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The shifted 1/N expansion method is applied to the Hulthén potential. Numerical results for the
energy values for n =1—5 states are presented. For [ =0 states, the agreement between our results

and the exact analytical solution is excellent.

Large-N expansion approximations have recently re-
ceived much attention!? because they offer the possibility
of analytically handling interactions which need not be
small. In the context of the nonrelativistic Schrodinger
equation, it is interesting to note that for spherically sym-
metric potentials N and [/ always appear together in the
form k=N +2I, N being the number of spatial dimen-
sions and [ the eigenvalue of the N-dimensional orbital
angular momentum. For the power-law potential
V(r)=Ar", systematic and analytic procedures for find-
ing the energy eigenvalue have been developed to succes-
sive orders in the parameter 1/k. At the end of the calcu-
lation N is set equal to the physical value 3. Since
1/ kz% is not a very small expansion parameter, to ob-
tain accurate results with perturbation theory one must
calculate many orders, each order getting progressively
much more complicated.

To improve series convergence, Sukhatme, Imbo, and
Pagnamenta®* have recently constructed a modified ver-
sion of the 1/N expansion for the Schrédinger equation.
This method, called the shifted 1/N expansion, uses the
quantity 1/k as an expansion parameter, where
k=k —a =N +2I] —a, and q is a suitable shift and a neg-
ative number. In a subsequent paper,’ they applied the
method to the Yukawa potential V(r)=—Ade #/r. In
comparison with the “exact” numerical results, the shifted
1/ N expansion scheme indeed surpasses all other current-
ly available approximation procedures “for its simplicity,
accuracy, and wide range of applicability.”

In this paper we study the Hulthén potential via the
shifted 1/N expansion technique. The Hulthén potential
is exactly solvable only for the / =0 states, thereby pro-
viding an excellent check for the method; such checks are
important because they give us confidence in the results of
[5£0 states. Atomic units will be used unless otherwise
stated.

The Hulthén potential®
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is of considerable interest and importance in atomic phys-
ics. In Eq. (1) &, a constant, is called the screening param-
eter. To the best of our knowledge, the exact analytic en-

ergy eigenvalues are available only for [ =0 states®~® and
are given by
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which means that the number of bound states is limited.
For very small screening parameter 8, the Hulthén poten-

tial reduces to the Coulomb potential 1/r, and the corre-
sponding energy eigenvalues, Eq. (2), reduce to

(3)
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which is the Coulomb energy level, as expected.

We refer the reader to Refs. 4 and 5 for the detailed
derivation of the formulas needed in this work. (Our no-
tation follows that of these two references which will be
referred to as IPS1 (Ref. 4) and IPS2,° respectively; IPS1
Eq. (4) means Eq. (4) of IPS1.)

The energy eigenvalues are given by IPS2 Eq. (3) as an
expression in powers of 1/k,
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FIG. 1. Energy eigenvalues for n =1—3 Hulthén states as a
function of 8. As 8§—0, curves for different / states (same n)
approach each other owing to the accidental symmetry of the
Coulomb potential.
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TABLE 1. Energy eigenvalues vs 8 for n =1—5 Hulthén states. E©=(K /ro)’[++r3V(ro)/Q] is
the leading contribution and the energy E®'=(K /ro)*{[+ +r&V(ro)/Q1+TV /K *+T'® /K *} includes

two corrections in the 1/k expansion. Note that for small § our results are typically accurate to one
part in 10'*—10°.

States 5 —E© —E® — Egace [Eq. (2)]
1) 15 (n,=1=0) 0.002 0.4990005 0.499000 5 0.499000 5
: 0.01 0.4950125 0.4950125 0.4950125
0.05 0.4753125 0.4753125 0.4753125
0.2 0.404998 1 0.404 9962 0.4050000
0.5 0.2811969 0.2812472 0.2812500
1.00 0.1234887 0.124 8160 0.1250000
1.2 0.076 5889 0.0795622 0.0800000
@) 2s (n,=1,1=0) 0.002 0.1240023 0.1240020 0.1240020
0.01 0.120058 3 0.1200500 0.1200500
0.05 0.1014559 0.1012503 0.1012500
0.1 0.0807940 0.080004 6 0.0800000
0.2 0.047 697 4 0.045085 6 0.0450000
(3) 2p (n,=0,1=1) 0.002 0.1240017 0.1240017
0.01 0.1200417 0.1200417
0.02 0.1151667 0.1151667
0.05 0.1010423 0.1010424
0.1 0.0791765 0.079179 4
0.2 © 0.0418279 0.0418857
@) 3s (n,=2,1=0) 0.002 0.054 5611 0.054560 1 0.054 5601
0.01 0.0506930 0.050668 1 0.050 668 1
0.02 0.046 104 6 0.046005 7 0.046 005 6
0.05 0.0339556 0.0333746 0.033368 1
0.1 0.0187130 0.0169274 0.016805 6
(5) 3p (n,=1,1=1) 0.002 0.054 56006 0.054 55972
0.01 0.050 668 05 0.050 659 73
0.02 0.046 005 42 0.045972 36
0.05 0.03336226 0.03316518
0.1 0.016 699 58 0.016067 72
6) 3D (n,=0,l=2) 0.002 0.054559 1 0.054559 1
0.01 0.050 643 1 0.050 643 1
0.02 0.045905 8 0.045905 8
0.05 0.0327521 0.0327532
0.1 0.0144609 0.0144842
(7) 4s (n,=3,1=0) 0.002 0.0302600 0.0302580 0.0302580
0.01 0.026499 6 0.026450 1 0.0264500
0.02 0.0222439 0.0220512 0.0220500
0.05 0.012264 5 0.0113035 0.0112500
(8) 4p (n,=2,1=1) 0.002 0.0302587 0.0302577
0.01 0.0264665 0.0264417
0.02 0.0221144 0.0220174
0.05 0.0115745 0.0110725
9) 4D (n,=1,1=2) 0.002 0.0302573 0.0302570
0.01 0.026433 4 0.026425 1
0.02 0.0219836 0.0219510
0.05 0.0108420 0.0106690
(10) 4F (n,=0,1=3) 0.002 0.0302560 0.0302560
0.01 0.026 4001 0.026400 1
0.02 0.0218514 0.0218515

