
PHYSICAL REVIEW A VOLUME 35, NUMBER 2

Radiative transfer as a sum over paths
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The radiative-transfer equation describes the collection of paths taken by an element of radiation
as it travels from one location to another. When backscatter can be ignored, the exact solution is
constructed as a forrnal sum (path integral) over all such paths. In the appropriate limit the usual
(diffusive) small-angle solution and the multiple-scattering solution can be obtained. Another small-
angle solution has also been found which includes some of the nonlinear and large-angle behavior
not present in the diffusive solution. After several attenuation lengths, length scales are character-
ized by a parameter constructed out of the absorption and scattering coefficients, and the rms
scattering angle per scattering event. The two solutions are compared in the case of a point beam.

I. INTRODUCTION

The radiative-transfer (RT) equation has been exten-
sively studied, both analytically and numerically. Accu-
rate solutions for a variety of boundary and initial data
problems have been obtained using Monte Carlo' and
finite-difference numerical approaches, but it has been
very difficult to find analytic solutions valid for a broad
collection of phase functions and initial data/boundary
conditions. Wells has developed a spherical-harmonic
expansion valid for general phase functions and angular
distributions, but limited to a slab geometry. The low
terms of the expansion are determined from coupled
differential-difference equations, but for many practical
situations higher-order terms can be approximated by an
asymptotic form and the expansion can be summed. The
small-angle approximation provides a solution for (ap-
parently) arbitrary spatial distributions, but the phase
function must be sharply forward peaked and the radiance
confined to a narrow range around the axis of propaga-
tion. The solution is maximally diffusive in the sense that
it contains more scattering events per path length than
any other solution. Stotts has argued that this solution
can be valid only after many (& 10) scattering lengths
have been traversed because it suppresses small-scale spa-
tial features that may be present in the initial data, and
because it does not contain multiple-scattering effects.
Multiple-scattering events may be considered those which
scatter through angles much larger than the rms scatter-
ing angle of the forward-peaked phase function. Stotts at-
tributes multiple-scattering processes to the higher har-
monic terms ignored by the small-angle solution. The
source of higher harmonics in Stott's argument, however,
is the Fourier-transformed phase function. His analysis
does not mention the higher-order absorption and spatial
terms left out of the small-angle form.

A question arises from this: What are the effects of the
ignored angular dependence in the absorption and spatial
terms? It might be expected that the absorption term con-
fines the radiance to a smaller angular range than if it
were not present. But if the phase function is sufficiently
forward peaked, is it possible that the scattering will be

confined to such a narrow range that the extra absorption
effects can be ignored and the diffusive small-angle solu-
tion remains valid? Including higher-order angular terms
in the spatial behavior of the RT equation gives a greater
lever arm to a ray of radiation passing from some initial
location to the observation point. Consequently each ob-
servation point can receive radiance from a larger range of
distances, apparently smoothing the spatial distribution
more thah in the small-angle solution. This is deceiving,
however, because the high-order angular contributions
from the scattering and absorption terms strongly
suppress the importance of radiance at large angles to the
direction of observation, possibly improving spatial reso-
lution. The coupling between the spatial and angular de-
grees of freedom may be subtle, and it would be useful to
know more precisely how resolution is improved over the
small-angle solution by high-order terms.

The question in the last paragraph of spatial and angu-
lar coupling will not be discussed further. The question
of higher-order absorption effects is discussed in Sec. V,
where a small-angle solution is found which includes ab-
sorption contributions to the distribution. The overall
conclusion reached there is that as long as the rms scatter-
ing angle is not zero, the radiance distribution far from
the initial data plane loses the diffusive form and includes
some multiple-scattering-properties. The distribution is
not broader than the small-angle solution —as might be
expected from the increased importance of multiple-
scattering events —but becomes narrower as the radiance
proceeds away from the initial data plane. With the in-
creased freedom to undergo large-angle scattering, the dis-
tribution tends to follow the initial distribution farther
than allowed by the small-angle solution, scattering in the
observation direction closer to the point of observation.
The transition from the small-angle (SA) solution to this
"small-angle with absorption" (SAA) solution is charac-
terized by a length scale l determined by the scattering
and absorption processes.

