Shifted $1 / N$ expansion for the Hulthén potential

A. Z. Tang and F. T. Chan
Physics Department, University of Arkansas, Fayetteville, Arkansas 72701

(Received 19 June 1986)

Abstract

The shifted $1 / N$ expansion method is applied to the Hulthén potential. Numerical results for the energy values for $n=1-5$ states are presented. For $l=0$ states, the agreement between our results and the exact analytical solution is excellent.

Large- N expansion approximations have recently received much attention ${ }^{1,2}$ because they offer the possibility of analytically handling interactions which need not be small. In the context of the nonrelativistic Schrödinger equation, it is interesting to note that for spherically symmetric potentials N and l always appear together in the form $k \equiv N+2 l, N$ being the number of spatial dimensions and l the eigenvalue of the N-dimensional orbital angular momentum. For the power-law potential $V(r)=A r^{v}$, systematic and analytic procedures for finding the energy eigenvalue have been developed to successive orders in the parameter $1 / k$. At the end of the calculation N is set equal to the physical value 3 . Since $1 / k \simeq \frac{1}{3}$ is not a very small expansion parameter, to obtain accurate results with perturbation theory one must calculate many orders, each order getting progressively much more complicated.

To improve series convergence, Sukhatme, Imbo, and Pagnamenta ${ }^{3,4}$ have recently constructed a modified version of the $1 / N$ expansion for the Schrödinger equation. This method, called the shifted $1 / N$ expansion, uses the quantity $1 / \bar{k}$ as an expansion parameter, where $\bar{k}=k-a=N+2 l-a$, and a is a suitable shift and a negative number. In a subsequent paper, ${ }^{5}$ they applied the method to the Yukawa potential $V(r)=-A e^{-\beta r} / r$. In comparison with the "exact" numerical results, the shifted $1 / N$ expansion scheme indeed surpasses all other currently available approximation procedures "for its simplicity, accuracy, and wide range of applicability."

In this paper we study the Hulthén potential via the shifted $1 / N$ expansion technique. The Hulthén potential is exactly solvable only for the $l=0$ states, thereby providing an excellent check for the method; such checks are important because they give us confidence in the results of $l \neq 0$ states. Atomic units will be used unless otherwise stated.

The Hulthén potential ${ }^{6}$

$$
\begin{equation*}
V(r)=-\frac{\delta e^{-\delta r}}{1-e^{-\delta r}} \tag{1}
\end{equation*}
$$

is of considerable interest and importance in atomic physics. In Eq. (1) δ, a constant, is called the screening parameter. To the best of our knowledge, the exact analytic energy eigenvalues are available only for $l=0$ states $^{6-8}$ and are given by

$$
\begin{equation*}
E_{n 0}^{\text {exact }}=-\frac{\delta^{2}}{2}\left[\frac{2 / \delta-n^{2}}{2 n}\right]^{2} \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
n^{2}<\frac{2}{\delta} \tag{3}
\end{equation*}
$$

which means that the number of bound states is limited. For very small screening parameter δ, the Hulthen potential reduces to the Coulomb potential $1 / r$, and the corresponding energy eigenvalues, Eq. (2), reduce to

$$
\begin{equation*}
E_{n}^{\text {Coulomb }}=-\frac{1}{2 n^{2}} \tag{4}
\end{equation*}
$$

which is the Coulomb energy level, as expected.
We refer the reader to Refs. 4 and 5 for the detailed derivation of the formulas needed in this work. (Our notation follows that of these two references which will be referred to as IPS1 (Ref. 4) and IPS2, ${ }^{5}$ respectively; IPS1 Eq. (4) means Eq. (4) of IPS1.)

The energy eigenvalues are given by IPS2 Eq. (3) as an expression in powers of $1 / \bar{k}$,

FIG. 1. Energy eigenvalues for $n=1-3$ Hulthén states as a function of δ. As $\delta \rightarrow 0$, curves for different l states (same n) approach each other owing to the accidental symmetry of the Coulomb potential.

TABLE I. Energy eigenvalues vs δ for $n=1-5$ Hulthén states. $E^{(0)}=\left(\bar{K} / r_{0}\right)^{2}\left[\frac{1}{8}+r_{0}^{2} V\left(r_{0}\right) / Q\right]$ is the leading contribution and the energy $E^{(2)}=\left(\bar{K} / r_{0}\right)^{2}\left\{\left[\frac{1}{8}+r_{0}^{2} V\left(r_{0}\right) / Q\right]+\Gamma^{(1)} / \bar{K}^{2}+\Gamma^{(2)} / \bar{K}^{3}\right\}$ includes two corrections in the $1 / \bar{k}$ expansion. Note that for small δ our results are typically accurate to one part in $10^{14}-10^{9}$.

