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Soliton excitations in deoxyribonucleic acid (DNA) double helices
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Dynamical theory of soliton excitations in deoxyribonucleic acid (DNA) double helices has been
studied by a revised Hamiltonian in which the dipole-dipole interaction and the dipole —induced-
dipole interaction between two bases in a complementary base pair are taken into account in addi-
tion to the hydrogen-bond energy. The motion equations of bases are a set of coupled sine-Gordon
equations. The soliton solutions of these equations are studied in detail and the results are compared
with the experimental data in the H-D exchange measurements of DNA chains.

I. INTRODUCTION

Recently, the existence of open states in deoxyribonu-
cleic acid (DNA) double helices has been demonstrated by
the H-D exchange measurements. ' Englander et aI.
suggested first a theory of soliton excitations as an ex-
planation for such open states. Later, Yomosa proposed
a further soliton theory by using what amounts to be a
dynamic plane base-rotator model. ' Developing this
ideal further, Takeno and Homma improved Yomosa's
model by a different Hamiltonian. ' It is believed that
such studies are important in the sense that the soliton ex-
citations may advance a new mechanism in the duplica-
tion of DNA and the transcription of messenger ribonu-
cleic acid (mRNA).

According to the B-form DNA model proposed by
Watson and Crick, the two polynucleotide strands form-
ing a double helix are held together by hydrogen bonds.
This fact explains why the above authors took account of
the H-bond energy mainly in their Hamiltonians for the
study of soliton excitations in B-form DNA. However, it
is recognized that the binding energy of the helix could
not arise solely from hydrogen bonds. For example, mea-
surements of enthalpy change during helix-coil transitions
yield much Sigher values than one would expect by as-
suming that this change is due to the breakage of H bonds
alone. In addition to H bonds, one has to consider the
dipole-dipole interaction, the dipole —induced-dipole in-
teraction, and the dispersion interaction between two bases
in a complementary base pair. According to the calcula-
tions of Devoe and Tinoco, the dipole-dipole interaction
is predominant among them. It is the purpose of this pa-
per to study the influence of these interactions, mainly the
dipole-dipole energy, to the soliton excitations in the B-
form DNA double helix.

This paper is organized as follows. In Sec. II we intro-
duce a model Hamiltonian by taking account of the
dipole-dipole and dipole —induced-dipole energies in addi-
tion to the H-bond energy. In Sec. III the soliton solu-
tions of the motion equations in the case of X=O are stud-
ied. In Sec. IV a perturbation method is used to solve the
equations of motion in the general case. In Sec. V the
phonon mode is studied. In Sec. VI the parameters in this
theory are estimated and some discussions are given.

B[ 1 —cos( y„—y'„)], (2.1)

where B is a parameter associated with the H bond ener-

gy. This form of H-bond energy was used by many au-
thors listed above, and it is consistent with the Pople for-
mula. ' The B-form DNA corresponds to cp„=y„' =0.

In the realistic B-form DNA the magnitude of the di-
pole moments for the bases adenine (A), thymine ( T),
guanine (G), and cytosine (C) is large. Let u~, ur, uG,
and uc be the dipole moments for the bases 3, T, G, and
C, respectively. Since each base is represented by an ar-
row, then the directions of these dipole moments are ei-
ther in parallel or antiparallel with the base arrows. Ac-
cording to the calculations of Devoe and Tinoco, the G-
C dipoles attract while the A-T dipoles repel between the
coplanar bases in a base pair. Therefore uG and uc are
arranged in a form of head to tail, while uz and u~ are in
a form of head to head. This is roughly correct for the
realistic DNA molecules.

