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To examine the effects of nonlinear transport processes on the flow properties of a real fluid, we
study the plane Couette flow under a temperature gradient in a Lennard-Jones fluid over a range of
gas pressure. The analysis is based on the nonlinear transport coefficients derived in the modified
moment method. The linear transport coefficients appearing in the theory are those constructed by
Ashurst and Hoover from the nonequilibrium molecular-dynamics simulations, while for the equa-
tion of state for the Lennard-Jones fluid we use the empirical form proposed by Ree. Examples for
the flow characteristics at two extreme conditions when either the gas is very dilute, or when it is
very dense, are presented. It is shown that the temperature and velocity profiles for nonlinear trans-
port processes are significantly different from the ones obtained with the linear transport coeffi-
cients. In the dilute-gas limit, slip boundary conditions are-used which are derived by applying the
Langmuir theory of gas-surface interaction. Flow profiles show pronounced boundary-layer struc-
tures near the wall when the product of the Knudsen number and the Mach number is sufficiently

large.

I. INTRODUCTION

For a macroscopic description of various irreversible
transport processes it is essential to know how the dissipa-
tive fluxes of mass, momentum, and energy are related to
the thermodynamic forces, e.g., gradients of chemical po-
tentials, velocity, and temperature, etc. When the system
is close to equilibrium or equivalently when thermo-
dynamic forces are relatively small in magnitude, then the
dissipative fluxes are proportional to the thermodynamic
forces. Such linear relations of fluxes and thermodynamic
forces form the basis of linear irreversible thermodynam-
ics,! and the transport processes are said to be linear. If
the fluid is isotropic then the thermodynamic forces of
different tensorial orders do not couple with each other in
the linear domain (the Curie principle). As a consequence,
for example, the velocity gradient giving rise to momen-
tum flow does not influence the transport of heat caused
by the temperature gradient and vice versa. However, this
is no longer true when the system is driven far from
equilibrium since then the wusual linear flux—ther-
modynamic-force relations are no longer valid and must
be replaced by nonlinear relations. Irreversible thermo-
dynamics for such nonlinear transport processes is termed
nonlinear irreversible thermodynamics. In the domain of
nonlinear irreversible processes there are intricate cou-
plings of various kinds between different thermodynamic
forces, and the evolution of dissipative fluxes is conse-
quently influenced by such couplings. Elucidation of
such couplings and the formal structure of nonlinear ir-
reversible thermodynamics is an important subject in
nonequilibrium thermodynamics and kinetic theory. A
number of irreversible thermodynamics® and - kinetic-
theory investigations have been carried out on the cou-
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plings and related questions. In particular, a set of non-
linear transport coefficients has been derived which ap-
pears to correlate well with experimental data in various
cases so far studied.> The fact that there are good correla-
tions between the theoretical nonlinear transport coeffi-
cients and experimental data, e.g., rheological data,3@®-3(®
carrier mobilities in semiconductors,® etc., raises a ques-
tion as to their implication for the hydrodynamic-flow
behavior of the fluid concerned. The question was ex-
plored by means of the Maxwell model of gas in a recent
paper* by one of us (B.C.E.) and his collaborators. It was
found that there are significant thermoviscous and non-
linear effects hitherto unobserved. Since the Maxwell
model is artificial and confined to low-density gases, it is
desirable to remove the limitations of the model, and we
have just done that in this paper. The aim of the present
investigation is to construct nonlinear transport coeffi-
cients by gleaning from the results of kinetic theory® and
molecular dynamics®—° studies on dense fluids and to ex-
amine their effects and the influence of nonlinear thermo-
dynamic couplings on the dynamics of plane Couette flow
of a viscous heat-conducting dense fluid between two
plates at different temperatures. The low-density
behavior of the fluid flow is also considered by taking the
low-density limits of the transport coefficients and the
equation®® of state used. It is found that nonlinear ther-
modynamic couplings have a significant influence on the
velocity and temperature profiles and on the development
of boundary layers along the plates, both in the low- and
high-density regimes of the fluid.