Before focusing on the SAA solution in Sec. V. Section
II outlines an exact solution of the radiative-transfer equa-
tion. It is valid for forward scattering in an initial data
problem. The solution is formally a path integral, in
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which integration represents a sum over all possible angu-
lar paths the radiation may take in traversing from the in-
itial data plane to the observation point. The approach is
based on some methods developed by Fradkin and others
which have been applied to problems in quantum field
theory, potential theory, and the Navier-Stokes equa-
tions. The well-known multiple-scattering and small-
angle solutions are derived from the general solution in
Secs. III and IV using appropriate approximations.

Before outlining the solution, the scattering geometry
and notation should be defined. We assume that at z =0
a radiance distribution I0(x,n) is known, where x is a
two-dimensional (2D) spatial vector in the z =const plane,
and n the direction vector of the radiance scattered into
polar angles (8,$) (0&8 &n, 0&/&2m). For z &0, the
RT equation gives the radiance distribution I(r, n) at the
3D position r = ( x,z) traveling in the direction n. For for-
ward scattering only, we restrict n such that 0 & 8 & m/2.
The RT equation is

(n.V,+c)I(r,n)=b f d n'S(n, n')I(r, n'),
where b is the scattering coefficient, a =c —b is the ab-
sorption coefficient, and S is the phase function normal-
ized to unity:

f d n'S(n, n')=1 .

8 . k-n c+i +
Bz ri(n) q(n)

S(n, i V—„) 6 =0 .
ri(n )

The initial condition now takes the form

6(k, n, n', z =0)=5(n —n') . (7)

Formally, the solution of Eqs. (6) and (7) can be written
in terms of an exponential:

G(k, n, n', z)

b=exp —z L(k, n) — S(n, iV„—) 5(n —n'),
g(n)

S(n,n')= 2S(n, p)exp[ip (n —n')] .d p
(2n. )

This expansion is not intended as a true Fourier decompo-
sition with an inverse transform because the angular vec-
tor n is restricted to the compact space within the unit
disk. Using Eq. (5) and a spatial Fourier transform of the
PSF to the modulation transfer function (MTF)

d k6 (x,n, n', z) =
2 6(k, n, n', z)exp(ik x),

(2m )

the RT equation becomes

II. SOLUTION

The explicit rotational symmetry of the RT equation is
broken when a solution is constructed on the basis of ini-
tial data, as would be the case, for example, in a slab
geometry. We assume that a three-dimensional spatial
coordinate system with components r = ( x,z) is used, and
the unit vector n is restricted to the hemisphere
0&8&m/2 with z &0. This allows the decomposition
n=(n, g(n)), where g(n)=(1 —n )'~ . In spherical coor-
dinates

where

L (kn) , i=+
qn gn

This can be converted to a path integral form by follow-
ing several steps. First, introduce an auxiliary function
Q(z), which will eventually be set to zero, and a function-
al of Q, denoted 6(k, n, n', z

~
Q), which satisfies the pair

of equations

n =sin8(cosg, sing ),
g(n) =cos8 .

The initial data are the radiance I0(x,n) at z =0. With
this information the solution of the RT equation is ex-
pressed in terms of the point spread function (PSF)
6(x,n, n', z) by

I(x,n, z)= f dzx'f d n'G(x —x', n, n', z)ID(x', n'), (2)

+L(k, n)+Q. V„— S n, i
8

g(n)
'

5Q(z)
6(Q)=0,

(9)

with 6 satisfying the initial condition

G(x,n, n', z=O)=5(x)5(n —n') .

In the chosen coordinate system, the RT equation is

g(n) +n V„+c 6(x,n, n', z)
a
az

=b f d n" S(n, n")6(x,n",n', z) .

(3)

The principle difficulty in solving this equation is han-
dling the integral on the right-hand side. This term can
be converted to a nonlocal differential term by a "pseudo-
Fourier" representation of the phase function:

G(Q) = —V„G(Q),

and the initial condition (7), The solution of the RT equa-
tion sought is 6(Q=0). The introduction of Q(z) allows
us to use the path integral identity [A (z) and B(z) are ar-
bitrary functions]

Z

I (~)=f [DB]~ 5(~(z ) —B(z'))F(B)
z'=0

DB D EB

Xexp i f dz' P(z')(A (z') —B(z') )

{the measure [DB] is +;, DdB(z')) on the ordered ex-
ponential solution of Eq. (9) [which is analogous to equa-
tion (8)] to obtain
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G(k, n, n', z
i Q)

=X-' f [DII][DQ]exp i f dz'P(z') II(z')

