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We show analytically that for a class of simple periodic motions in a general Hamiltonian system
of n dimensions, if C is a parameter of the system and Cz one of its generally many critical values
at which the motion undergoes a stability-instability transition, the behavior of the largest Lyapunov
exponent p as C approaches Ce from the unstable region is given by p, =const)&

~

C —C~ ~

~, where

P= 2, independent of the transition point, type of transitions, or the dimensionality of the system.

We present numerical results for a three-dimensional Harniltonian system which exhibits three types
of stability-instability transitions, and for a two-dimensional Hamiltonian system which exhibits two
types of transitions.

I. INTRODUCTION

In this paper, we shall show analytically that for a class
of simple periodic motions in a general type of Hamiltoni-
an system, if C is a parameter of the system and Cz one
of its generally many critical values at which the motion
undergoes a stability-instability transition, the behavior of
the largest Lyapunov exponent p as C approaches Cz
from the unstable region is given by

p=constX
~

C —Cz ~

P, (1)

where P= —,', independent of the transition point, type of
transitions, or the dimensionality of the system.

Our result is reminiscent of a similar result established
numerically for a dissipative dynamical system in which
in what are called the intermittent transition to chaos' of
types I and III, the Lyapunov exponent p behaves in a
manner similar to that given by Eq. (1), where P was nu-
merically determined to be equal to 0.5. It is also of in-
terest to note that the exponent P is 0.449 806 9. . . for the
period-doubling route to chaos. The significance of our
result is the universality of the value of 13 for the Hamil-
tonian systems of any dimensions, and that its validity has
been established analytically.

Since a great deal of work on stability-instability and
order-chaos transitions has been done on various Hamil-
tonian systems, we should mention the following features
of our analysis: (i) that our systems involve continuous
times, not discrete mappings which in many respects are
easier to deal with, and (ii) that our results deal with the
stability-instability transitions of a class of periodic
motions, as functions of the coupling parameters of the
system. Thus some of our analysis can be viewed as a
sequel of Sec. 3.3 of Ref. 4. A point of interest in this
connection is a result which shows that for a number
of two-dimensional Hamiltonian systems, a given motion
may change from stable to unstable to stable a finite or in-
finite number of times as the value of the coupling param-
eter is varied continuously from —Oo to + oc, and that

the 13=—, exponent has been established for these two-
dimensional systems ' and for the case when the stability
of the cycle of interest is described by a Mathieu equa-
tion.

We have numerically verified our analytic result (1) for
a number of Hamiltonian systems. As examples, we shall
present in this paper a three-dimensional and a two-
dimensional Hamiltonian system for which we shall give,
among other results, tables listing some accurately deter-
mined critical points Cz together with the types of transi-
tion at these critical points.

II. STABILITY-INSTABILITY TRANSITIONS
IN HAMILTONIAN SYSTEMS OF n DIMENSIONS

Consider a general Hamiltonian system whose Hamil-
tonian is given by

n
1H = —, g mjxl+V(x~, x2, . . . ,x„),

j=1
(2)

(4)

where the parameters of the system are the a 'J's and the
coupling parameters O'J's.

We assume that, under a set of initial conditions, our
system has a simple periodic solution with a determinable

where the potential energy V depends on the position
coordinates only. The shape of the potential function can
be quite arbitrary, and the motions considered may in-
clude those which start to be bounded, and become un-
bounded at later times. The equations of motion are given
from Eq. (2) by

mjx'J+BV/Bxj =0, j=1,2, . . . , n

which are generally nonlinear. A typical jth equation of
motion, for example, may be of the form

x +a'J'x '+a'J'x '+ . +C' 'x 'x '-
J 1 Ji 2 J2 1 k) k2
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real period T. An example in which this situation often
occurs is when the initial condition is given by

xj(0)=a, xj(0)=b, xk(0)=xk(0)=0 for k&j, (5)

for which the equations of motion (5) are assumed to give
a solution of the form

w=M(t)w, , (7)

where the matrix M(t) can be written in an explicitly-
time-dependent form through P(t) because of the solution
(6). M(t) is thus periodic with a period r, which is equal
to T, or T/2 if only even powers of P(t) appear in M(t).
The steps from Eq. (4) to Eq. (7) in which M(t) is expres-
sible in an explicitly time-dependent form are straightfor-
ward, if an appropriate choice of the initial condition
which would yield a solution such as (6) could be made.
The fact that such choices can often be made, and that the
study of the stability of these simple solutions as a func-
tion of the parameters of the system can lead analytically
to many important conclusions, does not seem to have
been appreciated previously.

The. diinension of the matrix M(t) is generally 2n. In
practice, however, it often happens that certain sym-
metries or simplifying features can be used to reduce M(t)
to a smaller size. Literatures on the stability analysis of
the type of equations given by Eq. (7), pioneered by
Lyapunov, are very extensive, ' especially on the problem
concerning the analytic criterions for stability. We are, on
the other hand, more interested in classifying the type of
stability-instability transitions, their dependence on the
parameters of the system, and the ready numerical deter-
mination of the transition points.