Before initiating a discussion on the nonlinear evolution
equations which form the basis of our analysis it would be
useful to comment on some important differences between
the Kkinetic theory underlying the nonlinear evolution
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equations used here (the modified moment method) and
the classical kinetic theory of transport processes that is
based on the Chapman-Enskog method!® or the moment
method!! for the solution of the Boltzmann equation.
Since the Chapman-Enskog and the moment method give
basically the same results for the transport coefficients at
least in the lower-order approximations we will take the
Chapman-Enskog method for this discussion. The
Chapman-Enskog method involves the expansion of the
distribution function in a power series of the Knudsen
number and the coefficients in the series are determined
by a perturbation method. If only the first-order terms
are retained for the solution there follow linear constitu-
tive (flux-thermodynamic force) relations, and when the
latter are substituted into the conservation equations there
arise hydrodynamic (Navier-Stokes, Fourier, diffusion)
equations. The linear transport coefficients are identified
with the coefficients in the linear flux—thermodynamic-
force relations, and they, when calculated with a suitable
model for interaction potential, are capable of predicting
the temperature dependence of transport coefficients in
agreement with experiment on sufficiently dilute gases
near equilibrium. When second-order terms are taken
into consideration we obtain nonlinear constitutive equa-
tions (Burnett equation) which are, however, not very use-
ful because of the fact that the solution at this stage is
generally not consistent with the second law of thermo-
dynamics insomuch as the entropy production calculated
therewith is not necessarily positive definite and thus
violates the second law of thermodynamics. This there-
fore raises a doubt as to the possible utility of the higher-
order Chapman-Enskog approximation for providing a
transport theory of nonlinear irreversible processes that is
consistent with thermodynamics laws. Still another fun-
damental limitation of the Chapman-Enskog method lies
in the fact that the perturbation solution in powers of the
Knudsen number (K) may not converge as the Knudsen
number is increased. (The series in fact may be regarded
as an asymptotic series.) Such a large Knudsen number
arises when the gas is so dilute that the mean free path of
molecules is larger than the characteristic dimension of
the dissipative system. The mean free path may be re-
garded as the effective distance over which the momen-
tum and the energy are transported through collisions of
particles in an imaginary layer of the fluid with those in
another. In this interpretation the “mean free path” may
also be large in the case of dense fluids where in spite of
the fact that particles are relatively closely packed (thus
the free paths of binary collisions may be of the order of
molecular size) the frequency of collisions is much in-
creased so that the effective length of momentum or ener-
gy transfer per unit time is accordingly increased, thus
giving rise to a large viscosity or heat conductivity. As a
consequence of the large Knudsen number, the description
of the nonlinear fluid behavior exhibited by a very dilute
or dense gas in such a condition remains beyond the capa-
bility of the Chapman-Enskog method.

If the Boltzmann equation is suitably scaled with
characteristic times such as the mean free time and the re-
laxation time and also with the mean free path and the
characteristic length of the system, one finds that the col-

lision integral (term) in the Boltzmann equation is scaled
by an inverse Knudsen number. Since K tends to infinity
as the density vanishes the collision term is often dropped
from the Boltzmann equation for studying the dynamics!?
of a gas in the rarefied regime of density and the resulting
kinetic equation is solved with suitable boundary condi-
tions imposed on the distribution function. The collision-
less Boltzmann equation, however, is nondissipative since
the entropy production is identically equal to zero, and yet
as we are well aware of, even a rarefied gas is dissipative
since there are dissipative processes known to occur.
Since there is no intrinsic dissipative mechanism built into
the kinetic equation owing to the neglected collision term,
the dissipation observed must be attributed solely to the
boundary effects, but they cannot be the entirety of the
cause for the dissipation in the system. We believe that
the limit of large K must be taken after the Boltzmann
equation is appropriately solved, but not before. In the
Bhatnagar-Gross-Krook  (BGK)  approach!®®12 o
rarefied-gas dynamics a linearized Boltzmann equation is
employed, which certainly removes the defect of nondissi-
pative feature manifest in the collisionless Boltzmann
equation. However, the linearization of the collision term
is mathematically motivated to make the analysis more
tractable. It is preferable to avoid the linearization of the
collision term in the Boltzmann equation. This demands
a more careful treatment of the kinetic equation and the
modified moment method is designed for that kind of
purpose among others. .

The above-mentioned limitations of conventional kinet-
ic theory could be overcome by solving the Boltzmann
equation with the modified moment method.> In this
method the kinetic equation such as the Boltzmann equa-
tion or its dense-fluid generalization® is solved in a way
fully consistent with the thermodynamic laws at every or-
der of approximation taken for calculating transport
properties and the collision term in the kinetic equation is
taken into account to the infinite power in K by means of
a cumulant expansion. When an approximate solution so
obtained is applied to calculation of transport coefficients
at a very low density or a high density it is found that the
transport coefficients behave®®"3® correctly as a function
of density when compared with experiment.

The solution obtained by the first-order cumulant ap-
proximation for the collision term in the kinetic equation
enables us to describe highly nonlinear irreversible pro-
cesses in terms of the linear transport coefficients appear-
ing in the first-order Chapman-Enskog solution. The
theory thus facilitates treatment of nonlinear irreversible
processes with no more effort than that which is necessary
for linear irreversible processes, at least in the first-order
cumulant approximation. It therefore provides a very
useful means of reducing and understanding the complex-
ities of nonlinear irreversible processes occurring far from
equilibrium situations. In the present study we shall use
the nonlinear evolution equations derived from the gen-
eralized Boltzmann equation by the modified moment
method and solve the resulting generalized hydrodynamic
equations for plane Couette flow between plates at dif-
ferent temperatures.!> As will be seen, there occur some
interesting features of nonlinear fluid behavior in a
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Lennard-Jones fluid ranging in density from a very dilute
to a very high density and at a large Knudsen number; re-
call the interpretation of mean free path given in a previ-
ous paragraph.

The work is organized in the following manner. In Sec.
II we present the evolution equations, the equation of
state, and the linear transport coefficients for a viscous
heat-conducting dense Lennard-Jones gas. These evolu-
tion equations can be derived from the generalized
Boltzmann equation with the help of the modified mo-
ment method. The equation of state and the density and
temperature dependences of linear transport coefficients
are constructed by gleaning the molecular dynamics data
and kinetic-theory results on dense fluids. In Sec. III the
evolution equations are cast into a form appropriate for
the steady plane Couette flow and the nonlinear shear
viscosity and heat-conductivity coefficients are derived
from the evolution equations. In Sec. IV we present the
results of the numerical solution of the generalized hydro-
dynamics equations; that is, the velocity and temperature
profiles for various flow parameters. The study especially
focuses on the characteristic features of nonlinear fluid
behavior when the velocity and temperature gradients are
high. Section V is for discussion and conclusion.

