HNC theory corrects this approximation by employ-
ing, e.g., the hard-sphere bridge functions and the ansatz
of universality. The HNC integral equation,*>!1:14 ob-
tained from the HNC closure H(r) =h(r) —c(r) and the
OZ relation, can also be derived variationally from a free-
energy functional. This HNC free energy is of about 1%
accuracy for one- and multiple-component plasmas in two
and three dimensions, and it is much more accurate than
the (short-range) HNC g (r).

Our apporach is to iterate on the HNC approximation
by using it not via its closure relation, but rather via its
prediction for the free energies F§*, Ff*, which approach is -
relatively more accurate. Yet exact solutions of the HNC
equation for complex charge clusters, associated with
high-order correlations, are not within our reach. We need
more insight in order to perform the calculations.

Our theory implements’~'® the Onsager charge-
smearing optimization'>!¢ into the variational free-energy
functional of the HNC theory or the closely related'
mean-spherical approximation (MSA). This leads to an
approximate physically intuitive solution of the HNC in-
tegral equation for the structure. It yields, however, very
accurate results for the HNC free energy for all
0 <T < oo, Moreover, the leading I'— o results for ¢ (r)
and the free energy in our theory are the exact I'— oo
HNC results. These are calculated as interactions be-
tween smeared charges at distance r, and as self-energies
of the Onsager “atoms” and ‘“molecules,” respectively.
These self-energies give an exact lower bound to the true
potential energy of the system, which is a very tight bound
when I'> 1.

In the strong-coupling region  (I'>>>1) the free energies
F§*, F{* are dominated by the corresponding Madelung
potential-energy terms, for which the HNC-Onsager re-
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sults are!%!7 The triplet screening potentials
F& (N - )IT)C NUL(®) ) H(3)(r1,r2,r3)=—w(3)(r1,r2,r3)+r‘(r1_21 +rit+ral)
IT'— oo ’
N HNC (5b)
Ff* (5 ,N—=2) — (N=-2)U,(O)+U, . are finite for r35 and/or r13 and/or r,3=0.
I'— oo
- A most important property of the Onsager molecules, as
(3)  defined above, is their “dissociation” whenever any molec-

U, denotes the self-energy of an “Onsager atom” (the
ion-sphere Thomas-Fermi “atom”) consisting of a point
charge at the center of a neutralizing sphere (of radius a,
for the OCP) having the background charge density.
BU = —0.9T provides a tight bound to the bcc lattice en-
ergy —0.895929I". U, denotes the self-energy of the “On-
sager molecule” composed of a pair of ions at a distance r,
and a uniform neutralizing charge cloud of the back-
ground charge density. The shape of the molecule is deter-
mined by the (“isolation”) condition that the electrostatic
potential and field vanish on its surface, i.e., there are no
induced surface charges on the molecule if placed in an in-
finite neutral conductor. Denoting by HNC-F* the re-
sults obtained from the HNC predictions for the free ener-
gy, then from (1)-(3) we obtain

HNC-Fe*
W) — ﬁuz[@J—zﬁm(@) L@

The Onsager-molecule concept is readily extended for
higher-order correlation functions. For example, for the
triplet correlations

w(3)(r1,r2,r3) = —ln[g(”(rl,rz,r;)] N

we get
HNC-F&

w(3)(l‘1,l‘2,l'3) 1_:* ﬂU3[J—3ﬁU2(®) .

(5a)
J

ular point charge is of distance larger than 24 from all oth-
ers; e.g.,

U; { “ ;rn,r2322a]
=U2{ }+U1(®) . (6)

In order to calculate the self-energies for complex
geometries we seek a simple and accurate approximation
that has the dissociation property (6). It is given via the
“convolution-ball smearing” by which every molecular
point charge is uniformly smeared within a sphere of some
radius d;. The number of such independent parameters d;
depends on the symmetry of the molecule, e.g., we need
only one parameter for a symmetric polytop. Note, how-
ever, that with this “ball smearing” the resulting Onsager
lower bound for the energy approximates well the self-
energy of the Onsager molecule, but it is not the self-
energy of the resulting dumbbell configuration. This ener-
gy bound, denoted by uy, is equal to the difference be-
tween the smeared-charge-uniform-background and the
point-charge-uniform-background interactions, minus the
self-energy of the smeared charges, plus the self-energy of
the point charges (relative to the sum of all individual
self-energies of the point charges in the “molcule”). For
the “diatomic” two-charge molecule we obtain!®

U[@ ] = — [24d%+23d 7'+ Wy ()] +T/r =pug ™

subject to Ouy/dd =0 which gives d(r). W¥yu(r)
=d " 'W¥,(r/d) is the electrostatic interaction between two
uniformly charged spheres of radius d, unit total charge,
and separation r, given for d =1 by'®

[%—%rz-i‘ Er—isr r=<2
Vi) = r1 ' r=2
= "‘rlim cunc@)/T . (8)

r1im HE)/T=Hy) )T =31+ @)+ 5¥,Q2)1/11+ 1)1V -1},

HNC-Fe*

r=2z[1+1()]1"3 .