Let the column vectors Wk(t), k =1,2, . . . , 2n,
representing the 2n fundamental solutions of Eq. (7) be
placed into a matrix form W(t) such that W(0) is a unit
matrix, i.e., the components wjk(t), j=1,2, . . . , 2n of the
kth fundamental solution Wk(t) have initial values given
by w~k(0) =5jk. The special initial values are what distin-
guish a fundamental solution from just a solution of Eq.
(7). Since M(t) is periodic with period r, there exists
a nonsin gular constant matrix P such that
W(t +r) = W(t)P. Setting t=0 and noting that W(0) is a
unit matrix, it follows that the elements pjk of P are given
by

(6)

where P(t) is a periodic function of time with a period T,
i.e., P(t + T) =P(t). We shall consider the stability of this
solution when the initial condition given by Eq. (5) is
slightly changed. Since the linearized equations of motion
for small perturbations b,x„ from x„obtained from Eq. (4)
and the substitutions of Eq. (6) in them will contain some
or all of the parameters a' ' and O'J' of the system, the
stability of our simple solution (6) will generally depend
on these parameters, and the dependence is generally not
simple. Let w=(b, x&,hx&, b,xz, b,x2, . . . , b,x„,Ax„) be a
2n-dimensional column vector whose components
represent small perturbations hx„and b;x„ from x„and
x„, r =1,2, . . . , n The .linearized equations of motion
can be written as

The matrix P, which from Eq. (8) can be readily numeri-
cally determined, plays an important role in the stability
analysis, for it can be shown, using a similar argument
which led to the Floquet theorem, that the characteristic
values SJ, j= j„2, . . . , 2n of the matrix P determine the
stability or instability of the system whose linearized
equations of motion are given by Eq. (7). More specifical-
ly, denoting

or

sj =exp(@jr), (9a)

pj = '7 1I1$J. (9b)

the general solution of the differential equation (7) is
given by

2'
w(t) = g cke " gk(t),

1G =1
(10)

where the ck's are arbitrary constants and the Pk(t) are
functions which are periodic in time with the period z.
(See Appendix A.)

An important feature of the matrix M(t) for our Ham-
iltonian system (2) is that its (k,j) element is always zero
whenever k+j is an even number. If E is a 2n )&2n di-
agonal matrix whose diagonal elements are
(1,—1, 1, —1, . . . , 1, —1), it is easy to verify that
E—'=E, and that

E 'M(t)E= —M( t) . — (12)

An important consequence of Eq. (12), as it can be shown
by applying it to Eqs. (7) and (8), is that the inverse of the
matrix P is given by

P-'=E-'P E (13)

from which it follows that the characteristic equation of
the matrix P is reciprocal, i.e., is of the form

s +a)s +a2$ + ' ' +a2 2s +a2 )s + I =0,
(14)

where a& ——a2„&, a2 ——a2„2, etc. That is to say, for
every characteristic root of Eq. (14), there is also the
characteristic root s '. (See Appendix B.) That Eqs. (13)
and (14) are a consequence of Eq. (12) is in fact a particu-
lar realization of a theorem of Lyapunov. "

From Eq. (9b), the stable region is characterized by the
roots sj distributed over the unit circle in the complex
plane, and the unstable region is characterized by one or
more of these roots having an absolute value greater than

E 'M(t)E = M(t) . —
We assume that M(t) is an even function with respect to
changing t to —t, i.e., M( t)=M(t) If P—(. t) is an odd
function of time, and odd powers of P(t) appear in M(t),
then we choose another initial time to such that the solu-
tion corresponding to (6) is xz(t')=P(t'), xk(t')=0 for
k&j, where t'=t to, and —where p( t')=p(t') —Then.
Eq. (11) can be written as
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sq
———,

' [aj +(aj~—4)' ] (16)

change from complex to real, but all the a's in Eq. (15)
remain real and thus remain analytic functions of the pa-
rameters of the system, since all the real coefficients of
Eq. (14) are analytic functions of the parameters of the
system. Thus, as the parameter C approaches the transi-
tion point C& from the unstable region, aj can be written
as aj =+2+@,where the positive and negative signs refer
to transitions of types I and III, respectively, and where
e=const&C

~
C —C~ ~

)0. Thus we find, from Eq. (16),
that the largest roots in absolute values are given, respec-
tively, in type-I and -III transitions, by sJ ——+1+a', or,
as C~Cz from the unstable region, the behavior of the
largest Lyapunov exponent is given, from Eq. (9b), by Eq.
(1), with P= 2 independent of the transition points or the
dimensionality of the system. We shall not consider the
case in which, by an accident or a symmetry, the coeffi-
cient of

~
C —Cz ~

' happens to be equal to zero.
A transition of type II from a stable to unstable region

is characterized by two of the a' s, aj, and aj+~, say, in
Eq. (15) changing from real to a complex-conjugate pair,
while the remaining o.'s remain real and &2 in absolute
values. Since aJ and o.J+] change from real to complex

1. As in the case of the intermittancy route to chaos, ' the
transition from a stable to unstable region can be classi-
fied according to three types '3 I, a real characteristic
root crosses the unit circle at +1; II, two conjugate
characteristic roots cross the unit circle simultaneously;
and III, a real characteristic root crosses the unit circle at
—1.