The dipole-dipole interaction energy between two bases
in nth coplanar base pair takes the form"

[u~ u2 —3(u~ R)(u2 R)/R ]/R (2.2)

where u] and u2 are the dipole moments of' the bases 6
and C or A and T, respectively, and R is the distance.
Hereafter we shall assume a simplification: Take R as a
constant. Then formula (2.2) reduces to

P[cos(y„—p'„)—3 cosy„cosy„' ], (2.3)

II. HAMILTONIAN
AND EQUATIONS OF MOTION

The B-form DNA in the Watson-Crick model is a dou-
ble belie which consists of two strands S and S'. Let the
z axis be the screw axis. The plane of base pair is perpen-
dicular to the z axis. Following Yomosa's plane base-
rotator model, each base is depicted by an arrow, and
complementary base pair are depicted by conjugated ar-
rows directed inward. Let P„,P„' be the points where the
nth base pair are attached to the strands S and S', respec-
tively. Let y„(y„') be the angle between such an arrow
and the line P„P„'; then the H-bond energy between two
bases in nth complementary base pair may take the form
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p=utuz/R (2.4) Sa y' —Iy«

In this manner the interaction energy of dipole—
induced-dipole interaction between two bases in nth base
pair may take the form"

B—sin(y —y')

+p[3 siny' cosy+ sin(y —y')]+ A. siny' . (2.10b)

—A, cosy„—A, cosy„+const, (2.5) Introducing u and U such that

where A, is a coupling constant associated with the
dipole —induced-dipole interaction energy.

The dispersion energy between two bases in nth base
pair is qv„or qv„' independent by assuming the distance R
to be constant. " Therefore it has no contribution to the
equations of motion.

Combining formulas (2.1)—(2.5), the interstrand in-
teraction energy in nth base pair may be written as

1 I
Q =g+g, U =g —+

or

(u +v)/2, y'=(u —U)/2,

we then obtain

u —(1/co)u«2

=(1/l )sinu+(2/d )sin(u/2)cos(U/2),

(2.11)

(2.12)

(2.13a)
V(y„,y„' ) =B[1 co—s(y„—y„' )]+A(1 —cosy„ )

+A, ( 1 —cosy'„)

+P[3(1—cosy„cosy„' )

U —(1/co)U«2

=(Q/l )sinu+(2/d )sin(u/2)cos(u/2), (2.13b)

where—[1—cos(y„—y„' ) ]J, (2.6)

where the zero level of the energy is taken for the B-form
DNA. Then the Hamiltonian of B-form DNA double
helix to be studied in this paper is

co (S/I)'/ a,——l = [S/(3P)]'/ a,

d =(s/A, )'/ a, Q=(2B+P)/(3P) .
(2.14)

H= g [—,'Ily„+y'„)+ V(y„,y„')

+ 2 S(yn yn —1) + S2(yn yn —1) l (2.7)

III. SOLITON SOLUTIONS IN THE CASE OF A. =O

It is easy to see that

(3.1)

—P[3 siny„cosy„' —sin(y„—y„')]

—A, slny +S(y +t —2y +y ))

Iy „' =Bsin(y„—y„' )

—P[3cosy„siny„'+ sin(y„y„' )]-
—A, siny„'+S(y„'+

&
2y„'+y„' &) . —

(2.8a)

(2.8b)

To solve Eqs. (2.8) we shall assume the continuum ap-
proximation

y„(t) =-y(z, t), y'„(t) y'(z, t), g - —dz,2

a

(2.9)
0

where a is the base-pair spacing, a=3.4 A. Then Eqs.
(2.8) reduce to

where I is the mean value of the moments of inertia of the
bases for the rotation around the axes P and P' which
pass through the points P„,P„' and are in parallel with z
axis, respectively, S is a parameter associated with the
stacking energy of DNA chains.

The equations of motion of bases are soon obtained
from Eq. (2.7),

Iyn = Bsin(y„—y„' )—

is a solution of Eqs. (2.10) and (2.13). This solution corre-
sponds to the ground state of B-form DNA.