II. STRESS TENSOR AND HEAT-FLUX
EVOLUTION EQUATIONS AND LINEAR
TRANSPORT COEFFICIENTS

A. Evolution equations

If the gas is dilute it is sufficient to take into account
only isolated binary collisions to describe the evolution of
the system toward equilibrium. In that case the
Boltzmann equation provides an adequate framework of
the kinetic theory of nonequilibrium processes. However,
for a dense fluid for which isolated binary collisions are
no longer a correct representation of collision events that
have got much more complicated owing to a higher densi-
ty it is necessary to generalize the kinetic equation of
Boltzmann to incorporate the higher-order collisions and
suitably account for their effects on the evolution of the
system toward equilibrium. In the literature there exist
some alternatives'# for the treatment of the dense system.
Our analysis is based on the generalized Boltzmann equa-
tion proposed by Eu for dense fluids. Various evolution
equations can be derived from the generalized Boltzmann
equation.!”> The relevant evolution equations for the
fluxes necessary for the present problem are!®

ds o - ~
p—d71_’:_ V'¢(I)+2p[g'<ﬂ(2)+2pz
F2pAT—2pB T TV X1V 4AN, ()
N W4 2By 2,9 ﬁ—piln(pum)
pdt 3T a1
+5 VP U+A?, 2)

d A — — — <> > «> - > >
pEg:v__qu(S)_i_p 1V-P~(P~pU)+Q Z+¢(3) ¥
__i_)’%—ﬁ_J’_ V(3)+A(3) , 3)

where p is the density, h is the enthalpy density per unit
mass, p is the hydrostatic pressure,

P=[P1?/p, “)
A=ITP—p)/p, (5)
Q=3Q/p, (6)
V=—2[Vi+(VE)]++0TrV 1, ©)
[A]?=+(A+A"H—+UTiA,, (8)

and 1/1(“), a=1.2,3, and V'%, q=2,3, are the averages of
certain molecular moments and A‘'?, a=1,2,3, are the dis-
sipation terms related to the entropy production and thus
to the collision integral in the kinetic equations. For the
details of the quantities given above and those given below
in connection with the kinetic theory the reader is referred
to Refs. 2 and 16.

In the first-order cumulant approximation the dissipa-
tion terms may be written as

AV=_(pp/ no)fsinhxl/Kl , (92)
AP — (pp /nbo)zsinhkl/lﬁ s (9b)
A — _(pp’ﬁ/ko)é sinhky /K, , (9¢)

where 79,7750, Ao are linear shear viscosity, bulk viscosity,
and heat conductivity of the dense fluid, respectively.
Unlike the dilute-gas transport coefficients they depend
on the density. The k, is given by

Kt =p*Bg [(210) ™' BB+ (050" 'A2+15'Q-Q1, (10)
B=1/kgT, (11)
g =(m,/2kzT)"?/n?%c?, (12)

with m, and o denoting the reduced mass and the size pa-
rameter of the molecule and n the number density. The
linear transport coefficients generally depend on the tem-
perature as well and their precise form depends on the in-
teraction potential. We will present particular.forms for
them shortly. If we define the parameters 7,,7;,7, by

7, =[2m0(m,kpT /2)'*1'/? /nkpTo , (13a)
T =[Mpo(m, kg T /2)"/*1V2 /nky To , (13b)
g =[Aolm, kT /2)'/*1'? /nkpTo , (13¢)
then «; may be written in the following form:
e | |22 eps [ 244 [ 2@@]1” |
200 | T | Mo Ao | ==
(14)

It is easy to show that «; is dimensionless and its square is
related to the Rayleigh-Onsager dissipation function. For
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more details of (1)—(14) the reader is referred to Refs. 2
and 16. '

Equations (1)—(3) together with the equation of state
and the mass, momentum, and energy balance equations

() S =

2p=—Vpu, (15)
d . |

LHE=—V-P, (16)
Par "
pEE=——V-Q——P:Vu, (17)

completely determine the nonequilibrium evolution of
mass, momentum, and energy in the system, provided ap-
propriate boundary and initial conditions are imposed. At
this point it would be appropriate to stress that in the en-
tire course of evolution the entropy production in the sys-
tem is given for the formula

Uent=k8g—lKISinhKl ’ (18)

|

which remains positive irrespective of the magnitude of P
and Q.

