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We consider here the hopping of an electron among a band of localized electronic states on a d-
dimensional lattice. The hopping rates are assumed to be stochastic variables determined by some
probability distribution. We restrict our attention to nearest-neighbor transport in the limit in which
the fluctuations in the hopping rates are large. In this limit we construct an exact expansion for the
frequency-dependent diffusion coefficient D(c) that is applicable to a wide range of transport phe-
nomena (d =1 conductors, trapping phenomena, molecularly based electronic devices, etc.) in any
spatial dimension. For the case of hopping transport with d =1, our method confirms earlier re-
sults that strong Auctuations in the hopping rates give rise to a non-Markovian c' - correction to
normal diffusion. In two dimensions, we establish explicitly the existence of a non-Markovian loga-
rithmic correction c, inc to D(c, ). The formalism is then extended to d dimensions and the frequency
corrections are discussed. For d =3, two frequency corrections must be retained. One is linear in c
and the other proportional to c, . It is shown that only the c correction contributes to the long-
time tail t ' in the time-dependent diffusion coefficient D(t). From these results we show that
the long-time tail in the velocity autocorrelation function which is a consequence of the strong fluc-
tuations in the hopping rates is of the form t "+" '. Comparison is made with earlier results.

I. INTRODUCTION

Charge flow in one-dimensional conductors is obtained
as a result of electron hopping transport (impurity con-
duction) among a band of localized electronic states' This
view of transport in disordered one-dimensional systems is
warranted because it is well know that the eigenstates of
such systems are localized. Hopping transport among a
band of localized states is an inherently incoherent pro-
cess. Consequently, the dynamics of the transport are
governed by a master equation (or continuous-time
random-walk equation)

dP ~p
dt

involving the site-occupation probabilities P;(t) and the
transfer rates co, the rate of transfer between two sites.
The vector P(t)=(P&,P2, . . . , P&) and W is a random
matrix determined by the nature of the transport process.

In a disordered system the transfer rates (or waiting
times) vary from site to site and should be treated as in-
dependent random (stochastic) variables' that are deter-
mined by some probability distribution function p(co). If
the fluctuations

(1 2)

in the transfer rates are large, standard weak fluctuation
expansions of the transport properties, such as the dif-
fusion coefficient D(t), in terms of b,„break down. In
(1.2) ( ) signifies an average over the distribution of hop-
ping rates. The preferred treatment should the weak fluc-
tuation limit fail is an expansion for D(t) in the inverse
moments of the fluctuations

For such an expansion to exist, it is necessary and suffi-
cient that p(co) be nonsingular in the limit that co—+0.
Should p(co) be singular in this limit, trapping effects will
occur and the mean-square displacement

( 2(t) ) t1/(1+P) (1.4)

will be anomalous, that is p~O. Equivalently, D(t) will
vanish at long times. The vanishing of D(t) for certain-
hopping models in d = 1 is well known "but only recent-
ly established in d =2 for random hopping (RH) among
impurity sites interacting with an Ohmic dissipative
bath. 4'b'

In this paper we restrict ourselves to random trapping
(RT) models for which z„exists. We focus on the site-
disorder problem in which the randomness in the transi-
tion rates arises from the distribution of potential wells
which can act as trapping sites for the particle. The
literature abounds with a plethora of papers which
develop expansions for D (t) in terms of z„ in one-
dimension. The techniques used range from renormal-
ization group calculations on one-dimensional lattices to
E expansions effective medium calculations to arduous
exact calculations. Though the techniques used are
varied, all of these calculations indicate that fluctuations
in the transfer rates give rise to non-Markovian terms in
the diffusion coefficient of one-dimensional systems.
Hence, only for the ordered system is regular diffusion ob-
served.