It is always possible to write the characteristic equation
(14) in the form

(s —a&s + 1)(s —azs + 1) (s —a„s + 1)=0,
where ai, a2, . . . , a„can be expressed as roots of an nth-
degree algebraic equation whose coefficients can be deter-
mined recursively from the coefficients a»a2, . . . , a2„
of Eq. (14). (See Appendix C.) In the stable region, all
the a's are real and have absolute values & 2. A transition
of type I to an unstable region as a result of changing the
value of a parameter of the system past its critical value is
characterized by one of the a' s, aj say, crossing the value
+2 to a value greater than + 2, while the remaining u's
remain real and & 2 in absolute values. Thus a transition
of type I from a stable to unstable region is characterized
by a complex-conjugate pair of roots on the unit circle ap-
proaching each other and closing in on the positive real
axis, and becoming degenerate at the value +1 at the
stability-instability transition point, and becoming
separate again but appearing on two sides of +1 on the
real axis, their values remaining reciprocal of each other.
Similarly, a transition of type III is characterized by one
of the a's in Eq. (15) crossing the value —2 to a value less
than —2, which implies a complex-conjugate pair of roots
closing in on the negative real axis and becoming degen-
erate at the value —1 at the transition point, and then
becoming separate and appearing on two sides of —1 on
the real axis. In either case, the roots of the equation
s —ajs + 1 =0 given by

where

a = —(a, +a, +, ), 8 =aja, +,+2. (18)

From Eqs. (17) and (18), we get

aJ+i ————,
'

[A —(A —48+8)'~ ], (19)

sJ ——,'[a+—i(4—u )'~ ], (20)

where a denotes aJ or aj+&. We note that since aJ and
aJ.+ &

are complex conjugate, A and B are always real, and
hence they are always analytic functions of the parameters
of the system. Thus in the neighborhood of the transition
point, A and B can be written as 3 =20+@, B =Bo+e,
and at the transition point, Ao —4BO+8=0. As the pa-
rameter C approaches the transition point Cz from
the unstable region, aj= ——,'(A+i&' ), &~+i= ——,'(&
—ie'~ ), from Eq. (19). Substituting these into Eq. (20),
we find sj.——4 [—HO+i(16 —Ao)'~ ]+ca'~, where c is
some complex constant. Thus the absolute square of the
largest root is given by

~ sj ~

= I+a'~, where e is equal
to some positive constant times

~

C —Cz ~. Using Eq.
(9b), we find exactly the same behavior given by Eq. (1)
for the Lyapunov exponent as that for the type-I and -III
transitions, with the same critical exponent P= —, which is
independent of the transition point, type of transitions, or
the dimensionality of the system. Noting that the numeri-
cal analysis of Manneville and Pomeau, ' and Daido and
Haken, for a dissipative dynamical system gave a dif-
ferent value for P for the type-II transition, it may be use-
ful to compare our analysis concerning the analytic or
nonanalytic behavior of the relevant parameters with their
basic assumptions on these parameters, and it may be
worth while to redo their numerical analysis.

That there is a close analogy between the behavior of
the Lyapunov exponent, Eq. (1), with the behavior of the
long-range order (e.g., magnetization in a ferromagnet) in
critical phenomena in statistical mechanics has been
pointed out by Daido and Haken. We would like to
point out that the distribution of the characteristic roots
sJ and its behavior as the stability-instability transition
point of type I or III is approached also have their analogs
in thermodynamic phase transitions in the Lee-Yang
theorem' on the distribution of roots of the grand parti-
tion function. However, the behavior of the characteristic
roots corresponding to the stability-instability transition
of type II does not appear to have any analog in equilibri-
um thermodynamics.

values across the transition point, neither of them is an
analytic function of the parameters of the system general-
ly. Thus we cannot, for example, assume that aj ——uj +eJ Jo
in the neighborhood of the transition point. On the other
hand, we have

(s 2 —aj s + 1 )(s —a&+ is + 1)

=s +As +Bs +As+1, (17)
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III. A THREE-DIMENSIONAL HAMILTONIAN
SYSTEM

As a first example, we consider a system whose Hamil-
tonian is given by

H = —,(x +y +z +codex +cozy +co3z )+Cxyz .

The equations of motion are

x+co&x +Cyz =0,
p +c02+ +Cxz =0

~

z+c03z +Cxy =0

(21)

(22)

2 4 10
It is easy to see that for an initial condition given by

x (0)=A, x (0)=y (0)=y'(0) =z (0)=z(0) =0,
the system gives a simple periodic motion

x(t)=A cos(co&t), y(t)=z(t)=0 for all t .