States	δ	$-E^{(0)}$	$-E^{(2)}$	$-E_{\text {exact }}$ [Eq. (2)]
(1) $1 \mathrm{~s}\left(n_{r}=l=0\right)$	0.002	0.4990005	0.4990005	0.4990005
	0.01	0.4950125	0.4950125	0.4950125
	0.05	0.4753125	0.4753125	0.4753125
	0.2	0.4049981	0.4049962	0.4050000
	0.5	0.2811969	0.2812472	0.2812500
	1.00	0.1234887	0.1248160	0.1250000
	1.2	0.0765889	0.0795622	0.0800000
(2) $2 s\left(n_{r}=1, l=0\right)$	0.002	0.1240023	0.1240020	0.1240020
	0.01	0.1200583	0.1200500	0.1200500
	0.05	0.1014559	0.1012503	0.1012500
	0.1	0.0807940	0.0800046	0.0800000
	0.2	0.0476974	0.0450856	0.0450000
(3) $2 p\left(n_{r}=0, l=1\right)$	0.002	0.1240017	0.1240017	
	0.01	0.1200417	0.1200417	
	0.02	0.1151667	0.1151667	
	0.05	0.1010423	0.1010424	
	0.1	0.0791765	0.0791794	
	0.2	0.0418279	0.0418857	
(4) $3 s\left(n_{r}=2, l=0\right)$		0.0545611	0.0545601	
	0.01	0.0506930	0.0506681	0.0506681
	0.02	0.0461046	0.0460057	0.0460056
	0.05	0.0339556	0.0333746	0.0333681
	0.1	0.0187130	0.0169274	0.0168056
(5) $3 p\left(n_{r}=1, l=1\right)$	0.002	0.05456006	0.05455972	
	0.01	0.05066805	0.05065973	
	0.02	0.04600542	0.04597236	
	0.05	0.03336226	0.03316518	
	0.1	0.01669958	0.01606772	
(6) $3 \mathrm{D}\left(n_{r}=0, l=2\right)$	0.002	0.0545591	0.0545591	
	0.01	0.0506431	0.0506431	
	0.02	0.0459058	0.0459058	
	0.05	0.0327521	0.0327532	
	0.1	0.0144609	0.0144842	
(7) $4 s\left(n_{r}=3, l=0\right)$		0.0302600	0.0302580	
	0.01	0.0264996	0.0264501	0.0264500
	0.02	0.0222439	0.0220512	0.0220500
	0.05	0.0122645	0.0113035	0.0112500
(8) $4 p\left(n_{r}=2, l=1\right)$	0.002	0.0302587	0.0302577	
	0.01	0.0264665	0.0264417	
	0.02	0.0221144	0.0220174	
	0.05	0.0115745	0.0110725	
(9) $4 D\left(n_{r}=1, l=2\right)$	0.002	0.0302573	0.0302570	
	0.01	0.0264334	0.0264251	
	0.02	0.0219836	0.0219510	
	0.05	0.0108420	0.0106690	
(10) $4 F\left(n_{r}=0, l=3\right)$	0.002	0.0302560	0.0302560	
	0.01	0.0264001	0.0264001	
	0.02	0.0218514	0.0218515	
	0.05	0.0100575	0.0100620	

TABLE I. (Continued.)

States	δ	$-E^{(0)}$	$-E^{(2)}$	$-E_{\text {exact }}$ [Eq. (2)]
(11) $5 s\left(n_{r}=4, l=0\right)$	0.001	0.0195040	0.0195031	0.0195031
	0.005	0.0175989	0.0175781	0.0175781
	0.01	0.0153943	0.0153128	0.0153125
	0.02	0.0115583	0.0112554	0.0112500
	0.025	0.0099132	0.0946694	0.0945313
(12) $5 p\left(n_{r}=3, l=1\right)$	0.002	0.0190142	0.0190122	
	0.01	0.0153534	0.0153043	
	0.02	0.0114041	0.0112197	
	0.025	0.0096826	0.0094087	
	0.002	0.0190125	0.0190115	
	0.01	0.0153123	0.0152877	
	0.02	0.0112468	0.0111533	
	0.025	0.0094450	0.0093050	
	0.002	0.0190108	0.0190105	
	0.01	0.0152710	0.0152628	
	0.02	0.0110862	0.0110547	
	0.025	0.0091997	0.0091523	
	0.002	0.0190092	0.0190092	
	0.01	0.0152295	0.0152295	
	0.02	0.0109221	0.0109224	
	0.025	0.0089459	0.0089465	

$$
\begin{align*}
E_{n_{r}, l}=\left[\frac{\bar{K}}{r_{0}}\right]^{2} & {\left[\left(\frac{1}{8}+r_{0}^{2} V\left(r_{0}\right) / Q\right]\right.} \\
& \left.+\frac{\Gamma^{(1)}}{\bar{K}^{2}}+\frac{\Gamma^{(2)}}{\bar{K}^{3}}+O\left[\frac{1}{\bar{K}^{4}}\right]\right] \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
& a=2-2\left(2 n_{r}+1\right) \omega, \tag{6}\\
& \omega=\widetilde{\omega} / 2, \tag{7}\\
& \widetilde{\omega}=\left[3+r_{0} V^{\prime \prime}\left(r_{0}\right) / V^{\prime}\left(r_{0}\right)\right]^{1 / 2}, \tag{8}\\
& Q=4 r_{0}^{3} V^{\prime}\left(r_{0}\right), \tag{9}
\end{align*}
$$

