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Shifted 1/N expansion for the Hulthen potential
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The shifted 1/X expansion method is applied to the Hulthen potential. Numerical results for the

energy values for n =1—5 states are presented. For I =0 states, the agreement between our results

and the exact analytical solution is excellent.

Large-N expansion approximations have recently re-
ceived much attention' because they offer the possibility
of analytically handling interactions which need not be
small. In the context of the nonrelativistic Schrodinger
equation, it is interesting to note that for spherically sym-
metric potentials N'and l always appear together in the
form k=—N+2l, N being the number of spatial dimen-
sions and I the eigenvalue of the N-dimensional orbital
angular momentum. For the power-law potential
V(v)=Ar, systematic and analytic procedures for find-
ing the energy eigenvalue have been developed to succes-
sive orders in the parameter 1/k. At the end of the calcu-
lation N is set equal to the physical value 3. Since
1/k= —, is not a very small expansion parameter, to ob-

tain accurate results with perturbation theory one must
calculate many orders, each order getting progressively
much more complicated.

To improve series convergence, Sukhatme, Imbo, and
Pagnamenta ' have recently constructed a modified ver-
sion of the 1/N expansion for the Schrodinger equation.
This method, called the shifted 1/N expansion, uses the
quantity 1/k as an expansion parameter, where
k =k —a =N+2l —a, and a is a suitable shift and a neg-
ative number. In a subsequent paper, they applied the
method to the Yukawa potential V(r) = —Ae ~"/r. In
comparison with the "exact" numerical results, the shifted
1/N expansion scheme indeed surpasses all other current-
ly available approximation procedures "for its simplicity,
accuracy, and wide range of applicability. "

In this paper we study the Hulthen potential via the
shifted 1/N expansion technique. The Hulthen potential
is exactly solvable only for the l =0 states, thereby pro-
viding an excellent check for the method; such checks are
important because they give us confidence in the results of
l&0 states. Atomic units will be used unless otherwise
stated.

The Hulthen potential

with
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which means that the number of bound states is limited.
For very small screening parameter 6, the Hulthen poten-
tial reduces to the Coulomb potential 1/r, and the corre-
sponding energy eigenvalues, Eq. (2), reduce to
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which is the Coulomb energy level, as expected.
We refer the reader to Refs. 4 and 5 for the detailed

derivation of the formulas needed in this work. (Our no-
tation follows that of these two references which will be
referred to as IPS1 (Ref. 4) and IPS2, respectively; IPS1
Eq. (4) means Eq. (4) of IPS1.)

The energy eigenvalues are given by IPS2 Eq. (3) as an
expression in powers of 1/k,

3d

exact ~ 2/
nO (2)

is of considerable interest and importance in atomic phys-
ics. In Eq. (1) 5, a constant, is called the screening param-
eter. To the best of our knowledge, the exact analytic en-

ergy eigenvalues are available only for l =0 states and
are given by
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FIG. 1. Energy eigenvalues for n =1—3 Hulthen states as a
function of 6. As 5~0, curves for different I states (same n)
approach each other owing to the accidental symmetry of the
Coulomb potential.
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TABLE I. Energy eigenvalues vs 5 for n = I—5 Hulthen states. E' '=(E/ro) [Ti+roV(ro)/Q] is

the leading contribution and the energy E' '=(17/ro) [[Ti+roV(ro)/Q]+I "'/Z +I' '/l7. 3] includes

two corrections in the 1/k expansion. Note that for small 6 our results are typically accurate to one
part in 10' —10 .

States

(1) 1s ( n, = l =0)

{2) 2s (n, =l, l =0)

0.002
0.01
0.05
0.2
0.5
1.00
1.2

0.002
0.01
0.05
0.1

0.2

0.499 000 5
0.495 012 5
0.475 312 5
0.404 998 1

0.281 1969
0.123 488 7
0.076 588 9

0.124 002 3
0.120058 3
0.101455 9
0.080 794 0
0.047 697 4

0.499 000 5
0.495 012 5
0.475 312 5
0.404 996 2
0.281 247 2
0.124 8160
0.079 562 2

0.124 002 0
0.120050 0
0.101250 3
0.080 004 6
0.045 085 6

E,—„„, [Eq. (2)]

0.499 000 5
0.495 012 5
0.475 312 5
0.405 000 0
0.281 250 0
0.125 000 0
0.080 000 0

0.124 002 0
0.1200500
0.101250 0
0.080 000 0
0.045 000 0

(3) 2p (n„=O, l =1) 0.002
0.01
0.02
0.05
0.1

0.2

0.124 001 7
0.120041 7
0.115 166 7
0.101042 3
0.079 176 5

0.041 827 9

0.124001 7
0.120 Q41 7
0.115 166 7
0.101042 4
0.079 1794
0.041 885 7

(4) 3s (n„=2,l =0) 0.002
0.01
0.02
0.05
0.1

0.054 561 1

0.050 693 0
0.046 104 6
0.033 955 6
0.018 7130

0.054 560 1

0.050 668 1

0.046 005 7
0.033 374 6
0.016927 4

0.054 560 1

0.050 668 1

0.046 005 6
0.033 368 1

0.016 805 6

(5) 3p (n„= l, l =1) 0.002
0.01
0.02
0.05
0.1

0.054 560 06
0.050 668 05
0.046 005 42
0.033 362 26
0.016 699 58

0.054 559 72
0.050 659 73
0.045 972 36
0.033 165 18
0.016067 72

(6) 3D (n„=O, l =2)

(7) 4s ( n„=3, l =0)