(23)

(24)

C
FIG. 1. The values of cx~ and az of E . (26) in Sec. III plot-

ted as functions of C, for co~=1, m2 ——2 3, co3 ——V 3, and A= 1.
The dotted line indicates that the values of a's become complex.
See Table I(a) for a summary of the regions of stability and in-
stability.

Using Eq. (24), the linearized equations of motion for
small perturbations Ax, Ax, . . . , M from x,x, . . . , z give
the following equation for Ax,

d (bx)idt +co((bx)=0 (25a)

and the following coupled equations for Ay =w],
—w2 Lz —w3 and M =w4.

dw/dt =Mw,

where

(25b)

w)

W3

W4

0
2—F02

0

0
0 —CA cos(co&t) 0

0 0 1

(25c)

CA cos(coit) 0

The solution for bx and bx for some given (small) initial
values of b,x(0) and b,x(0) is clearly always regular from
Eq. (25a). On the other hand, for some small deviations
by(0), by'(0), bz(0), and hz(0) from the set of initial values
given by Eq. (23), the solution for by, by', bz, bz from Eq.
(25b) may all be superpositions of oscillatory functions of
time in which case the motion is said to be stable, or one
or more of the deviations may grow exponentially with
time in which case the motion is said to be unstable.
Equation (25b) is a specific example of Eq. (7), and the
stability of the solution of such equation is generally a
complicated function of the parameters of the system,
which in this case are co&,co2, co3, C and the initial x dis-
placement A. The matrix M(t) given by Eq. (25c) is
periodic with a period ~=2~/co&. The stability or insta-
bility of the solution of Eq. (25b) is determined by the
characteristic values s&, j=1,2, 3,4 of the matrix P given

by Eq. (8).
The characteristic equation of the matrix P is recipro-

cal, as Eqs. (11)—(15) show, and is conveniently expressed
in the form

(s —a~s + 1)(s —a2s + 1) 0 ' (26)

d uldt +[coz+CA cos(co, t)]u =0,
d vldt +[co& CA cos(co{t)]U =0, —

(27a)

(27b)

where u =by +bz, and U =by —bz. Equations (27) can
be written as Mathieu equations with a change of variable
t= &co]t:

The stability of the given motion (24) as a function of co~,

c02 cl)3 and C for an initial condition which differs slight-
ly from Eq. (23) can be seen by plotting a, and a2 as func-
tions of these parameters. Figure 1 shows o. ~ and o;2 as
functions of the coupling parameter C, while the other pa-
rameters are kept fixed. The dotted line indicates that the
values of a become complex conjugate. Regions in which
both values of a are real and ~2 in absolute values are
the stable regions. Regions in which one or both of the
a's become ~ 2 or & —2, or those in which the a's be-
come complex, are unstable regions. The stability-
instability transition points, the types of transitions, and
the regions of stability and instability are summarized in
Table I. The di-stributions of the roots sz when a parame-
ter of the system is close to and at one of its stability-
instability transition points of types I, II, and III are
shown in Fig. 2. The behavior of the largest Lyapunov
exponent in the neighborhood of each of these transition
points as they are approached from the unstable region
has been numerically verified to be given by Eq. (1), as we
analytically predicted for Hamiltonian systems of any di-
mension.

In the case cu2 ——~3, the values of a& and a2 in the
characteristic equation (26) become degenerate. An im-
mediate consequence is that transitions of type II no
longer occur. It is easy to verify that Eq. (25b) reduces to
the following two independent equations:
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PLCJ

d u!d t +fa+2qc (o2st)]u =0,
d vid t +[a —2q cos(2t)]v =0,

where

(28a)

(28b)

ib)
FIG. 2. The distributions of the roots sj, j =1,2, 3,4 of Eq.

{26) in Sec. III when the value of a parameter of the system is
close to one of its stability-instability transition points of types I,
II, and III are shown in (a), {b), and {c) respectively. In {a),
A=1, coi ——,1, coq ——2V 3, co3=~3, and from top to bottom,
C =5.435 55, 5.465 55, and 5.505 55. In {b), A = 1, co&

——1,
Q)2, 2~3 c03 =W3, and from top to bottom, C =3.699 61,
4.19961, and 4.46661. In (c), A = 1, co2=c03 ——V 3, and from top
to bottom, C =2.68633, 2.74633, and 2.78633. Check with
Table I for the values of the parameters indicated.