B. Linear transport coefficients
and equation of state

In the equations and formulas presented above there ap-
pear linear transport coefficients and the pressure. Since
they generally depend on density and temperature, their
explicit functional form is required to carry out the in-
tended study of the flow properties of the fluid. To ob-
tain their density and temperature dependence explicitly,
we assume a Lennard-Jones fluid obeying the Lennard-
Jones interaction potential

12 6

(%

g
r

V(r)=4e

where € is the well depth and o is the size parameter. The
equation of state of the fluid is extensively investigated to
a very high density by means of molecular dynamics. It
can be represented, to a good agreement with the experi-
mental results, by the following analytical expression pro-
posed by Ree:®

pV/NkpT =1+43.6292+7.2642%+10.492523 + 11.46.24 +2.176.-1°

—(1/T*)%(5.369.0+13.16.22+ 18.5252° — 17.0762* +9.32.2°)

+(1/T*)(—3.492.+18.69822—35.5052> +31.8162* — 11.1952°)=14+B (2, T*) , (19)

where .= is a dimensionless quantity defined by

a=(No*/V)e/kgT)V*, (20a)

which is a function of reduced density and reduced tem-
perature 7* which is defined by

T*=kyT /e . (20b)

Although it is possible in principle to calculate in the
framework of kinetic theory the temperature and density’
dependences of linear transport coefficients by solving
many-body dynamics of molecules, in the present investi-
gation we make use of the results obtained by Ashurst and

- Hoover® and Holian et al.” which may be written in the
forms

No={0.171+40.0152[1.0—0.5(1/T*)12 1 (2/T*)]}
X (exp{7.02[1.0—0.2(1/T*)!?]2} —1.0)

X(me)' 20~k T /€)*”? , 3))
Ao={0.642+0.36[exp(3.762)—1.0]}0 >
X (e/m)V X kpT/€)**kyT . (22)

The equation of state and the formulas for linear trans-
port coefficients given above are tested against the avail-
able molecular dynamics and experimental data and are

found quite satisfactory. The exponential form for the
shear viscosity also gets theoretical support from a
kinetic-theory investigation® on dense-fluid transport coef-
ficients.

Before turning our attention to the nonlinear transport
coefficient, let us determine the effective mean free path
of a Lennard-Jones fluid. If n, is the average density at
the average temperature T, then we define the effective
mean free path / of the Lennard-Jones fluid by the rela-

‘tion

No= %pEl = %‘mnofl s (23)

where € is the mean value of the peculiar velocity and can
be approximated by the following expression:
172

8kpT,
o= | —22 (24)
™
Substituting (21) and (24) in (23) we get
0.5 2.0
1= 10.2147+0.01908 |1 — ————
(Te)'? 1§
0.2 (T5)"°
xXlexp |7.02 |1 —————|xo | =1} |—75—,
P (T§)1? 0 } noo?
(25a)
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where
: 3
noo
xQZW . (25b)
We can rewrite (25) as
1 =227 1y Py (o, T, 26)
noo .
where
0.5 2.0
Fi(xy, T§)=0.0888 [1 — ————+
et (T TS }
0.2
XlCXp 7.02 I—W X0 —IJ.

(27)

We shall see in our subsequent analysis that the flow
properties of the Lennard-Jones fluid intricately depend
on the “effective Knudsen number,” defined as

1 0.2147 6 L1+ F10x0,T5)]
- R

K=

- L noo? (T3)
0

(28)
where L is the macroscopic length scale characterizing
the geometry of the flow system. We would in particular
investigate two limiting cases when K is large. - These are
the following.

(a) The case when the pressure is very low (<1 Pa at
room temperature). In this case of a very dilute gas the
Knudsen number

0.2147 (T§)V/*

T (29)

is very large due to very low gas density. An understand-
ing of the flow characteristics at this limit would be of in-
terest. ‘

(b) At the other extreme we would examine the flow

dynamics of a very dense gas, when the gas is subjected to.

a very high temperature difference and a large viscous
stress over a very small distance, say, of an order of a
micron. The flow characteristic in this extreme would
provide some insight into the nature of the nonlinear ef-
fects which one might observe in the shock-wave profile
in a dense gas.

III. NONLINEAR TRANSPORT COEFFICIENTS
AND THE GENERALIZED HYDRODYNAMIC
"EQUATIONS FOR PLANE COUETTE FLOW

A. Generalized hydrodynamic equations

To put the nonlinear evolution equations in more
manageable forms we now take a specific flow problem.
Consider a steady plane Couette flow of a fluid between
infinite parallel plates maintained at two different tem-
peratures. The upper plate is moving at a constant veloci-
ty and its direction will be taken as the direction of the x
axis in the Cartesian coordinate system. The lower plate
is fixed at a distance D away from the moving plate; see

Y flow —

FIG. 1. Flow geometry. The upper plate is moving along the
x axis at speed u,.

Fig. 1. Therefore there is a temperature gradient in the

"transversal direction of the flow. It is assumed that the

temperature is uniform in the x direction. There is no
transversal component of the velocity, but the x com-
ponent has a gradient in the y direction. Consequently,
the velocity and the temperature are functions of y only,
the pressure can be shown to remain constant as will be
shown below, the mass balance equation is identically sa-
tisfied, and the bulk viscosity has no role to play since the
divergence of velocity is identically equal to zero. This al-
Iows us to drop the evolution equation of the excess trace
of the stress tensor P from consideration. We therefore
have two evolution equations (1) and (3) to consider for
the fluxes.