We develop in this paper an exact simple expansion for
the ac conductivity of one-dimensional conductors in the
limit of large fluctuations in the hopping rates. The pri-
mary merit of, our approach is its simplicity and applica-
bility to a wide range of transport phenomena such as (1)
nearest-neighbor hopping on d-dimensional lattices, '
(2) charge flow in photosynthetic systems, (3) electron
transport in finite-sized systems, for example, proteins'
and molecularly based electronic devices. "
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is directly proportional in the q —+0 limit to (,r (t) ).
Hence, (1.5) facilitates a direct SFE for D(t). All"
previous treatments have used as the generating function
for the transport properties

F(q, t) = g e""P„(t) .
n

(1.6)

The diffusion coefficient is then proportional to the
second derivative of F with respect to q. Derivations of
the strong fluctuation limit of D(t) from (1.6) encounter
singularity problems with the transfer matrix defined in
(1.1). As we will see no such problems beset our calcula-
tion. In Sec. III we extend our result to d =2 and estab-
lish the existence of a non-Markovian t ' term in D(t).
We close with a discussion of the three-dimensional case
and a generalization of the basic approach to d
dimensions.

This paper is organized as follows. In Sec. II we
develop the strong fluctuation expansion (SFE) for the
transport properties. Our approach is based on the reali-
zation that for nearest-neighbor hopping on one-
dimensional lattices for a site-disorder problem the gen-
erating function

F(q, t) = g e'~"co„P„(t)

distribution of hopping rates. The diffusion coefficient is
defined as

(2.6)

Here l is the separation between sites. We now have an
exact expression for D (e) in terms of the site-occupation
probabilities. To derive the strong Auctuation expansion
for D(E) it is expedient to use the generating function

P (q, e) = g z "co„f„(E), (2.7)

where z =e'~. It follows directly from Eqs. (2.3) and (2.7)
that

]f„(E)= f P(q E)e 'q" dq .
27TCOn

(2.8)

Because none of the co„'s vanish, f„(E) is well defined.
That f„can be written in general as (some function) && co„'
should be intuitively clear because in the c.=O limit for a
finite system, f„ is simply ceo„where c is a normaliza-
tion factor. " On physical grounds this proportionality
simply means that the particle spends more time in the
deeper wells. We can now use the generating function to
obtain the central result for D (E),

II. ONE-DIMENSIONAL TRANSPORT D(e) =l E(P(q =0, c, ) ) . (2.9)

We consider here a d =1 lattice of impurity sites and
nearest-neighbor hopping between sites. As a further sim-
plification, we assume that for any two sites the transfer
rates are symmetric,

~n~n+1 ~n~n —1 ~ (2.1)

This is the symmetry condition for a distribution of sym-
metric wells (traps). The wells, by virtue of the distribu-
tion of the hopping rates, have different depths. Hence,
the model we consider here corresponds to transport in a
site-disordered rather than a bond-disordered system. The
master equation for the site-occupation probabilities P„(t)
1s

P„(t) =~„&P„&+~„+,P„+, 2m„P„, —
dP„
dt

= —2(1—cosq) g co„P„(t)e't" (2.10)

The utility of the generating function defined in (2.7) is
twofold. First, because the f„'s are now written as (some
function) &&~„', a SFE can be developed straightforward-
ly by adding and subtracting (some function)&& (co„').
Second, D(E) is now related directly to the q =0 limit of
(P(q, e)) as opposed to the q =0 limit of the second
derivative of P (q, E). Hence a direct SFE can be
developed for D(e) once (P(q, e)) is known. Our ap-
proach involves the formulation of an integral equation
for P(q, s) which is obtained by multiplying both sides of
the master equation by e'~" and summing over n. The re-
sult is

—oo (n(oo (2.2) or

where m„ is the rate of transfer from the nth to the
(n +1)th site. Let us define the Laplace transform of the
occupation probabilities as

f„(E)=f e "P„(t)dt . (2.3)

Van Kampen' has shown that the mean-square displace-
ment for Eq. (2.2) with symmetric rates

—2(1 —cosq)P (q, E)