In addition to the solution (3.1) it is difficult to obtain
other solutions of Eqs. (2.10) and (2.13). Equation (2.13)
may be called a set of coupled sine-Gordon equations
which, to the knowledge of the author, probably cannot be
solved exactly in a general case presently. An estimate of
the parameters (see Sec. VI) shows that A, «p or d)&l
therefore we may solve Eqs. (2.13) in the general case by
the perturbation method. To do this we have to study the
unperturbed equations, i.e., X=O in Eqs. (2.13); then we
have

u~ —(1/co)u« ——(1/l )sinu,

U —(1/co)U« ——(Q/l )sinu .

(3.2a)

(3.2b)

u o
——4 tan ' exp(+x ),

Uo
——4tan 'exp(+v Qx),

x =(y/i)(g' —go),

(3.3a)

(3.3b)

The Eqs. (3.2) are two independent sine-Gordon equa-
tions. The X-soliton solution of sine-Gordon equations
(3.2) may be obtained by the inverse method or Backlund
transformation techniques. ' At present we consider only
the single soliton solution of Eqs. (3.2)

Sa g~ —Ig«
=B sin(y —y')

+p[3 siny cosy' —sin(y —y')]+ A, siny,

=z —ct,
( 1 c2/c2 )

—1/2

(2.10a) where c is the velocity of the soliton.

(3.3c)
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where

21 =3P/(4A, ) ) —,
' (4.2)

y1 ——uo+ l2+nm, .
p1 u——o /2 —nm. ,

I +

p2 uo /2 —n17, g2 uo /2+nfl,

p3 ——m n+ v 0+ l2, y'3 m~—— vo+—l2,
+4=mw —Up /2& cp4=m7T+vp /2 ~

0'l1 ( 0 +vo )l ~ 0'll ( 0 vo

0 1,2 (uo +vo )/2 P1,2 (uo vo

(3.4)
One of the soliton solutions of Eq. (4.1) is'

=2 tan '
{r(1+421 )

' cosech[(1+ 4g )
'

y ]I,
where

(3.5)

(3.6)
(4.3)

(3.7)

(3.8)
(4.4)y = (y/d )(z ct—),

(3.9)
and ~=1 or —1 corresponding to the kink or antikink,
respectively. The energy of soliton (4.3) is'%~2, 1 (uo +vo

qP2'2 ——(uo +vo )/2,
f2;1 (uo vo

V2, 2=(uo —vo )/»
(3.10)

(3 11) e1 ——8(3/3S)'~ y{[1+1/(421)]'~

Based on the solutions Eqs. (3.3), eight sets of solutions
of Eqs. (2.10) are found iri the case of A. =O:

where m and n are integers. We shall say m =n =0 here-
after. The solutions y; and y,' (i =1,2, 3,4) are m.-kink or
antikink solitons. The solutions tp;J and y, j (i,j =1,2)
are either 2~-kink (antikink) or special solitons. Let us
take the special soliton pe'1 as an example. From (3.3)
and (3.8) we obtain

p~ —(1/co)p«=(1/d )(sing+221' sin2y), (4.6)

+In[(1+4q)'"+221'~2]/(4'�)) . (4.5)

2. q&= —y', u =0, v=2'. In this case, Eqs. (2.13)
reduce to another double sine-Gordon equation

e —ex ~gx
cp&'& ——2 tan

1+e(~Q+1)x
(3.12)

where 21'=Qri. The soliton solution is similar to that of
Eq. (4.1)

It is an odd function of x, and y1'1(+oo)=0. It has a
maximum value M and a minirnurn —M. A simple nu-
merical calculation gives

2M=27. 9', Q =2.1,
2M =32.6', Q=2.4,

(3.13a)

(3.13b)

where the value of Q will be estimated in Sec. VI. That is
to say, y&'& is a special soliton in which the base vibrates
within a magnitude of 27.9' (32.6 ). Note that

Pl, 1 ) %1,2(0) '+2, 1( ) g2, 2(0)

9 1, 1(0) 'P1, 2(0) 0 2, 1(0) 0 2, 2(0)