Let us define the nonlinear shear viscosity 17 and the
nonlinear heat conductivity coefficient A by the following
relations:

P=pP=277, (30)
Q=—AV InT . 31

Since the stress tensor and the heat flux are generally non-
linear functions of the rate-of-strain tensor and the tem-
perature gradient if the processes are nonlinear, the non-
linear transport coefficients 77 and A just defined are func-
tions of the shear rate

y=FN"?/V2 32)

and the absolute value of the temperature gradient

X=|VInT| . (33)

Only in the limit of ¥ and X small compared to the
characteristic time and length, respectively, will the rela-
tions in (30) and (31) reduce to the familiar relations hold-
ing for Newtonian flow and Fourier heat conduction.
Equations (1)—(3) are three lower-order moment equa-
tions since the stress tensor and the heat flux are a second
and a third moment, respectively, in the language of the
moment method. In this method the entire set of mo-
ments is assumed to give completely the distribution func-
tion in question. However, since the set is infinite, it is in
practice suitably truncated either on a physical ground or
by a mathematical approximation. From the experimen-
tal standpoint most macroscopic processes observed for
simple fluids appear possible to describe in terms of the
first thirteen moments which include the density, velocity,
internal energy, stress tensor, and heat flux. Therefore, if
we assume that the thirteen moments are sufficient for the
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description of the macroscopic behavior of a simple fluid
and if we also assume that the distribution function is a
functional of the thirteen moments evolving according to
the moment evolution equations, then it is appropriate to
drop the higher-order moments appearing in the evolution
equations instead of expressing them in terms of the thir-
teen moments chosen. The latter approach is taken in the
conventional moment method and in the modified mo-
ment method up until now, but we propose to simply
neglect them since it appears logically more consistent to
do so than to keep and express them in terms of the
lower-order moments. In this connection it must be re-
called that the distribution function is given in terms of
the thirteen moments and the dissipative terms A'® are
calculated in terms of the thirteen moments alone. Then,
since ¥'?, ¥'3, and V'@ are in fact higher-order moments
that are not included in the distribution function, we sim-
ply put them equal to zero in the thirteen moment ap-
proximation,

P9=0, a=1,2,3
V9=0, a=1,2. (34)
1/,(3):0 .

Since at the steady state and for the geometry of flow
under consideration

di
= =0 R
dt

we see that
V-B.(F-pth=o0. (35)
Moreover, by (30) and fOI" the reason of the flow geometry
B 9h), =pV,h+ 27 Vh),
=pV,h . (36)

When these facts are taken into consideration, the
steady-state evolution equations for the plane Couette
flow are reduced to the forms :

O0=p —(pm/ne)sinhk, /Ky , (37)
0=ph—(phA /A)sinhk, /x/ , ‘ (38)
where k; now may be expressed
=120, X /o) A (T UM/ AT (39)
For the plane Couette flow
y=1|3u/dy |, @0
X=|3InT/dy | . ' (41)
We rewrite (37) and (38) as
n(sinhk, /K1) =79 , (42)
A(sinhk;/k;)=RAg . (43)

To solve these equations, we take the square of each equa-
tion and add the resulting equations after multiplying
each of them with the factor (V'27,/1,)* and (7,/Ao)?,
respectively. We then obtain

sinh?[(V'27,y0/10)* + (1, XA /Ao)?]
=(V2r,7 ) +(1,X)? . (44)
A particular solution of this equation is

[V 27,7V 4 (7, )]
[(V2r,p 2+ (1 X2V

1N="n¢sinh~ (45)

L [V27,7 P 4 (1, X 12
(V277 P+ (7, 0)12

A=Agsinh~ (46)

By using (40) and (41), we may make the gradient depen-
dence more explicit in the equations above,

N=mnesinh~ 'k /k , 47)
)»=Kosinh_lk/x , (48)
k={[+7,(du, /) *+[7,(dInT /3y)1*}'/*. (49)

By introducing a simplifying notation
q.=sinh ™k /k ‘ (50)

we shall often write the nonlinear transport coefficients in
more compact forms,

N=7No > (51)
A=Aog. - (52)

Here we would like to add that g, is a measure of the
nonlinearity of the nonequilibrium dissipative processes.
In the case of the linear dissipative processes g, =1 and
the farther the system is removed from the linear domain,
the smaller the value of g, will be. Apart from the ther-
modynamic gradients, g, depends on the temperature and
density of the fluid. To analyze this aspect properly, we
now focus our attention on the expressions of 7, and 7,.
Especially the density dependence is contained in the fac-
tors 7, and 7, which are proportional to V/7,/n and
v/ Ao/, respectively. Since the transport coefficients gen-
erally increase sharply—exponentially, in fact—as the
density increases, the factors will increase with the density
on account of the transport coefficients, and they will also
increase as the density approaches zero on account of the
factor (1/n) since in the limit the linear transport coeffi-
cients tend to density-independent values. To see the den-
sity and temperature dependence of g, more clearly, it is
useful to rearrange (19) into the form

1/nkgT =(0®/ep*)[1+B (2, T*)], (53)
where )
p*=pd’/e, (54)

a reduced pressure. Substituting (53) and (21) into (13a)
we get
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7, =(m /ev2)%5(0.342+0.0304(1—0.5/V T* +2.0/T*)

X {exp[7.02(1-0.2/V T*)2]—1})/*(1+BXT*)"/*/p* . : (55)

Similarly, by using (53) and (22) in (13b) we get
T,=0(1/2)174{1.284+0.72[exp(3.762) —1]}'/?
X(14B)(T*)3/12/p* | (56)