Z

&& exp f dz' P(z') ~

5Q z'
Z b

exp —f dz' L (k,n)+Q(z') V„— S(n, II(z'))
g(n)

5(n —n') . (10)

The derivative in the ordered exponential can be removed by using the identity

exp —f dz'(& (n)+Q(z') V„) F(n) = exp —f dz' 2 n —f dz" Q(z" )
Z

-F n — dz' z'
0

(this identity can be proven by noticing that both sides of the equality satisfy the same differential equation with respect
to z and the same initial condition). When Q=O, the functional derivative term exp f P.(5/5Q) simply replaces Q
everywhere by P. Defining a new integration variable P(z') =n — dz" P(z"), the path integral measure [DP] becomesZ'

'2

Det [DP]5(n —P(z) ),
az

and the solution of the RT equation is

G(k, n, n', z) =& f [DII][D/3]5(n —p(z))5(n' —p(0))exp i f dz' p(z') II(z') exp —f dz'L(k, p(z'))

Z b
)& exp f dz' S(P(z'), II(z') )

r) n

(the determinant [Det(B/Bz)] was absorbed into the nor-
malization constant X '). The constant K ' is deter-
mined by the initial condition [Eq. (7)].

The path integral solution equation (11) is the general
solution of the RT equation desired. This solution for the
MTF is analogous in form to the path integral solution
for the evolution operator in quantum mechanics, i.e., for
a wave function %(q, t) which evolves in time according to

%(q, t) =f dq'K( tq;q', )0%(q', )0,
4

the evolution operator K has the path integral representa-
tion

which favors paths that closely follow the z axis when the
phase function is dominated by forward scattering. Large
deviations from the z axis are possible when the phase
function allows large-angle scattering.

Also seen in Eq. (11) is the reason why the solution is
limited to the forward-scattering region of (r, n) space
(z & 0, 8 & vr/2, ). For z & 0, 8 ~/2 or z & 0, 8 & m. /2, the
total attenuation term exp( — c/r)) would diverge with
increasing distance from the initial plane z =0.

Two approximations which lead to well-known solu-
tions are considered in Secs. III and IV. The first (Sec.
III) is a discrete scattering approximation which develops
as a perturbation expansion in the number of scattering
events, and the second (Sec. IV) is the small-angle approx-
imation. In Sec. V a small-angle solution is found by con-
sidering the effect of absorption on the set of dominant
phase-space paths. This solution is inequivalent to the
small-angle solution of Sec. IV except in the z~0 limit.where A (q,p) is the Hamiltonian. This parallel form sug-

gests a dynamical interpretation of Eq. (11) in which P
plays the role of a position variable, constrained within
the unit disk, H its conjugate momentum, and z the
"time" parameter. Each path (P, II) in phase space is in-
cluded in the sum in Eq. (11) with a weight

III. DISCRETE SCATTERING APPROXIMATION

Consider the scattering coefficient b to be sufficiently
small such that scattering is weak compared to absorp-
tion. In such a case the radiance is a sum of direct radia-
tion, single-scattered radiation, doubly-scattered radiation,
etc. This expansion is obtained from the general solution,
Eq. (11), by a Taylor expansion of the scattering term:

&z, c bS(P,II)—
ri(P)

IC(qf, t;q;, 0)=f [Dp][Dq]5(q (0)—q;)5(q (t) qf)—
t

X exp t' f dt'[qp —A (q,p )]

oo bm z m m

G(k, n, n', z)=X ' g, f +dz; f [DP][DII]5(n—P(z))5(n' —P(0))+S(P(z;),II(z;))
m=0 i=1 i=1

&&exp f dz'[iP II L(k,P)]—
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(12)

exp[ zL (k—,n)] —exp[ zL—(k, n')]
L (k, n) —L (k, n')

(13)

The first term is the direct radiation term:

Go(k, n, n', z) =5(n —n')exp[ zL—(k, n)] .

The second term is the single-scattered radiation:

G&(k, n, n', z)

tion can be obtained from a Fourier transformation of the
forward-peaked Arnush phase function

S(8)= exp( —8/p)
1

2m.Op

in the p « 1 limit. In this case,

G(k, n, n', z)

exp( —az) . z
exp —i —k.(n+ n')

2' bz 2
The mth term describes the radiation after m scattering
events.