(3.14a)

(3.14b)

E] ——E2, E3 ——E4, E] ) ——E] 2
——E2 ] ——E2 2 . (3.15)

Substituting Eqs. (3.4)—(3.11) into Eqs. (2.7) and (2.9), we
find

Denote the soliton energy. associated with y; and y,' by
E; (i =1,2, 3,4), and q&, J. and y;'I by E; 1 (ij = 1,2), then
it is easy to see that

Note that

hme2/e1 ——v Q
A, —+0

+In[(1+4Q21 )'

+2(Qq) '"]/(4Qg) I . (4.8)

(4.9)

~ P ~
A

~

y' ~, u&0, v&0. In this case, Eqs. (2.13)
reduce to

u —(1/co)u« ——(1/l )[sinu+@sin(u/2)cos(v/2)],

(4.10a)

v —(1/co)v„=(l/l )[Q sinv+esin(v/2)cos(u/2)),

(4.10b)

=2 tan '{r(1+4Q21) '~ cosech[(1+4Q21)'~ y]I, (4.7)

and the soliton energy is

e2 =8[(2B+p)S]'~'y {[1+1/(4Q21 )]'~'

E1.E3.E1 1
——1:V Q:(V Q + 1),

where

(3.16) where e= I/(221). An estimate of e below gives the result
@=0.068. Therefore it is reasonable to expand the solu-
tions of Eqs. (4.10) into the form as

E1 ——4(3pS)'i y . (3.17) u =uo+eu"'+O(e ),
v = +vocv' "1+O(e2),

(4.1 la)

(4.11b)

—(1/co)qr« ——(1/d )[sing+221 sin(2y)], (4.1)

IV. SOLITON SOLUTIONS IN THE CASE
OF A&0

The case of A,&0 will be divided into three parts for the
convenience of discussion.

1. y=p', u =2@, v =0. In this case, Eqs. (2.13) reduce
to a double sine-Gordon equation

where up and Up are the soliton solutions of the unper-
turbed Eqs. (3.2)

u0=4tan 'exp(r1x),

v 0
——4 tan ' exp(tv Q x ),

(4.12a)

(4.12b)

where ~],~2 ——1 or —1 corresponds to the kink or antikink
soliton, respectively. There are four combinations for
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(ri, rq), i.e., (1,1); (1,—1); ( —1, 1); ( —1,—1), which corre-
sponds to four different solutions of Eqs. (4.10). Denote
the solutions by u; J and U; J (i,j = 1,2), where ij = 1 as
~&,v.z ——1; and i,j =2 as ~i, v.2 ———1. We assume that u'"
and u'" are still solitary wave or soliton having the same
velocity c as soliton uo and Uo. Then'substituting Eqs.
(4.11) and (4.12) into Eqs. (4.10), we find

u J'~ ——(2 tanh x —1)u J'+( —1)jsechx tanh(V Qx ),
(4.13a)

U 1"~=Q[2tanh (V Qx) —l]U,'1"

V, J =QI[tanh(v Qx)]

P j tanh x sech x tanhx dx

P—
&
[tanh(V Qx)]

X f QI[tanh(v Qx)]sech(v Qx)tanhx dx,

&~J=1~2 ~ (4.14d)

+q i(+ oo ) ( oo, p; J(+ ao ) ( oo, i,j = 1,2 . (4.15)

where PI(y} and QI(y) are the associated Legendre poly-
nomials of first and second kind, respectively, C J',
C ~', D J", and D J' are constants to be determined by the
boundary conditions. It is obvious that

+(—1)'sech(V~Qx)tanhx, i,j =1,2 . (4.13b) Considering Eqs. (3.14), it is reasonable to require that

Equations (4.13) are the linear ordinary differential equa-
tions the solutions of which are easily obtained

q, ,(O) =+, ,(0)=+, ,(0)=~„(0)=~,
y'$, $(0)=y'$, 2(0)=q&2 $(0)=lp2 (0)=0 .