The occurrence of a Mathieu equation with the conse-
quence regarding the existence of an infinite number of
stability-instability domains has also appeared in the work
of Churchill, Pecelli, Saco1ick, and Rod, Doveil and Es-
cande, Heller, Stechel, and Davis, ' and of the present au-
thors. The stability chart for the Mathieu equation can
be found in many texts. The characteristic curves
ao, at, b&, bz, . . . divide the (a, q) plane into regions of sta-
bility and instability. If the point (a,q) given by the
values of co&, co2 (=co3), C, and A from Eq. (29) falls in
the stable regions, then the solutions for u and U are oscil-
latory with time and the behavior of the motion is stable.
On the other hand, if the point falls in the unstable re-
gion, then the solutions for u and v grow exponentially
with time, signifying an unstable behavior. The stability-
instability transition points are given by the intersections
of the horizontal straight line a =4coqlcof with the
characteristic curves. For example, if we set a=12 (e.g.,

. for cot ——1, F02 ——co3 ——V 3), the region for which
—5.49266(q &5.49266 is stable, and the regions for
which

i q ~
)5.49266 are unstable, except for an infinite

number of very narrow strips of stable regions. Thus the
dependence on (i) the initial energy —,coiA, (ii) the cou-
pling parameter C, and (iii) the natural frequencies of os-
cillation co& and co2 (=F03), is represented conveniently by
two dimensionless parameters a and q. If a& and q&
denote the respective critical values at which the motion
undergoes stability-instability transitions, the behavior of
the largest Lyapunov exponent p as any one of these criti-
cal values is approached from the unstable region is given
by

4~2 2CAa= 2, q= 2
CO& CO i or

p, =const X
~

a —a~ ~

P, (30)

TABLE I. The first few stability-instability transition points of periodic motion (24) of the Hamil-
tonian system {21),numbered arbitrarily by p=1,2, 3, . . . . The types of transitions at these points and
the regions of stability {S) and instability {I) are also indicated.

(a) A=1, co| ——1, co2 ——2~3, coq=+3
Transition point Cp Type of transition Region

4.19961
4.576 14
5.465 55
9.144 96
9.524 31

II
II
I

I

S: 0&C&C&
I: Ci (C &C2
S: C2&C&C3
I: C3 (C (C4
S: C4&C&C5

P
(b) A=1, coi= 1, co3=V3, C=1

Transition point co'f' Type of transition Region

0.491 80
0.861 49
0.953 25
1.288 97
1.332 28

I
I
I
II
II

I: 0 (CO2 (COp
(&)

S: C02 (COp (C02
(&) (2)

I: co2 & co2 & cop
(&) (3)

S: C02 (C02 (C02
(3) (4)

I: Q)p (6)p (Q)p
(4) (5)

Transition point Cp

2.746 33

(c) A=1, co|——1, co2 ——co3 ——V3
Type of transition Region

S: —C& &C&C&
I: iCi)C)
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p =const X ( q —
qz I

~,

where P= —,', as our numerical result verified.

(31)

IV. A TWO-DIMENSIONAL HAMILTONIAN
SYSTEM: HENON-HEILES SYSTEM

WITH VARIABLE COUPLING

3

V(x,y) = —,
' (x ~+y )+Cx y— (32)

The Henon-Heiles system' has occupied a position of
historical importance in the studies of order-chaos transi-
tions in coupled Hamiltonian systems. It is well known
that when the energy of the Henon-Heiles system is in-
creased the system undergoes an order-chaos transition at
some point. We shall show that there is an infinite num-
ber of stability-instability transitions in the Henon-Heiles
system as a function of coupling and energy. '

The Hamiltonian of the generalized Henon-Heiles sys-
tem is given by Eq. (2) with m& ——m2 ——1 and the non-
linear potential

y(t)=c+(a —c)k sn (t, k ), (35)

where t=Qt, 0=v'(a —c)/6, k =(b c)/(a— c), —and
E'(k) is the complete elliptic integral of the first kind.
That is, y(t) is a periodic function of t with period
2K(k). Substituting Eq. (35) into Eqs. (34), we have

d (M)/d t =p((t)Ax (36a)

roots are equal, and the equal roots can be verified to be
b =c and a =b, respectively.

For the case E & —,', the real roots a and b are replaced
by a complex-conjugate pair, and the root c becomes less
than —0.5. The initial condition y(0) =c with c & —0.5,
will result in an unbounded solution for y(t). The two
cases [1 &y (0) & 1.5, 0 & E & —,'; and y (0) & —0.5, E & —,]
for which the motion is unbounded from the start will not
be discussed in this paper.

Let us consider the initially bounded solution for y, i.e.,
the case 0 & E & —, and —0.5 & y (0) & 1, and analyze the
behavior of M and by. The solution of Eq. (33) is given
by

where C is the coupling parameter. The case C=1
reduces to the usual Henon-Heiles system. The case C=O
clearly decouples the system into two independent oscilla-
tors. By making a 45' coordinate transformation
x'=(x+y)/v 2, y'=(x —y)/v 2 one can show that the
case C = —1 also decouples the system. Thus the system
(32) is integrable and hence is always regular when C=O
and C = —1, no matter what the initial energy of the sys-
tem is.