With the help of (55), (56), (49), and (50) we can now ex-
press g, in the following manner:

g.=sinh~ 'k /k , ( (57
1+B (2, T%)

1+B(x0,Tp)
2

K=2.2904K M (y T3 )/AT§)~7/¢

[1+F1(.Z‘,T*)] T*)7/6 du*
2[1+F1(J€0,T8 )] d§
1.877(T*)"/6 [1+F3(=,T*)] |dT* 1
M?y,T5  [14Fi(x0,T5)] | d§ '
. (58)
Fi(2,T*)=0.08889(1—0.5/V'T*+2/T*)

X {exp[7.02(1—0.2/V T*)=]—1} , (59)
Fy(2,T*)=0.5607[exp(3.762)—1] , (60)
M=u,/(yoRT,)'"?*, (61)
Y0=C,/Cy . (62)

It is clear from (57) and (58) that the nonlinearity index g,
is greatly influenced by the dimensionless parameters
M ,K and the imposed temperature difference 75 — T .
As any one of these parameters increases, the function g,
deviates from unity and hence the nonlinear transport
coefficients accordingly deviate from the linear transport
coefficient. In such cases, to understand the flow dynam-
ics, one has to solve the generalized hydrodynamic equa-
tion.

Having discussed the various quantities appearing in
g., we now consider the balance equations. In the case of
the plane Couette flow described in Fig. 1, the mass,
momentum, and energy balance equations may be written
as

i)

2 pu=o, (63

0 %= (64a)

»Toy . *

3 d au, |’ '

— |A=—InT = | =0. 4b

a Moy nT |47 a 0 (64b)
For the problem under consideration

8p . (65)

lay .

I

Since u, =u,(y) for the plane Couette flow here, we ob-
tain from (63)

% _,
ux ax 9
which implies

Sp _ on _
=0 or g (66)

since u, =0 in general. Equation (66) means that n is a
function of y. Since by virtue of the problem in hand

oT

—=0, 67

O (67)
the equation of state, (66), and (67) imply that

9 . (68)

Jx

Therefore, the pressure remains constant and the density
profile may be computed in terms of the temperature pro-
file. In view of this result we find it sufficient to solve
(64a) and (64b) for u,(y) and T (y).

B. Boundary conditions

The generalized hydrodynamic equations (64a) and
(64b) are subject to boundary conditions which are derived
as described below. To arrive at the boundary conditions,
we examine collisions between the wall surface and the
gas molecules which occur regardless of the gas density.

It is well known through numerous investigations!’~
on interfacial phenomena that the surface exerts a long-
range attractive force on the gas molecules and as a conse-
quence the gas molecules get adsorbed and then desorbed.
There may be possible even chemisorption through which
the chemical nature of the gas may be changed. In any
event, these processes drive the gas molecules to reach
thermal and mechanical equilibrium with the wall. It is
therefore possible to see that the boundary values of gas
temperature and velocity can be determined if the interfa-
cial interactions are taken into consideration. This idea
was implemented in a previous paper'®® in which the
boundary temperature and velocity values are calculated
along the line similar to the theory of Langmuir. Since
the details of the theory are available in the paper'*®
quoted above, we shall omit the derivation and simply
present only the final results along with some explanatory
remarks.

Through interfacial interactions a fraction 6 of mole-
cules reach thermal equilibrium with the wall at the sur-
face. Then the fraction of the gas molecules leaving the
surface without reaching thermal equilibrium with the
wall but at the same temperature as the incident molecules
is (1—0). This fraction 6 can be shown to have the form

19
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6=bp/(1+bp), (69)

where p is the gas pressure and the parameter b depends
on the wall temperature and the interfacial interaction pa-
rameters. It is obtained as follows. We regard the
surface-gas molecule interaction process as a chemical re-
action leading to a quasistable complex of a surface parti-
cle and a molecule,

S+M=SM ,

where S, M, and SM, respectively, denote the surface par-
ticle (site), the gas molecules, and the complex formed be-
tween the surface particle and the gas molecule. Then it
can be shown that b is related to the chemical equilibrium
constant K for the chemical reaction and consequently the
partition functions of S, M, and SM,

=(Vasp/asqm)/ ks Tw , (70)

where Ty is the wall temperature and gq; is the partition
function of i. In a model which treats the complex as a
particle moving, subjected to a constant potential of depth
D,, in a box of size Al where A is the mean area of a site
(S) and [ is the mean free path, the partition functions
may be easily calculated and we find

b=(Al/kgTy)exp(D,/kgTy) . (71)

When the gas pressure is so low that the mean free path is
as long as the gap D between the two plates, we may take
I with D/2. The reason for this choice was given
elsewhere,”® but it suffices to say that it is a mean col-
lision distance between the wall surface and the gas mole-
cules impinging at all angles. In that case we obtain

b =(AD /2kg Ty )exp(D, /kpTw) . (72)

The potential parameter D, and the mean area 4 can be
inferred from various experimental data on interfacial
phenomena.

With 0 so determined, we calculate the boundary values
for temperature and velocity which in the case of the
present flow geometry are as follows: at y=0,

T=9(T1)T1+[1—9(T1)]Tg ’

v (73a)
u=[1—6(T]u, /2,

at y=D,
T=06(T)T,+[1-60(T)]T, ,
u=[14+6T5)]u,/2,

(73b)

where we may take
T,=(T1+T,)/2.