IV. SMALL-ANGLE SOLUTION I

kz
2pbz 24

(15)

We now consider a phase function which is sharply for-
ward peaked and allow only small angles. Then
S(P,II)~S(II) and L (k,P)~ik P+c. If we set

p(z') =n'+ (n —n')(z'/z) +y(z'),

then the path integration over y can be evaluated to give

~WII(')-k) .
z'

Setting II(z') =kz'+p,

G(k, n, n', z)=exp[ —z(c+ik n')]

2exp ip n —n'd p
(2m. )

This solution [Eq. (14)] can also be obtained directly
from the RT equation by interpreting Eq. (5) as an inver-
tible Fourier transformation of a forward-peaked phase
function in the small-angle limit. Stotts has argued that
the diffusive solution [Eq. (15)] is applicable to radiance
distributions which have only low-order spatial and angu-
lar Fourier components. To handle higher-order corn-
ponents, multiple scattering must be included. To study
the effects of higher-order components, a small-angle
solution is constructed in Sec. V which includes the effect
of absorption in selecting the paths which have the largest
contribution to the MTF. For comparison of that solu-
tion with the solution (15), an initial radiance distribution
consisting of a point beam is considered, for which

Io(k, n) =5(n) .

Xexp b f dz'S(kz'+p) (14) The radiance obtained using Eq. (15) is

This is a well-established result for small-angle scattering.
From the dynamical point of view, this solution consists
of a set of phase-space paths (n, p) whose weighting is de-
cided entirely by the phase function. Paths which have a
high "cost," i.e., for which the attenuation —b f S is
large, do not contribute to the MTF. This ignores the role
played by the absorption, which excludes long gently
curving paths which may be allowed by the phase func-
tion.

A particular small-angle solution is obtained by choos-
ing the commonly used phase function

2

S(p)=1— p2

where p, = f d n S(n)n «1 and p is the rms scattering
angle per scattering event. For example, this phase func-

I(x,n, z)

3 exp( —az) n 6 z
exp I— n

(npbz ). 2pbz pbz 2

2

(16)

V. SMALL-ANCyLE SOLUTION II

The small-angle solution, Eq. (15), could be constructed
because the small-angle restriction and choice of phase
function left only terms up to quadratic in the exponent
of Eq. (11),with the only quadratic term coming from the
phase function. A reexamination of Eq. (11) in the
small-angle limit shows that an additional quadratic term
can be contributed by the absorption term. After evaluat-
ing the II integration, Eq. (11) becomes

G(k, n, n', z) =N 'exp( —az) f [Dp]5(p(0) —n')5(p(z) —n)exp —f dz' ik p(z')+ (p +p /l )
2pb

where

I =(gab)

is a "diffusive path length. " Its significance is as follows:
for z « l, the phase function controls the choice of paths
which dominate in Eq. (17) because the length of the pos-

sible paths do not vary greatly and are less than l. Conse-
quently the angular rate of change is minimized, and as
the radiance travels from its initial angle n' to the final
angle n, it undergoes as many scattering events as possi-
ble, each through the smallest angular deviation possible.
At larger distances, z ~&l, the diffusive solution is modi-
fied by the effect of absorption. The set of dominant
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paths now includes ones which have relatively large-angle
scattering events. These paths are chosen by a balance be-
tween the tendency of absorption to minimize path length,
narrowing the distribution, and the phase function to
maximally diffuse and broaden the radiance. In such a
balance the set of dominant paths can include ones which
have a few relatively large-angle scatters compared to the
diffusive solution, the large cost of which is counterbal-
anced by a reduction in the absorption. This is the type of
path which contributes to a multiple-scattering solution.
The length scale l defines the transition between the re-
gion of maximal diffusion and the nondiffusive region
that includes these multiple-scattering-like effects. For
the point beam, the radiance has a narrower distribution
than the diffusive solution both spatially and angularly,
and the spatial peak of the distribution is closer to the
beam axis.

The evaluation of Eq. (17) is carried out in the Appen-
dix. To distinguish it from the small-angle (SA) solution
of Eq. (15), it will be called the small-angle with absorp-
tion (SAA) solution. Explicitly, it is

Is~~(x, n, z) = [(2m @bi ) h (z/l)sinh(z/I)]

X exp t
—[az+M(x, n, z)]],

with

M(x, n, z) =n sinh(2z/l)/41Mbl sinh (z/l)

(24)

R —1,
h -z/I,
A —[n +(n') ]/2@bi,

G -(npbl) 'exp( —z/I) .