T
It is useful'® to define the “Ewald function”

f@)=[¥(2z)+2z¥{(22)1/¥,(0) ,

ie, fz=1)=0, f(z<1)=1—522+52z3—25 Using the
optimized d (r) from (7), and defining z =r/2d, we obtain
the following parametric expression for the screening po-
tential representing the HNC result for the free-energy
difference:

(9a)

(9b)

Note that d/a =[1+f(z)]1'/? ranges from 1 at » =2a (dissociation) to 2 at 7 =0. Without optimization, namely, using
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d(r) =1, we obtain the HNC-closure (HNC-cl) result

Hij=1(r)/T=%¥(r)= lim H()/T
HNC-dl

= lim_[hane(r) = canc(I/T . (10)

Hy,)(r) is in excellent agreement with both the simula-
tions and modified-HNC calculations for the'strongly cou-
pled fluid OCP (see Fig. 1). Comparison of (9) and (10)
with the modified-HNC results shows clearly that the
bridge-diagram contributions (i.e., those missing in the
HNC closure) are provided by the Onsager-molecule con-
cept.

Note that Hy)(r) =Hy=1(r) =T/r for r =2 (the disso-
ciation property), and that both functions are continuous
with three continuous derivatives. That is why both func-
tions are already nearly the same for r 2 1. This feature
explains why the available simulation data, unguided by a
suitable theory, led to different interpretations of the scal-
ing properties of the screening potentials for multicom-
ponent plasmas, and of their “linear” behavior for
0.5 <r <1.5.% Note also that for small 7,

Hai)(r) =T 35 (257 =2) —%,24. e

in agreement with the well-known ion-sphere result, and
Jancovici’s? leading 72 term, for small . It should be em-
phasized that our method does not give any direct pro-
cedure for also obtaining ¢ (r) in close agreement with the
modified-HNC results. Our short-range H (r) should sup-
plement the simulation results for g (), together providing
the data to be fitted by an appropriate bridge function in
the modified-HNC scheme. Within this context, our Fig.
1 just supplements the discussion in Ref. 5.

The dissociation property plays a key role for all values
of I'. The convolution-ball smearing that leads to (7) and
(9), when incorporated into the Debye-Huckel (DH) or
MSA free-energy functional, provides an effective interpo-
lation between the weak- (I'<< 1) and strong- (I'>>1) cou-
pling regions which are well represented by the DH
(d;~0) and Onsager (d;~1) lower bounds,”® respective-
ly. The OCP excess free energy is thus characterized by
one smearing parameter do(I"), which varies from do=1
for '— oo to d =0 for I'— 0, and represents the size of
the effective hard-core radius. The molecular smearing
radius d{(T,do(I")) is obtained by optimizing the free-
energy functional approximating F{*. Careful analysis of
the resulting expression for H (r) reveals the following:
For either T'<1 or r 2 2do(I"), the full HNC closure is ob-
tained,

H(r)HNc_FethHNC(r) _CHNC(r ), (11)
I'Slorrz2do@) .

Comparison with (8) and (10) shows that the 4 (r) part in
(11) is an entropic contribution for F§* at large I". Indeed,
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FIG. 1. Pair-screening potential H (r) of the strongly coupled
OCP. The line 1.25-0.39r fits well the simulation results in the
range 0.5 <r < 1.8 for all TX5 (Fig. 7 in Ref. 4). The symbols
represent the HNC I' =800 results (Ref. 20) for ¢ ()/T" and the
I'=80 results for H(r)/T" as obtained by the Modified-HNC
(MHNC) equation (Ref. 5). The theoretical predictions ¥,(r)
and Hy()(r) are described in the text.

numerical solutions?® of the HNC equation for the OCP
gives

hHNc(r)GCSex/NkBOCFI/2 .

The same analysis leads to the following results for
higher-order screening potentials:

H™ (1, . .. Ensrij 2 2do(T) or TS 1) yne.per

= Z [hHNc(rij)—cHNc(r,-j)] . (12)
2

This is the Kirkwood superposition approximation?!
(KSA) combined with the HNC closure for the OCP. The
short-range behavior of the bridge functions and the cross-
over to KSA-HNC are natural consequences of the
Onsager molecules and their dissociation property.
© Our results provide the rational for solving the
Thomas-Fermi confined-molecule problem in order to cal-
culate enhancement factors for nuclear reaction rates, and
other short-range correlation effects in dense matter. Our
method, concepts, and qualitative results are valid for a
general D-dimensional multicomponent plasma, in which
the charges may be associated with any Green’s function
potentials, the Coulomb and screened-Coulomb (Yukawa)
potentials being the most important cases. Detailed
analysis and calculations for multicomponent plasmas,
along with a discussion of possible extensions of the
method to other classical fluids, will be presented sepa-
rately.
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