E elqn f P (q', E)e '~ "dq' —Fo(q, 0)
277

with

Fo(q, 0)= g e'q"P„(0)

(2.1 la)

(2.11b)

( n'(E) ) = g (n'f„(E) )
n=0

can be written as

(2.4) and

Fo(0,0)= 1 . (2.11c)

E(n'(E)) =2+ (co„f„(E)) . (2.5)

In (2.5) we have initialized n (0) to zero. The angle
brackets in (2.5) represent an ensemble average over the

Equation (2.11a) is a Dyson equation for the generating
function P(q, E) which we now solve by iteration. We
point out that because the left-hand side of (2.1la) is
directly proportional to D(e), a perturbative expansion of
the integral equation leads naturally to an inverse moment
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expansion for D(e, ). Perturbative expansions ' ' based
on standard generating functions invoke a priori that
D(c,=O) o: ( I/8') '. On the other hand, as we will see,
this new generating function defined here yields this result
naturally. For the SFE we will need the quantity

(2.12)

where we have assumed that

obtain

(P(q, s) ) =2nFp(q, O)G (q, s)

8 +p g), 0 Gp g, s+(2~)' 5
COn 2 slnh'g

3

s Fp(q, e)

for all I and n .

We shall further assume that fluctuations

1

Dp

(2.13)

(2.14)

X Gp(q, s) , + . . . ,
1

4sinh q

where

cosh' =c/2Dp+ 1 .

(2.21)

(2.22)

in the co„'s are uncorrelated. Hence,

1
$

1 0 (2.15)

for m~n
If sD p 'P(q, c)is adde, d and subtracted from Eq. (2.11a)

we obtain

Fp(q, O)
P (q, E)= —J K (q, q', E)P(q', E)dq'

s +2(1—cosq)

(2.16)

Recall that D(E)=l e(P(q =0, E)). The final result for
the frequency-dependent diffusivity is

)' 2

D )) Do)' )+( 5
)

(2.23)

In the limit of small c,, g-(E/Dp)'~, we obtain

with s =c,/Dp. The kernel

K(q, q', s)=EGp(q, s) +5 1 i (q —q')n (2.17)
limD(E)-l Dp 1+ 52 1

c~p Q)n

2)
g)3/2

~1/2
2

'

where

1
Gp(q, s) =

2m[s +2(1—cosq)]
(2.18)

+(n )
DD.

contains a11 information regarding the fluctuations in the
hopping rates. It is from this term the non-Markovian
behavior arises.

We are interested in the long-time or c—+0 limit of
(P(q, e)). Hence, we retain only the first two terms gen-
erated by the kernel K(q, q', E) Becaus. e (K(q, q', s) ) =0,
the first fluctuation corrections to (P(q, s) ) are

(K(q, q', e)K(q', q",E) )
2

E Gp(q, s)5(q —q")Gp(q', s)

The first term in (2.24), l Dp, is the standard zeroth-order
strong-fluctuation result for the diffusion coefficient The.
next term is the non-Markovian correction derived by
Zwanzig and others. ' ' '"' We computed the third-order
term explicitly to show that it does not contribute to the
c.' correction. The presence of the leading c.' correc-
tion dictates the existence of the long-time tail t in
dD(t)/dt (the velocity autocorrelation function) that ap-
pears to be an integral part of transport in d = 1 systems.