0.05 ~0.0100575 0.0100620
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TABLE 1. (Continued.)

'——ECXEC'. [Eq' (2)]

States E) —E© —E®
(11) 5s (n,=4,1=0) 0.001 0.0195040 0.0195031 0.019503 1
0.005 0.0175989 0.0175781 0.0175781
0.01 0.0153943 0.0153128 0.0153125
0.02 0.0115583 0.0112554 0.0112500
0.025 0.0099132 0.094 669 4 0.0945313
(12) 5p (n,=3,l1=1) 0.002 0.0190142 0.0190122
0.01 0.0153534 0.0153043
0.02 0.011404 1 0.0112197
0.025 0.009 6826 0.009 408 7
(13) 5D (n,=2,1=2) 0.002 0.0190125 0.0190115
0.01 0.0153123 0.0152877
0.02 0.0112468 0.0111533
0.025 0.0094450 0.0093050
(14) 5F (n,=1,1=3) 0.002 0.0190108 0.0190105
0.01 0.0152710 0.0152628
0.02 0.0110862 0.0110547
0.025 0.009 1997 0.0091523
(15) 5G (n,=0,1=4) 0.002 0.0190092 0.0190092
0.01 0.0152295 0.0152295
0.02 0.0109221 0.0109224
0.025 0.0089459 0.008 946 5
— 12 We have applied Egs. (5)—(10) and the corresponding
E, = X 1 +r3V(r0) /0 expressions for I and I'? in IPS1 and IPS2 to the case
r 7o 8 where V (r) is the Hulthén potential [Eq. (1)] with N =3.
In Table I we have listed numerically the energy eigen-
<Y @ 1 () values for a wide range of n,, [, and 8. For I =0 states,
=2 T E3 +0 4 ’ our numerical results obtained by means of the shifted
' 1/N expansion and the exact analytical results [Eq. (2)]
where match to at least three places. Thus the reliability of the
: method and our numerical codes are established. A more
a=2-22n+1)w, (6) qualitative picture is provided by Figs. 1 and 2. In partic-
0=a/2, (7
3
B=[3+r V" (rg)/V'(ry)]'?, ®)
Q =4rgV'(ro) , ©) L

and the quantity 7, satisfies the equation
N +20 =24 Q2n, + D)[3+r, V" (rg)/V'(rg)1'?
=[4rgV'(ro)1'2 . (10)

Equations (6)—(10) are simply IPS2 Eqgs. (4) and (5) except
that we use n,, the radial quantum number, in place of n
in IPS1 and IPS2. The explicit expressions for the correc-
tions to the leading order [the terms inside the square
brackets in Eq. (5)], I'? (i =1,2), can readily be written
down from IPS1 Egs. (13) and (14), and (B6)—(B11). No-
tice that the choice of the shift a, given in Eq. (6), gives
exact energy eigenvalues from the leading term of the 1/k
expar?’lsion for Coulomb and harmonic-oscillator poten-
tials.

percent error
N,
3

&1

FIG. 2. Percent error in the shifted 1/N expansion for the
ground-state energy eigenvalues vs &. . The curve marked 2nd
corresponds to the leading term and two corrections.
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ular, we have plotted the percent error of our 1s results as
a function of 8 in Fig. 2. Note that in the region § < 1.2,
the first three terms in the 1/k expansion converge nicely,
whereas in the region 6> 1.2 (also see Table I) successive
contributions from the perturbation series are substantial
and the expansion is not valid. The reason for the &
dependence is that the value of the shift a is fixed such as
to reproduce the exact analytic results for the Coulomb
potential (corresponding to the Hulthén potential with
5—0). Hence our results are especially accurate for small
8. On the other hand, as 6 increases and approaches a
critical value §., the energy eigenvalues approach zero, a
situation corresponding to the casé of no bound states,
and the expansion technique breaks down. Furthermore,
we do not expect that the shifted 1/N expansion works
well for very high n, since I'¥ contains terms proportion-

al to n}. Anyhow, the results presented in Table I are

quite accurate for both / =0 and /540 states.

In conclusion, we would like to point out that although
the shifted 1/N expansion scheme works quite well for
the Hulthén potential, extensive applications to other po-
tentials are needed to test the credibility of the method
and therefore would be of great value. We are currently
carrying out such an investigation.

We are deeply indebted to Dr. B. K. Cheng for drawing
our attention to the recently developed shifted 1/N ex-
pansion and to Mr. Kenneth Phillips for reading the
manuscript. This research was supported in part by dual
funding from NSF-EPSCOR Grant No. ISP-80-11447
and the State of Arkansas.
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