Assuming initially x(0)=x(0)=0 we then have
x (t) =0 for all t and

and

d (by)/d t =pz(t)by,

where

p&(t)= —12Ck sn T G, —
p2(t)=12k sn t —H',

(36b)

(37a)

(37b)

and

6 = —4C(1+k')+4(1+ C)(l —k'+k')' ', (38a)

y+y —y'=o. (33)
H =4(1+k ) . (38b)

The small perturbations lac and by from these initial
values of x and y will now evolve according to

Equations (36) are of the form of the Lame equation'

d u/dt =p(t)u,

and

d (bx)/dt +(1 +2 yC)(b )x=0 (34a) where

p(t)=v(v+1)k sn t —h,
d (hy)!dt +(1—2y)(by) =0 . (34b)

The evolution of Lbc and by may be oscillatory with time
in which case the behavior af the system is stable. If, on
the other hand, one or both of these perturbations grow
exponentially with time, then the behavior of the system is
very sensitive to any small perturbations of the initial can-
dition (for the given value of C) which is characteristic of
a locally chaotic but not necessarily globally chaotic
behavior.

Assuming y(0)=0, there are three possible values of
y(0) for a given value of initial energy E and they are
given, from Eq. (2) with the nonlinear potential given by
Eq. (32), by the roots of the cubic equation [y(0)] /2
—[y (0)] /3 =E. The discriminant of this cubic equation
is 3E(6E —1)/8. Thus for 0& E & —,', the equation gives
three real roots for y(0) which, when arranged in descend-
ing order of magnitude, will be called a, b, c, i.e., a & b & c.
For E & —,', the equation gives one real root and two com-
plex roots. For E=O, and E = 6, two of the three real

with a real period 2Ã(k). The occurrence of a Lame
equation in the stability analysis has also appeared in the
work of Churchill, Pecelli, and Rod, ' Pecelli and
Thomas, and of the present authors.

Equation (36) can be written in the form of Eq. (7) with
w=col(hx, hx) or w=col(by, hy) and M(t) a 2X2 ma-
trix. If f(t) and g(t) are two fundamental solutions of
Eq. (36a) or (36b) such that f(0)=1, f(0)=0, g(0)=0,
g(0)=1, then the a in the' characteristic equation (15),
s —as + 1 =0, is given by (see Appendix B)

a =trP= f(r)+g(r) =w~(r)+w2z(7 ),
where wjk(t) are components of the fundamental solutions
used in Eq. (8) and s=2IC(k) in this case.

Equation (36b) is independent of C, and its a value is
equal to 2. This is because H =4(1+k ) is a characteris-
tic value of the Lame equation of order v=3 for any
value of 0 & k & 1. The solution for hy is the Lame poly-
nomial ' Es3(t,k ) having a period 2X(k) and thus it is
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0—3
C

FIG. 3. The parameter a plotted as a function of the cou-
pling for the case in Sec. IV with the initial condition

1x (0)=x(0)=y(0) =0, y (0)=0.5, and hence E = —,2
——0.083 333

and k =0.5, b,x(0),by(0) small, b,x(0)=Ay(0)=0. The inter-
section points of this curve with the straight dashed lines a=2
and a = —2 give the stability-instability transition points.

always stable.
The a values for Eq. (36a) plotted as functions of C for

the case k =0.5 (E =—„)are shown in Fig. 3. The stable
regions are those characterized by

~

u
~

& 2 and the unsta-
ble regions are those characterized by

~

a
~

&2. A number
of stability-instability transition points for C are presented
in Table II. The intervals of a values (2,—2) or ( —2,2)
generally give the stable regions and the intervals (2,2) or
( —2, —2) generally give the unstable regions. There are
three exceptions to this rule in Table II: the regions—2.5 & C & —1 and —0.5 & C & 1.76 for E =0.083 333
are stable, as can be seen from Fig. 3, and the region—0.500&C&0.700 for E =0.16359 is stable. It is seen
that as a function of the coupling parameter C, the gen-
eralized Henon-Heiles system for the initial condition
x (0)=x(0)=y'(0) =0, —0.5 & y (0) & 1 (0 & E & —,

'
) exhib-

its an infinite number of stable and unstable regions. The
widths of successive stable regions are seen to become nar-
rower as

~

C
~

increases. For most practical purposes, the
stable regions become points on the C axis as

~

C
~

in-
creases beyond 10, and except for these points, all values
of

~

C
~

& 10 give rise to unstable motion.
For C=D, Eq. (36a) clearly always gives a periodic

solution of the form bx =A cos(cot+/) having a period
2'/co=m/(1 —k +k )'~ . There are three other special
values of C, C = ——,', —1, ——', for which the solutions for
b,x are Lame polynomials (i.e., characteristic functions of
integral order) having periods 2K(k). The values of G
corresponding to these values of C are the characteristic
values21 a22, b2, and b25 with the corresponding Lame po-
lynomials Ec2(t, k ), Es3(t, k ), and Es~(t, k ), respec-
tively, for the solution for b,x. The a value for these cases
is equal to 2 for any value of k.

Generally, for negative values of C= —
~

C ~, we can
write Eq. (36a) in the form of the Lame equation by writ-
mg

~

C
~

=v(v+I)/2 or v=[(1+8
~

C
~

)' —1]/2. G
given by Eq. (38a) is generally not a characteristic value of
Lame equation of integral order. However, periodic func-
tions of periods 2K or 4K (i.e., characteristic functions of
the Lame equation) exist for nonintegral values of v and
for certain values of G. The characteristic values and
functions can be determined using the transcendental
equations given by Ince. ' The results agree with those
listed in Table II which have been obtained using the a
value.