III. HOPPING TRANSPORT IN d =2

and

(2.19)
The crucial step in the derivation of (2.24) is the reali-

zation that the van Kampen' result

(K(q, q', E)K(q', q",E)K(q",q'", E) )

=2' E Gp(q, s)Gp(q', s)Gp(q", s )

E(n [E))=2( g ro„f„(E))
n = —oo

(3.1)

3

~ ~5(q —q"') . (2.20)

Substituting these expressions into (2.1) and averaging we

for the mean-square displacement leads naturally to a
SFE for D (c.). Extending the analysis of Sec. II to higher
dimensions requires generalizing Eq. (3.1). Consider the
master equation for nearest-neighbor hopping on the
square lattice shown in Fig. 1,
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n, m+ l so that

f2—&n'(E)) =E&P(Q, Q, E)) .
2

(3.10)

n- l,m:
n-I p

"nm

n, m-I

nm

-n+l, m

Hence, as in the 1D case all that is required is the
q&,q2 ——0 limit of the generating function. For conveni-
ence let us define the two vectors q = (q ~, q2 ) and
n=(n, m). The closure relation for the site-occupation
probabilities

]f„(E)=f„(E)= f e'q'"P(q, E)dqr +~ (2~)'

(3.1 1)

reveals that the strong fluctuation expansions will involve
averages of the form

FIG. 1. Nearest-neighbor transport on a square lattice. (3.12a)

d~nm
+~.+1, I'.+1, (3.12b)

+~n m —1 n m —1+~n m+1 n m+1 ~nm nm

(3.2)

P(r, t)=. g 5(x —x„)5(y —y )P„(t) .
n, m

(3.3)

The r„~'s transfer an electron from the nth to the
(n +1)th site in the x direction while the co„'s account
for transport in the y direction as specified in Fig. 1. To
generalize (3.1) to d =2, is it helpful to define the proba-
bility density at time t for an arbitrary position r in the
lattice as

(3.12c)

It should be pointed out that in the limit of symmetric
rates in the x and y directions r„=co„, and n1 ——a2 ———, .
The general result for any dimension for the case of sym-
metric rates is a„=I/O. In Eqs. (3.12a)—(3.12c) we have
assumed that the averages over the distribution of hop-
ping rates are independent of n. The equations of
motion for the site-occupation probabilities

The mean-square displacement is now

&r (t)&=& f drr P(r, t))

=l & g (n +rn )P„(t)) .
n, m

(3 4)

(3.5)

g e'q "P„(t)= —'2(1 —cosq~ ) g e'q "r„P„(t)'

—2(1 —cosq2) g e'q co„P„(t)'(3.13)

dt
(r (r)) = (22(r)) =2 g (r„+rr„)P„) (3.6)

In deriving (3.5) we have used the periodicity of the lat-
tice, that is, x„=nl and y =ml. It is straightforward to
show from (3.2) that

are obtained by multiplying the master equation by e'q'"
and summing over a. To obtain the integral equation for
P(q, s), we express the Laplace transform of (3.13),

E g e' 'fq„( ) —sFo(q, 0)

or

g2—(rr'(r)) rg(r„+rr„)f„(r=)),
n, m

(3.7)

= —2(1—cosq ( ) g e'q'"r„f„(E)

—2(1—cosq ) g e' au+„( )E, (3.14)

P(q/, q2, E)= y e ' e ' f„(s)(r„+co„)
n, m

(3 9)

where

f„(t)=f e "P„(t)dt . (3.8)

Equation (3.7) is the generalization of (2.5) to two dimen-
sions.

We can now proceed with the analysis of the transport.
Equation (3.7) suggests that the correct generating func-
tion is

in terms of the averages defined above in (3.12). In (3.14)

Eo(q,p) = g P„(0)e'q'" . (3.15)

Let us define, in direct analogy with Eq. (2.18), the
zeroth-order Careen function in d =2 to be

1
Go(q, s) =

2m Is+2[1—a~ cosq, —(1—a&) cosq2] J

(3.16)
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with

s=c/c . (3.17)

integral equation for P (q, E) that results is

P(q e) =27TFp(q 0)Gp —,f K(q, q', e)P(q', e)dq'

Because f„(c,) ~ (r„+co„) ' a strong fluctuation expansion
for P(q, c.) can be generated naturally by adding and sub-
tracting c ' and n& from the equations of motion. The We have defined the kernel k (q, q', e) as

(3.18)

K(q, q', e) = Gp(q, e)
(q —q').Ze co

(2') Cn
—2( cosq& —cosqz)5(a„) (3.19)

=Gp(q, E)Kp{q,q') .