(4.16a)

(4.16b)

u "=C "P', (tanhx)+Ci 'Q', (tanhx)+ Ui
By using the boundary conditions Eqs. (4.15) and (4.16),
the integral constants are determined as

U; 1 Qi(tan——hx) fPI(tanhx)sechx tanh(v Qx)dx

(4.14a)
(&) (&)

Cg J. ——D;J ——0,
C, '=( —1V—,

' ln2,

DIJ ——( —1)' (1—ln2), i,j = 1,2,

(4.17a)

(4.17b)

(4.17c)

v 1"=D J'P&[tanh(V Qx)]
l

+D J'Q I [tanh(VQx)]+ V; J, (4.14c)

—P I(tanhx) fQ I(tanhx)sechx tanh(v Qx)dx,

(4.14b)
where we have used the approximations

ff(x)tanh(V Qx)dx= ff(x)tanh2xdx,

f ln(1+tanh x)dx=(x —tanhx )ln2 . (4.18b)

Then the perturbation solutions u J' and U J' may be writ-
ten as

( —1V+
l~J 2

sechx (x +ln2 tanhx —tan tanhx ) —sinhx ln
—I 1+tanh x

2
(4.19a)

2VQ
1

sinh(V Qx ) 1 —tanh(V Qx)tanhx+ln 1+tanh
2

+ sech(V Qx)(x —ln2tanhx ), ij =1,2 .

(4.19b)

Note that

u;i ( —x)= —u; J (x),(&) (&)

i~1=1,2 .
(4.20)

tons slightly. The energy revision for E»,E22 is very
small and may be neglected. On the other hand, the ener-
gy of solitons y& z and yi z (or pre &

and pz &) will depend
upon the length of the base pair in the case of A,&0.

Substituting Eqs. (4.19) into (4.11) and (2.12), we obtain

(4.21a)

(4.21b)

Numerical calculation of Eqs. (4.21) reveals that the per-
turbation terms change the shape of the unperturbed soli-

V. PHONON MODE

(5.1a)

(5.1b)

Assuming q& and p' are small, then Eqs. (2.13) reduce to

u~ —(1/co)u« ——(1/l )[1+A./(3f3))u,

U —(1/co)u« ——(1/l )[Q+A, /(313)]U .
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We look for the solution of Eqs. (5.1) which depends upon
only a single variable g in the case of c &co, then Eqs.
(5.1) reduce to

0. 15 (CNDO method)
0.05 (PPP method) (6.1)

d u/dg = —k„u,
d U/dg = —k„u,

(5.2a)

(5.2b)

(CNDO is the complete neglect of differential overlap and
PPP is Pariser-Parr-Pople). Denoting the numbers of
G C-and A-T pairs in a DNA chain by N(G C) an-d

N(A T), re-spectively, a factor a is defined as

k„'=k'[I+A/(3P)], k,'=k'[Q+A/(3P)], (5.3)
a=N(G C)/[-N(G C)+-N(A-T)], (6.2)

k =(c /co —1) 'l

The solutions of Eqs. (5.2) are

u =A'cos(w„t —k„z+8'),
U =B cos(coUt —k~z+5 )

where

(5.4)

(5.5a)

(5.5b)

B= (1 a)B~—T +aBGC,

P=(1 a)P~T—+aPGc,
A, =(1—a)A~T+aAGc,

(6.3a)

(6.3b)

(6.3c)

which is connected directly with the melting temperature
of DNA double helix. In fact, the value of B(p,A, ) is a
mean value in the sense that

u kuC, C v kvC (5.6)

and 3', B', 8', and 6' are constants. Assuming 3'=8'
and 0'=6'=0 without losing generality, we obtain