The fraction 6 depends on the gas pressure; as p increases,
0 tends to unity. In fact the value of b is such that 6 is
practically equal to unity at the normal pressure, but as
the pressure decreases, the value of 6 increasingly deviates
from unity as shown in Fig. 2(a). We therefore see that

1.0
2

0.8
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30 100 1000 2000
P (pmm Hg)

1 L L U n L L L
200 300 400 500 600 700
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FIG. 2. (a) Fraction 0 of thermalized molecules in the inter-
face is plotted as a function of pressure. 6 is for the lower plate
(T1=288 K) and 6, is for the upper plate (T, =4T). No slip-
boundary conditions correspond to 6€=1. (b) Fraction 6 of
thermalized molecules in the interface is plotted as a function of
temperature. p=20 umm Hg.

the boundary conditions (73a) and (73b) tend to exhibit
slips as the pressure decreases, whereas they become those
of stick boundary conditions as the pressure increases to-
ward the normal value and beyond. In gas dynamics the
slip boundary conditions (i.e., the case of 0541) are taken
if the gas is rarefied, whereas the stick boundary condi-
tions (i.e., the case of 6=1) are taken if the gas density is
normal. This manner of taking of boundary conditions
leaves the transition regime of density in limbo and makes
the gas dynamics for such a regime rather awkward to
handle. The present theory of boundary conditions re-
moves such a difficulty and facilitates fluid dynamic
treatment of the entire density range with a uniform for-
malism. In Fig. 2(b) is presented the temperature depen-



dence of 6 which decreases with an increasing 7. This
behavior implies that the temperature and velocity slip in-
crease as the wall temperature increases. This may be un-
derstood if it is realized that as the temperature increases,
the residence time of the complex gets shorter and thus
the chance for its reaching equilibrium with the wall is re-
duced.

IV. SOLUTION OF THE GENERALIZED
HYDRODYNAMIC EQUATIONS

Equations (64a) and (64b) may be cast into a little more
convenient form. For this purpose we observe that since
for arbitrary u,

9 Quy
dy K dy
adding it to (64b), we get

=0, (74)

Ux

0 i)
L AT
a kay In

+7 3y

which may be written as

ou,
dy

9
ay

kilnT
y

1

X

)

The hydrodynamic equations to be solved are then as fol-
lows:

a Auy \
9 = 75
R n 3 0, (75a)

3 |, dlnT du,

PR A a +uym & =0. (75b)

Integrating the above equations once, we obtain
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ou,

nr=C1 (76)
dlnT Juux

A y +ux17—ay—=C2, (77)

where C; and C, are constant. By using (76) in the
second term of (77), we simplify it further,

dInT
dy

By using the dimensionless variables introduced before
and substituting forms for nonlinear viscosity and heat
conductivity, we finally express the steady-state general-
ized hydrodynamic equations for a dense nonlinear
Lennard-Jones fluid in the following forms:

g.(0.17140.0152(1—0.5/V' T* +2/T*)

A =C,—Cyu, . (78)

X {exp[7.02(1—0.2/VT*)2]— )N T*2A %% _¢, |

ag

*
qe{o.642+0.36[eXp(3.76r)—1]}(T*)2’3%T—§—

=C,—CEu*, (80)
where
E=y,T3M?

and g, is given by (57). Equations (76) and (78) are solved
by a numerical method for various values of the parame-
ter set (K,M,TT,T5,p*). The boundary conditions for
(76) and (77) or (78) are already discussed. At each step of
solution we determine the density by solving the equation
of state which in a nondimensional form can be written as

P*=(T*)**2(14+3.6292+7.264x2+10.492523 + 11.462* +2.176.2-1°)

—(T*)¥*4(5.369.2% +13.162> + 18.5252* — 17.07625+9.32..:5)

+(T*)P*(—3.4922? 4 18.698.2> — 35.5052* +31.8162°— 11.195.2F) . (81)

Note that = depends on T* as well as N*=Ng>?/V and
hence (T*)>4=n*T*, :

Equations (79) and (80) cover the case of the fluid at
low densities down to the rarefied regime, provided the in-
ertia terms can be neglected. (That may not be allowed
for some cases of flow.) As the density vanishes, the
linear shear viscosity 1y and the linear heat conductivity
Ao become independent of density whereas

g ~n*In[(n*)~ 1] (82)

apart from a factor independent of n*. More precisely, in
the very low density regime

q. =sinh~lko/Kko=qF , (83)

[
Ko=V*[+(T*)/%(du* /dE)>
+1.877UT*)VE-N(dT* /d£)*]'/?,
(84)
v* =2.2904K M(y,T35)\/2(TY)~ 776 .