Two types of fluctuations appear in the definition of K(q, q, e). The first

{3.20)

P ~+CO~ 7" +CO
(3.21)

accounts for independent (uncorrelated) fluctuations in the x(r„) and y(co„) hopping rates. Correlations in the fluctua-
tions in the x and y hopping rates are included in the second term

(3.22)

The contribution from this term is only appreciable if some anisotropy exists which makes the r„s differ from the
qo„'s—that is, the r„'s and co 's are determined by different probability distribution functions. We note that if we assume
no such anisotropy exists, then

(3.23)

and 5(a„)=0 for all n. We will be interested in this limit later on in our evaluation of the fluctuation corrections to
P(q, e). The general result for a~ and c for d dimensions if the hopping rates between nearest neighbors in all direc-
tions are symmetric is

and
ai = 1/d (3.24)

(3.25)

A solution to the integral equation for P (q, E) is obtained by iterating to low order in K and averaging over the disor-
der in the rates. To third order in the fluctuations we obtain

(P{q E))=2rrFp(q 0)Gp{q s) —(27r) f ~Gp{q E)Kp(qsq )E))Fp(q )0)Gp{q ss)dq

+ (2m )' f f (Kp(q, q', e)Gp(q, s)Kp(q', q",E)Gp(q', E) )Fp(q", 0)Gp(q", e)dq' dq"

—(2m) f f f (Kp(q, q', e)Gp(q, e)Kp(q', q",E)Gp(q', e)Kp(q", q"',0)Gp(q", e) )

XFp(q'", 0)Gp(q"', s)dq'dq"dq"' .

From the defining equation for Ko, it follows immediately that

(Kp(q, q', E)) =0-

(3.26)

~ Kp(q q e)Kp(q q e) )
r 2

1 I 2 1s —2( cosq; —cosqs) ()(o„)() )s
Cm

—2( cosq', —cosq's)(()(o„)() )s
&m

+4( cosq ) —cosq2 )( cosq &

—cosq 2 ) ( 5(a~)5( am ) ) (3.27)
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The second and fourth terms in (3.27) vanish in the limit
q=O. Because D(c, ) corresponds to (P(q=O, s)) terms
which vanish when q=0 need not be computed. It is in-
structive here to point out a general rule for enumerating
the nonzero fluctuation corrections to D(E). The fluctua-
tion kernal Ko is of the form

where

Cn 2I n

With this simplification in mind we now rewrite
(P(q, E) ). As in the d =1 case, we assume that

Kp(q, q') = g A„(q,q')5 +B„(q,q')5(a„) . (3 28)
n Cn

1 1
6 5 =0 for n m.

Cn cm
(3.30)

Kp(q, q') = 1

2' Cn
(3.29)

From (3.19) we see that B„(q=O,q')=0. Hence, in the
expansion of (Kpn ), all terms in which 8„(q,q') occurs
first do not contribute to D(s). That is, terms such as
BAB and B"vanish whereas ABA, AB", etc. do not. This
key simplification indicates that the fluctuation contribu-
tion from the anisotropy in the hopping rates in the x and

y directions is not as important as are the independent
fluctuations in the r„'s and co„'s. Hence, at this point we
will consider only those fluctuations that arise when the
anisotropy vanishes. In this limit the hopping rates in x
and y are symmetric (r„=co„),5(a„)=0, and Kp simpli-
fies to

( Kp(q, q'. , E)Kp(q', q",E)Kp(q", q'", E) )
3

, { 5 — )5(q —q'"), (3.32)