From Table II, we note that the Henon-Heiles system
( C=1) is stable for the case E =0.083 333, but is unstable
for the case E =0.16359. For the Henon-Heiles system,
the a-value curve as a function of y(0) in the range
—'0.5 & y (0) & 1 is shown in Fig. 4, where the correspond-
ing values of E are also given. We have specified the
value of y (0) in addition to the value of E to emphasize
the point that the range 1 &y(0) & 1.5, for which even

TABLE II. The stability-instability transition points for the
generalized Henon-Heiles system, Eq. {32).

1/6

E '=0.083 333
C CX

E =0.163 59
C A

—34.785
—34.784
—16.035
—16.025
—2.500
—1.000
—0.500

1.760
2.692
3.515
9.328
9.369

17.062
17.069
26.643
26.644

2
—2
—2

2
2
2
2
2
2

—2
—2

2
2

—2
—2

2

—13.069
—13.068
—2.500
—2.499
—1.034
—1.000
—0.500

0.700
1.475
1 ~ 873
3.238
3.337
5.055
5.086
7.121
7.137

—2
2
2

—2
—2

2
2
2
2

—2
—2

2
2

—2
—2

2

I I |
-05 0 05

FIG. 4. The parameter o, plotted as a function of y(0) or E
for the Henon-Heiles system C=1. The initial condition is
x (0)=x{0)=0, b,x (0),Ay (0) small, and Ax {0)=by(03 =0.
The intersection points of this curve with the straight dashed
lines a=2 and o.= —2 give the stability-instability transition
points.
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though 0&E & —,, is excluded. It is seen that as E in-

creases from zero, the region 0&E &0.1352 is stable, but
the system clearly displays several unstable regions before
E reaches the value —,'. Two of these unstable regions are
0.1352 & E&0.1525 and 0.1615 & E& 0.1645.

As we have discussed, our analysis is based on a special
form of initial conditions f x (0)=x(0)=0] which decou-
ples x and y and allows us to solve x (t) and y (t) separate-
ly. It is expected that if we give a small but finite value to
x initially, the stability-instability transition points will
not be far from the prediction with x(0)~0. This is
indeed what we have found numerically.

In the two-dimensional Hamiltonian system, stability-
instability transitions of types, I and III only occur. As
the coupling parameter C approaches one of the stability-
instability transition points C„or as E approaches one of
the stability-instability transition point E„ from the un-
stable region,

~
a

~

approaches 2 from above, and that p
approaches zero from a positive value as

w(t +r) = g ckWk(t +r) .
k

(A2)

Writing out the jth component of w in Eqs. (A 1) and
(A2), we get

and

Wj(t) = g CkWjk(t)
k

Wj(t +r) = Q CkWjk(t +T)
k

(A3)

= g Ck g Wj/(t)plk
k I

g Ckplk Wjl(t) ~

I k

where we have made use of Eq. (8). From Eqs. (A3) and
(A4), a constant s can be found such that

p =const X
~

C —C„~ ~ as C~C„ (39)
gckptk=sc, , I =1,2, . . . , 2n .
k

(A5)

Equation (A5) would give a nontrivial solution for s if

p=const&
~

E E„~~ as E~—E„, (40)

V. SUMMARY

where the constants in Eqs. (39) and (40) are positive and
1

2

P I1 S P12

P2) P22 S

P2n, 1 P2n, 2

P1,2n

P2, 2n

P2n 2n S

(A6)

In summary, for a class of periodic motions in a general
Hamiltonian system of any dimensions, we have shown
analytically that there is a universal critical exponent
P= —, associated with the behavior of the largest
Lyapunov exponent as any critical parameter of the sys-
tem is approached from the unstable region. We have nu-
merically verified this analytic result for a number of
Hamiltonian systems and we have presented many of the
interesting features of a three-dimensional and a two-
dimensional Hamiltonian system. There are reasons to
believe that the universality of P= —, is probably true for a
wider class of motions and systems than the ones we have
discussed.

or

s, =exp(p, r),

—1pj. =7 10$J

(A7)

(A8)

and let

@(t)=exp( pjt)w(t) . —
, Then

(A9)

P(t +i)=exp[ pj(t +r)]w—(t +r)

Let sj, j=1,2, . . . , 2n, be the characteristic values of P
from Eq. (A6), and let us set
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=exp[ p& ( t +r ) ]sw( t—)
=exp[ pj(t +r)]exp(p—jr)w(t)

=exp( pj t)w(t)—
= (t). (A10)

APPENDIX A

In this appendix, we derive the general solution, Eq.
(10), of Eq. (7). Let w(t) be a solution of Eq. (7) for an ar-
bitrary initial condition. Then w(t) can always be ex-
pressed as a linear combination of the fundamental solu-
tions:

Hence f(t) is periodic in t with a period r. Since w(t) is a
solution of the differential equation (7), exp(pjt)1'(t) is a
solution. The general solution of Eq. (7) is thus given by
Eq. (10).