Notice that n and n' have decoupled in A in the nondif-
fusive region, giving the prediction that a spatially invari-
ant radiance at z =0 will have an asymptotic Gaussian
distribution for z sufficiently large, with an angular width
depending on only the scattering and absorption proper-
ties of the medium.

To compare with the SA solution for the point beam,
the corresponding SAA solution is

Gs~~(k, n n', z) + —,
' [x—nlR (z/l)] (25)

G(z/l)exp[ —az —ik (n+n')lR (z/l)]

Xexp[ A(z/l, n,—n') ,
' pbk l —h (—z/I)],

where

G(x) = [2mpbl sinh(x)]

cosh(x) —1

sinh(x)

A (x, n, n')

(20)

(21)
xq ——nz/2, o.„=pbz /24,

nz ———,x/z, o„=pbz/4;

and SAA (z &&l):

(26a)

(26b)

The distribution is spatially and angularly Gaussian in
both cases (16) and (24). Four measures of the scattering
properties of either solution are the spatial and angular
peaks and widths. These are SA:

=[2pbl sinh (x)]

X sinh(2x) —2n n' sinh(x)
n +(n')

2
(22)

xq ——nl, o„=pbzl /2,
Il =2x/z~ o~ =pM

(27a)

(27b)

x sinh(x)+2[1 —cosh(x)]
sinh(x)

(23)

The two asymptotic regimes are the diffusive regime
z « l, where

R -z/2l,
h 12 (z/i)

A —(2pbz) '(n —n')

G —(2vrpbz)

which is the SA solution of Eq. (15); and the nondiffusive
regime z &~7, where

In the large-z limit, the SAA solution predicts a radiance
which is concentrated into a narrower beam than the SA
solution. Because n& is larger in magnitude in the SAA
solution, the radiance arriving at any given point x ap-
pears to come from a point on the beam axis closer to
(x,z) than for the SA solution. This is consistent with the
mechanism discussed earlier that increases the importance
of large-angle scattering events in the SAA solution over
the SA solution.

APPENDIX: THE SAA SOLUTION

The path integral to be evaluated is

G(k, n, n', z) =% 'exp( —az) f [DP]6(P(0)—n')5(P(z) —n)exp —f dz' ik P(z')+ (P +P /1 )
2pb

L

The integration variable p(z') is expanded as

p(z') =y(z')+y(z'),
where y satisfies

(A1)
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+ 1 /l y(z') =0 ,

a( ')'

and the boundary conditions

y(0)n', y(z) =n .

The solution for y is

I

y(z') = n sinh(z'/i)+ n' sinh
I

and the. integral is now

sinh(z/l) .

(A2)

(A3)

(A4)

z, . , 1
G(k, n, n', z)=N 'exp —az+ f dz' ik y(z')+ (y' +y /i )

2pb

Z

X f [DZ]5(7 (0))5(p(z))exp i f—dz'k y(z') exp
2pb f dzI(p 2+/2/i~) (A5)

The evaluation of this Cxaussian path integral gives [using Eq. (7) for the initial condition]

G(k, n, n', z)=(Detb, ')exp —az+ik R(z)+ k H(z)+F(z)pb
2

(A6)

where

R(z) =f dz' y(z'),

H(z) =f dz' f dz" 6 '(z', z"),
8 + 1/I

BZ2

F(z)= f dz'(y +y /i ) .

The inverse of the operator b, is

(A7)

I I/

'(z', z")= . e(z' —z")sinh(z" /l)sinh +e(z"—z')sinh(z'/l)sinh
sinh z/i

where 8 is the Heaviside step function. The determinant
1S

Deth '= f [DP]5(P(0))5(P(z))

The path integral in (A10) becomes (A9) by the analytic
continuation z —+ —iz, which gives

Detb. ' =[i sinh(z/I) ] (Al 1)

X exp — f dz'(13'+ P'/l')
2pb

A similar determinant has been evaluated as

Detb, '= f [Df3]5(P(0))5(P(z))

Xexp —f dz'(/3 —P /l )

= [il sin(z/l)]

(A9)

(A 10)

Combining the pieces (A4)—(Al 1), the result is Eq. (19).
The "mean path" of Eq. (A4) is the dominant path tak-

en by the radiation. Because of the character of the sinh
function, the approach of the radiation to the final angle
n is slow for much of the path, accelerating as the radia-
tion approaches the observation point. This leads to the
interpretation that large-angle scattering events are more
important in this SAA solution than in the SA solution.
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