To simplify the notation we will drop the subscripts on
5(1/c„). Then

(Kp(q, q', E)Kp(q', q", s) )
2

o 5(q —q") 5 — ), (3.31)
(2~) c

2

(F(qo)) =2cFo(qQ)Go(q c)+(2c)'o Fo(qq)Go { 5 —
) J Go(q', o)dq'

c
3

—o (2oc) Fo(O, O){ 5 )Go J J Go(q', o)Go(q", o)dq'dq" . (3.33)

Let us define T(s) as the following integral:

T(s) = J Gp(qos)dq
1

(2'�)'
1 1

dg ( dg2
(2~)2 —~ —~ s+2 —cosq& —cosq2

(3.34)

(3.35)

The assumption of symmetric hopping rates requires that
a~ ——a2 ———,. From (3.35) it follows that

It has been shown previously that T(E/c) has a logarith-
mic singularity in the long-time limit. ' Consequently,
the leading non-Markovian corrections to lim, pD(E) are

(imD(o)= —. 1+c 5 —
)

CI 2 1

c~o 2

2 1 1 c E—ln2 ————ln
4 2 c c

( P(q, E) ) =2~Fp(q, O)Gp+ (22rE) Fp(q, O)

2
+0( —s lnE) . . (3.38)

3

-(2.), F', (q, O){ 5 —' )G,(F(.))

and the diffusion coefficient is given by

D(E) =—(P(O, E) )l
2

Cl 2 1 E
- 1+c 5 — —T(E/c)

2 c c

3 2

—c E 6 — —T

(3.36)

(3.37)

The s lnE dependence of D (c,) signifies a lnt correction to
the long-time limit of (x (t)) or a t long-time tail in
dD (t)/dt. The appearance of the t correction in
dD(t)/dt is due entirely to the fluctuation of the hopping
rates about the mean (c '). For small fluctuations in the
hopping rates this result has been established previously
for hopping transport in two dimensions. ' ' ' ~ ~

. The fact
that the number of sites visited d'uring a random walk on
a d =2 lattice is proportional to X/In% (Ref. 13) (X the
number of steps) might be related to this result. We point
out that fluctuations arising from anisotropic rates
(r„&con) do not contribute to the c, lnE term in (3.38) but
rather they modify the zeroth-order result cl /2. In-
clusion of such effects are likley to be essential in describ-
ing bond and site percolation problems.
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IV. d-DIMENSIONAL TRANSPORT

The formalism presented thus far can be extended im-
mediately to hopping transport on d-dimensional lattices.
For nearest-neighbor transport on a d-dimensional lattice,
the equation of motion for the site-occupation probabili-
ties is

dP„d
d,

= X con+i.Pn+i. +con —i.Pn-(. —2~& 'Pn, (41)
a=1

Go(q, e) =
d

2m. s+2 1 —g a;cosq;

(4.5)

(4.6)

where s and a„are defined in analogy with
(3.12a)—(3.12b),

2 d
(n'(E)) =s g g co„' 'f„(e)

2 n a=1
(4.2)

where n is the vector n=(n(n2. . . n~) and 1 is a unit
vector such that 1( & ~

——(1,0, . . . , 0), I(
=(0, 1,0, . . . , 0), etc. It is straightforward to show that
the correct generalization of Eq. (3.7) for (n (e) ) is

In the limit of symmetric rates

(4.7)

d

P(q, s)= g g e'~'"co„' 'f„(E)
n a=1

satisfies the following integral equation:

(4.3)

In (4.2) f„(s) is the Laplace transform of the site-
occupation probability P„(t). The appropriate generating
function

1
CX

g

and the integral equation reduces to

P(q, s)=2~F(q, OG (oq, )s ~ I E(q, q', s)P(q', E)dq'.