and the quantity r_{0} satisfies the equation

$$
\begin{align*}
N+2 l-2+\left(2 n_{r}+1\right)\left[3+r_{0} V^{\prime \prime}\left(r_{0}\right)\right. & \left./ V^{\prime}\left(r_{0}\right)\right]^{1 / 2} \\
& =\left[4 r_{0}^{3} V^{\prime}\left(r_{0}\right)\right]^{1 / 2} \tag{10}
\end{align*}
$$

Equations (6)-(10) are simply IPS2 Eqs. (4) and (5) except that we use n_{r}, the radial quantum number, in place of n in IPS1 and IPS2. The explicit expressions for the corrections to the leading order [the terms inside the square brackets in Eq. (5)], $\Gamma^{(i)}(i=1,2)$, can readily be written down from IPS1 Eqs. (13) and (14), and (B6)-(B11). Notice that the choice of the shift a, given in Eq. (6), gives exact energy eigenvalues from the leading term of the $1 / \bar{k}$ expansion for Coulomb and harmonic-oscillator potentials. ${ }^{3}$

We have applied Eqs. (5)-(10) and the corresponding expressions for $\Gamma^{(1)}$ and $\Gamma^{(2)}$ in IPS1 and IPS2 to the case where $V(r)$ is the Hulthén potential [Eq. (1)] with $N=3$. In Table I we have listed numerically the energy eigenvalues for a wide range of n_{r}, l, and δ. For $l=0$ states, our numerical results obtained by means of the shifted $1 / N$ expansion and the exact analytical results [Eq. (2)] match to at least three places. Thus the reliability of the method and our numerical codes are established. A more qualitative picture is provided by Figs. 1 and 2. In partic-

FIG. 2. Percent error in the shifted $1 / N$ expansion for the ground-state energy eigenvalues vs δ. The curve marked 2nd corresponds to the leading term and two corrections.
ular, we have plotted the percent error of our $1 s$ results as a function of δ in Fig. 2. Note that in the region $\delta<1.2$, the first three terms in the $1 / \bar{k}$ expansion converge nicely, whereas in the region $\delta>1.2$ (also see Table I) successive contributions from the perturbation series are substantial and the expansion is not valid. The reason for the δ dependence is that the value of the shift a is fixed such as to reproduce the exact analytic results for the Coulomb potential (corresponding to the Hulthén potential with $\delta \rightarrow 0$). Hence our results are especially accurate for small δ. On the other hand, as δ increases and approaches a critical value δ_{c}, the energy eigenvalues approach zero, a situation corresponding to the case of no bound states, and the expansion technique breaks down. Furthermore, we do not expect that the shifted $1 / N$ expansion works well for very high n_{r} since $\Gamma^{(i)}$ contains terms proportion-
al to n_{r}^{3}. Anyhow, the results presented in Table I are quite accurate for both $l=0$ and $l \neq 0$ states.

In conclusion, we would like to point out that although the shifted $1 / N$ expansion scheme works quite well for the Hulthén potential, extensive applications to other potentials are needed to test the credibility of the method and therefore would be of great value. We are currently carrying out such an investigation.

We are deeply indebted to Dr. B. K. Cheng for drawing our attention to the recently developed shifted $1 / N$ expansion and to Mr. Kenneth Phillips for reading the manuscript. This research was supported in part by dual funding from NSF-EPSCOR Grant No. ISP-80-11447 and the State of Arkansas.
${ }^{1}$ L. Mlodinow and N. Papanicolaou, Ann. Phys. (N.Y.) 128, 314 (1980); 131, 1 (1981).
${ }^{2}$ C. Bender, L. Mlodinov, and N. Papanicolaou, Phys. Rev. A 25, 1305 (1982).
${ }^{3}$ U. Sukhatme and T. Imbo, Phys. Rev. D 28, 418 (1983).
${ }^{4}$ T. Imbo, A. Pagnamenta, and U. Sukhatme, Phys. Rev. D 29, 1669 (1984).
${ }^{5}$ T. Imbo, A. Pagnamenta, and U. Sukhatme, Phys. Lett. 105 A, 183 (1984).
${ }^{6}$ L. Hulthén, Arkiv. Mat. Astron. Fys. 28 A, No. 5 (1942).
${ }^{7}$ C. S. Lam and Y. P. Varshni, Phys. Rev. A 4, 1875 (1971).
${ }^{8}$ S. Flügge, Practical Quantum Mechanics (Springer-Verlag, Berlin, 1974), pp. 175-178.