0.002
0.01
0.02
0.05
0.1

0.002
0.01
0.02
0.05

0.054 559 1

0.050 643 1

0.045 905 8
0.032 752 1

0.014460 9

0.030 260 0
0.026 499 6
0.022 243 9
0.012 264 5

0.054 559 1

0.050 643 1

0.045 905 8
0.032 753 2
0.014484 2

0.030 258 0
0.026 450 1

0.022 051 2
0.011303 5

0.030 258 0
0.026 450 0
0.022 050 0
0.011 250 0

(8) 4p (n, =2, l =1) 0.002
0.01
0.02
0.05

0.030 258 7
0.026 466 5
0.022 1144
0.011 574 5

0.030 257 7
0.026 441 7
0.022 0174
0.011072 5

(9) 4D (n„=l, l =2) 0.002
0.01
0.02
0.05

0.030 257 3
0.026 433 4
0.021 983 6
0.010842 0

0.030 257 0
0.026 425 1

0.021 951 0
0.010669 0

(10) 4F (n„=O, l =3) 0.002
0.01
0.02
0.05

0.030 256 0
0.026 400 1

0.021 851 4
0.010057 5

0.030 256 0
0.026 400 1

0.021 851 5
0.010062 0
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TABLE I. (Continued. )

States E(0) E(2) —&--t [Eq. (2)l

(11) Ss {n„=4,l =0) 0.001
0.005
0.01
0.02
0.025

0.0195040
0.017 598 9
0.015 394 3
0.011 558 3
0.009 9132

0.019503 1

0.017S78 1

0.015 312 8
0.011255 4
0.094 669 4

0.019503 1

0.017578 1

0.015 312 5

0.011250 0
0.094 531 3

(12) Sp (n„=3,l =1) 0.002
0.01
0.02
0.025

0.019014 2
0.015 353 4
0.011404 1

0.009 682 6

0.019012 2
0.015 304 3
0.011219 7
0.009 408 7

(13) SD {n„=2, l =2) 0.002
0.01
0.02
0.025

0.019012 5
0.015 312 3
0.011246 8
0.009 445 0

0.019011 5
0.015 287 7
0.011 153 3
0.009 305 0

(14) SI' (n„=l, l =3) 0.002
0.01
0.02
0.025

0.0190108
0.015 271 0
0.011086 2
0.009 1997

0.0190105
0.015 262 8
0.011054 7
0.009 152 3

(15) 56 (n, =0,1=4) 0.002
0.01
0.02
0.025

0.019009 2
0.015229 5
0.010922 1

0.008 945 9

0.019009 2
0.015 229 5
0.010922 4
0.008 946 5

E„
2

—+rpV(rp)/Q
1

8

I. ' I ' 1+ ~+ —3+0 —4L K E

where

a =2—2(2n„+1)co,

cil =co/2,

co=[3+roV"(ro)/V (ro)] ~

Q =4ro V'(ro»

and the quantity r p satisfies the equation

N+2l —2+(2n +1)[3+"oV"(r )/oV'(r )]p'~

= [4roV'(ro)]

(5)

(6)

(9)

(10)

We have applied Eqs. (5)—(10) and the corresponding
expressions for I'" and I' ' in IPS1 and IPS2 to the case
where V(r) is the Hulthen potential [Eq. (1)] with N =3.
In Table I we have listed numerically the energy eigen-
values for a wide range of n„, l, and 5. For l =0 states,
our numerical results obtained by means of the shifted
1/N expansion and the exact analytical results [Eq. (2)]
match to at least three places. Thus the reliability of the
method and our numerical codes are established. A more
qualitative picture is provided by Figs. 1 and 2. In partic-

0
)I

Equations (6)—(10) are simply IPS2 Eqs. (4) and (5) except
that we use n„ the radial quantum number, in place of n
in IPS1 and IPS2. The explicit expressions for the correc-
tions to the leading order [the terms inside the square
brackets in Eq. (5)], I" (i =1,2), can readily be written
down from IPS1 Eqs. (13) and (14), and (B6)—(Bl1). No-
tice that the choice of the shift a, given in Eq. (6), gives
exact energy eigenvalues from the leading term of the 1/k
expansion for Coulomb and harmonic-oscillator poten-
tials.

I

.2
l

.4
I

.6
I
1.0 I.2

FIG. 2. Percent error in the shifted 1/X expansion for the
/

ground-state energy eigenvalues vs 6. . The curve marked 2nd
corresponds to the leading term and two corrections.
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ular, we have plotted the percent error of our 1s results as
a function of 6 in Fig. 2. Note that in the region 6 & 1.2,
the first three. terms in the 1/k expansion converge nicely,
whereas in the region 5~ 1.2 (also see Table I) successive
contributions from the perturbation series are substantial
and the expansion is not valid. The reason for the 5
dependence is that the value of the shift a is fixed such as
to reproduce the exact analytic results for the Coulomb
potential (corresponding to the Hulthen potential with
5~0). Hence our results are especially accurate for small
5. On the other hand, as 6 increases and approaches a
critical value 6„ the energy eigenvalues approach zero, a
situation corresponding to the case of no bound states,
and the expansion technique breaks down. Furthermore,
we do not expect that the shifted 1/N expansion works
well for very high n, since I"contains terms proportion-

al to n, . Anyhow, the results presented in Table I are
3

quite accurate for both l =0 and l&0 states.
In conclusion, we would like to point out that although

the shifted 1/N expansion scheme works quite well for
the Hulthen potential, extensive applications to other po-
tentials are needed to. test the credibility of the method
and therefore would be of great value. We are currently
carrying out such an investigation.

We are deeply indebted to Dr. B. K. Cheng for drawing
our attention to the recently developed shifted 1/N ex-
pansion and to Mr. Kenneth Phillips for reading the
manuscript. This research was supported in part by dual
funding from NSF-EPSCOR Grant No. ISP-80-11447
and the State of Arkansas.
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