(4.&)

d
(a)

=2J 2(1—cosq~ )P (q', e)e'

J dq'P(q', s) g J„e'q q '"—Fo(q, O)(2~}'

(4.4a)

The d-dimensional fluctuation kernel K(q, q', E)

K (q, q', E)=Go(q, e) g e'q q '"$(1/c„)
2~ .

only involves the symmetric fluctuation
r

5(1/c„)=— —
(
—

)

(4.9)

(4.10)

where

d
Jn= g~n

a=1

Let us define the zeroth-order lattice Green function

(4.4b)

L

because co„' '=co„ for all a.
The integral equation can be solved as before to obtain

the transport properties. The only difficult problem in-
volved in such a calculation is the q integration of the
Green function,

+2~t 2t/d( cosq&+. . . + cosq&)J (sj= dq1 . aqd ate ' e
(2~)~ n —m —0 (4.11)

This integral has been investigated extensively by Montroll' " and Sahimi et al. ' ' ' For small s, the asymptotic
behavior is

2t —st

(4.12)

A — s '[y —lns —e 's "~ ], d evenen —(

(d /2)!
A —e 'sd ', d odd

(4.13)

where Io(t) is the zeroth-order modified Bessel function
and A the first integral in (4.12). For d =1, A vanishes
identically as s~O. The exact form for A is given in Eq.
(3.38) for d =2. In d =3 A has been evaluated explicitly
by Watson to be A =0.505. For higher dimensions A js

lim sJ(s) -sA + s
"~

s~O
(4.14)

most likely nonzero; hence we conclude the general
asymptotic behavior of sJ(s) is
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in odd dimensions and

limsJ(s)-sA+s" lns
s~p

(4.15)

in even dimensions.
From the general expression for D(t) to second order in

the fluctuations
2

cl~ 2 1D( )E= 1+c' 5 — )E/c/(E/cj
2 c

(4.16)

&& [0.505E/c —(E/c) ] . (4.17)

=D, +D,&+D„3", (4.18)

where Do, D&, and D2 follow immediately from (4.17).
The linear frequency correction arises from the constant
term in J(s). Indeed, this term is somewhat unanticipat-
ed. However, it is straightforward to show that this term
has no bearing on the long-time behavior of D(t). To
proceed we first calculate (x (E) ),

Dp Di D2(x (E))=6
C E C.

(4.19)

using Eq. (2.6) generalized to d dimensions. The inverse
Laplace transform of (x (e) ) is

(x'(r) ) =6(D,r+D, +D, r '~') . (4.20)

Consequently, the time-dependent diffusion coefficient

D(t)= (x'(t))=6(D, ——,'D, r
—'~')

dt
(4.21)

is independent of D& and the e frequency term gives

the frequency corrections for the d =3 case are easily de-
duced from Eq. (4.14),

2
cl 1D( )=E1+c2 5 —

)2 c

rise to a t long-time tail in the velocity autocorrela-
tion function, dD(t)/dt. A similar result has been estab-
lished by Machta et al. ' for random-hopping models
with small fluctuations in the hopping rates. Our results
are valid in the limit of large fluctuations of the transfer
rates and hence are valid for transport in any site-
disordered material. Frequency-dependent measurements
of the conductivity in disordered systems are needed to
confirm the predictions made here. It is our hope that
this work will provide the impetus for such measure-
ments. Alternatively, molecular dynamics simulations of
hopping transport in d dimensions can be performed to
verify the existence of the long-time tail t "+" ' in
dD (t)/dt (the velocity autocorrelation function) found
here.

V. SUMMARY OF REASONING

We have presented in this paper a powerful formalism
for treating hopping transport among a band of localized
states in d dimensions. The primary motivation for this
approach is the realization that the van Kampen' formu-
la for (r (t)) for 1D hopping among a distribution of
symmetric wells (1) can be generalized to any dimension
and (2) leads naturally to a strong fluctuation expansion
of D(t). This approach will undoubtedly be applicable to
numerous trapping and hopping-transport problems in
disordered materials. In forthcoming publications we ap-
ply the theory developed here to investigate the feasibility
of molecularly based electronic devices'" ' and to study
percolation in the random-hopping model. '
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