APPENDIX B

or

w(t)= gckWk(t)
k

(A 1)
In this appendix, we shall briefly outline the steps lead-

ing to Eqs. (13) and (14) from Eq. (12). We begin with the
matrix W(t) representing the fundamental solutions of
Eq. (7) and which satisfies the equation
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d W/dr =M(t) W . (81)

d V/d( —t) =M( t—)V, (82)

Multiplying Eq. (Bl) from the left by E and from the
right by E ', and denoting by V(t) the matrix
E W(t)E ', we get

Let P' ' denote the kth compound of P. The ele-
ments of P(k) are minors of

I
P

I
of order k which come

from the same group of k rows (or columns) of P placed
in lexical order. The order of P'k' is (k")X(k"), where
(k")= (2n )!/[k!(2n —k)!]. Applying the Binet-Cauchy
theorem to Eq. (13), we have

,
where we have made use of Eq. (12). Since the matrix P
is the nonsingular matrix which relates W(t+~) and
w(t) by

( p —1)(k) (g —1)(k)p(k)E(k)

(E(k))—Ip(k)E(k) (815)

W(t+r) = W(t)P,

it then follows from Eq. (82) that we have

V( t r) =——V( t)P—.

(83)

(84)

Multiplying Eq. (84) from the left by E ' and from the
right by E, we get

W( t ~)=W—( t)E (P—E.
Setting t = —i in Eq. (85), we get

W(0) = W(r)E 'P E . -

(85)

(86)

Comparing Eq. (86) with the following equation obtained
from setting t=0 in Eq. (83),

tr adj(k)P —trP (2n

Also, the Cauchy theorem gives

P(k)adj(")P =
I
P

I
I,

(817)

(818)

where I denotes a unit matrix. Since
I
P

I

= 1, we 1"-

( P(k) )
—) adj(k)P (819)

from which it follows that

tr(P ')'"'=-trP'"' .
Let adj'"'P denote the kth adjugate compound of P. The
matrix adj'"'P is obtained by replacing every element in
P'"' by its cofactor in

I
P

I
and transposing the resulting

matrix. Clearly we have

W(r) = W(0)P, (87) From Eqs. (816) and (819), we get

clearly shows that E 'P E corresponds to the inverse of
P, namely, Eq. (13).

If sj is a characteristic value of P with characteristic
vector vj, or

trP 'k' =tr( adj'"'P ) .

Now generally we have

I
P —sl

I

=s "—trP(')s'" '+trP(')s'"

(820)

Pv~ =sjvj
then it follows from Eq. (13) that

P Ev& ——E P 'v&,

(88) +trP( " )s —trP( " ')s +
I
P

I

Using Eqs. (817) and (820), we have

trP(k) =trP(2n —k)

(821)

(822)

d
dt I

X(r)
I

= IX(r)
I
«M(r), (811)

t

I
X(&)

I

=
I
X(&0)

I
exp

0
(812)

Since the matrix M(t) for our Hamiltonian has the prop-
erty that its (k,j) element is zero whenever k +j is equal
to an even number, we have trM(t) =0, and hence

P(Evj ) =sj '(Evi ), (810)

which shows that sz is a characteristic value of P with
characteristic vector Evj.

If X(t) is a matrix solution of Eq. (7), one can readily
derive, from the formula for the derivative of a deter-
minant, the following basic result:

or writing ak=( —1)"trP' ', we have shown that the
characteristic value equation of the matrix P, Eq. (14), is
reciprocal, i.e., a

&

——a2„~, a2 ——a2„2, etc.

APPENDIX C

In this appendix, we show that a(,a2, . . . , a„of Eq.
(15) can be expressed as roots of an nth-degree algebraic
equation whose coefficients can be determined recursively
from the coefficients a},az, . . . , a2„}of Eq. (14).

Put s+s '=a, so that u =s +2+s, o, =s +3s
+3s '+s, and so on. Then

s +$ =A', $ +s =A —2, s +s =cx —3',
(Cl)

I
X(r)

I

=
I
X(r, )

I
. (813)

and so on. By this iteration we express
Replacing X by the fundamental solution 8' we find

s "+s ' as a"—rn" + (C2)

which is an important property of the matrix P.

(814)
that is, as a polynomial in u of degree I", for each value of
r in succession. Divide Eq. (14) throughout by s", so that
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it can be rearranged as

(s"+s ")+at(s" '+s '" ")+.. . +a„=0.
(C3)

Substituting for each expression in parentheses its

equivalent as a polynomial in a, we obtain an equation in
o. of degree n whose roots o', &, o'.z, . . . , a„are related to the
roots of Eq. (14) by s +s '=aj, or s —ajs + 1=0,
j=1,2, . . . , n I.n other words, Eq. (14) may be replaced
by Eq. (15).
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