@ = A
' cos(co t —k z)cos(co+t —k+z),

g' =A ' sin(co t —k z)sin(co+ t —k+z ),
where

Ct) =0 CO~k =0 k~CO=kC

o —= [(1+sin 8)/cos8] —',( +]
2

sin8= [(3p+A )/(2B+p+A)]'

(5.7a)

(5.7b)

(5.8a)

(5.8b)

(5.8c)

The above solutions correspond to the motion of phonon
mode of DNA chains. Substituting the solutions Eqs.
(5.7) into (2.7) and (2.9), the energy per cm of phonic wave
in DNA double helix is

E~ = —,
' A'(B+2P+i)(1 —y')/a . (5.9)

It is easy to see that the dispersion relation of the phonon
mode is obtained as

where B~T,P~z. ,i,„T and BGc,PGc, A, Gc are B, P, and A,

parameters corresponding to 3-T and 6-C base pairs,
respectively. The calculation of Fujita et al. reported that
the H-bond energies in the B-form DNA were (in eV) 0.48
(CNDO) and 0.39 (PPP) for the G Cbase p-air, and 0.076
(CNDO) and 0.070 (PPP) for the A Tbase pa-ir. On the
other hand, for the DNA chains taken from many types
of living beings, a=0.4. Substituting the above results
into Eq. (6.3a), we obtain

1.2X 10 ' (CNDO)
1.0X10 ' (PPP) .

Now we shall use formula (2.4) to determine the parame-
ter p. According to Devoe and Tinoco we have (p in D)

pz ——2.8, p~ ——6.9, pT =3 5~ pc=8.0, R =6.4 A,
(6.5)

and substituting Eqs. (6.5) into (2.4) and (6.3b), consider-
ing that pGc & 0 (head-to-tail arrangement), p~ T & 0
(head-to-head arrangement), we obtain

P=3.9X10 '.
=COp +C pk & COp =C p /I ~

2 2 2 2

which yields

(5.10) The interaction energy of dipole-induced —dipole between
two bases G-C or A -T was calculated by Devoe and Tino-
co, also. They reported that

2
CCg =Cp (5.11) 2A, Gc ——1.3 ~ 10, 2kgT ——4.3 && 10 (6.7)

where cg is the group velocity, thus we always have
Cg (Cp.

VI. ESTIMATION OF PARAMETER VALUES
AND DISCUSSIONS

There are four parameters in this theory: B, p, iL, and
S. It is easy to see from Hamiltonian (2.7) that the quan-
tities 2B, 4p, 2A, , and 4S correspond to the energy of H
bonds, the energy of dipole-dipole interaction, the energy
of dipole —induced-dipole interaction and the stacking en-
ergy, respectively. All the energies listed above were cal-
culated by the method of quantum chemistry. ' Accord-
ing to Fujita et al. ,

' the mean stacking energy in B-form
DNA is (all the parameters are in eV)

Substituting the above results into Eq. (6.3c), we obtain

A, =4.0~10 '. (6.8)

Then all the four parameters are determined. Therefore
we have

2B+P 2.4 (CNDO)
3P 2. 1 (PPP), (6.9)

@=2',/(3P) =0.068 . (6.10)

In this theory the 2n soliton Eq. (4.3) has the lowest en-
ergy. Therefore it is reasonable to assume that only these
solitons are excited in the condition of solvent to take part
in the H-D exchange reaction, then our theory predicts
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the enthalpy difference b,H of open and closed forms by
using Eq. (4.S) and the determined parameters as (in kcal
per mole)

13.4 (CNDO)
7.7 (PPP) . (6.11)

Nakanishi and Tsuboi reported that the experimental
value was 8.1. So our result is in agreement with this in
order of magnitude.

It is believed that the DNA solitons may be excited by
some chemical reactions in the biological process so that

the soliton excitations will be interesting and promising
physiologically in the explanation of the duplication of
DNA and the transcription of mRNA. Although the sol-
iton excitations in DNA chains may be important, howev-
er, the existence of these solitons is still an unresolved
problem.
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