The generalized hydrodynamic equations then take the
simpler forms as follows:

*
0. 171q;‘(T*)2/3‘%"g—:c1 , \ (85)
*
0.642q:(T*)2/3%T§~=C2-C1Eu* . (86)

These equations have also been numerically solved. The
solutions provide the velocity and temperature profiles for



830 D. K. BHATTACHARYA AND BYUNG CHAN EU 35

the plane Couette flow of a dilute Lennard-Jones gas.
Let us divide (86) side by side with (85) to obtain

* C
a2 pu* a—0.642/0.171. (87)
du* C
This equation may be integrated easily,
c .
aT*=—2u*—LEw*?+cC; . (88)
C
Since at £=0, T*=T7 and u*=0, we obtain
aT*=C; . (89)
Até=1, T*=T; and u*=1. Therefore
C
aTs =—>—LE+aT? (90)
(O
or
C, .
=2 _GAT+1E. 1)
C

‘We finally obtain the following relation between 7* and
u*:

a(T*—T})=(@ AT ++E)u*)—+E(u*)?, (92)

which suggests that T is a parabolic function of u* with a
maximum at

u*=(a AT ++E) (93)
and its value given by
T::aszT +(a AT+%E)2/2EG . (94)

This relation holds for both linear and nonlinear process-
es.

It was shown in a previous paper* that the fluid-
dynamical approach to flow profiles for rarefied Maxwell
gases yields correct results in the low-Knudsen- and
Mach-number region where comparison was possible with
the kinetic-theory results by Liu and Lees.”® They ob-
tained their results for Maxwell gases by solving approxi-
mately the linearized Boltzmann equation in terms of two
stream local-equilibrium distribution functions and mo-
ment equations for conserved variables. Therefore, en-
couraged by the comparison already made, we will further
carry on calculation of flow profiles to understand the ef-
fects of thermoviscous coupling and nonlinear transport
coefficients on flow profiles of a Lennard-Jones gas. The
numerical solutions are obtained by a combination of the
Runge-Kutta-Gill method and the shooting method in
which the slopes of temperature and velocity at a boun-
dary are so adjusted that the boundary conditions at the
other boundary are satisfied.

A. Dilute gas

When the slip boundary conditions are used, the values
of 6(T|)=6, and 6(T,)=06, appearing in (73a) and (73b)
are evaluated, except for the case of Fig. 3, with the fol-
lowing parameter values for D, and A:

D,=1.32 kcal/mol ,
A=5%x10"" cm?,
D=0.13cm .

These values are inferred from the experimental data
available in the literature on the Al-Ar system.!”~!° The
boundary conditions for the present theory are calculated
with the parameters given above.

In a previous paper* we calculated various profiles for a
Maxwell gas by using the same method. Here, to see the
effect of a different potential model we have calculated
the flow profiles for the parameter set M=3, K=0.238,
Ti=22, T;=8.8. The results of this calculation are
presented in Fig. 3. ’

The solid curves correspond to the solution of the gen-
eralized hydrodynamic equations with the boundary con-
ditions obtained by Liu and Lees® in their kinetic theory
of a rarefied Maxwell gas. The result obtained with the
linear theory for which g, =1 is represented by the broken
lines. It is seen that flow profiles for nonlinear transport
processes are different from those of the linear theory.
According to the comparison made in the paper* on a
Maxwell gas the flow profiles obtained by Liu and Lees
(represented by circles) are essentially the flow profiles one
obtains in the linear theory. Consequently, a slight devia-
tion between linear temperature profiles and those of Liu
and Lees can be attributed to the difference in the poten-
tial models since Liu and Lees use the Maxwell model for
the interaction potential whereas in the present studies a
Lennard-Jones potential has been used. We base this on

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Velocity and temperature profiles computed with the
boundary conditions coinciding with those by Liu and Lees (Ref.
17): uf=0.17, T*=5.10, u,=0.66, T5 =8.83. Other parame-
ters are K=0.238, M =3, T,=2.32, T, =4T,. The solid curves
are the nonlinear theory profiles while the broken curves are the
linear theory profiles. The circles are the values given by the
Liu-Lees theory for the Maxwell gas.
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the fact that the present theory gives excellent agreement
with the Liu-Lees results in the case of a Maxwell model
as shown previously.* We also observe that near the lower
plate there is a steep change in temperature and velocity
which may be regarded as a boundary layer in which most
of the nonlinear irreversible processes occur. To verify
this we increase the nonlinearity and investigate the flow
profiles in the case of M=6.0. Note that an increase in
the Mach number increases the nonlinearity. The flow
profiles for these cases are presented in Fig. 4. The ex-
istence of boundary layers at both walls are more evident
now. In fact, except for thin layers from the walls the
temperature and the velocity are almost constant in a
fashion characteristic of rarefied gas flows, viz., in the
mainstream the fluid behaves as an inviscid fluid since the
velocity gradient is approximately equal to zero. The ex-
istence of the boundary layers stems from the gradient-
sensitive nonlinear transport coefficients and it is interest-
ing to note that the boundary layer becomes thinner as the
Mach number increases. The behavior is in agreement
with the recent analysis?! of a relation between the boun-
dary layer structure and the nonlinear transport processes
as considered in this paper. According to the analysis, the
reduced boundary layer (nondimensional, similarity solu-
tion) becomes thinner as K M increases. This is in con-
trast to the boundary-layer thickness calculated with the
Navier-Stokes equations -which predict?? the reduced
boundary layer profile independent of K and M. The
linear flow profiles do not have thin boundary-layer struc-
tures for the parameter values chosen. The reason that
the nonlinear temperature profiles tend to be flatter than
the linear profiles can be understood by the fact that the
nonlinear thermal conductivity is generally smaller than

10.0

— T

FIG. 4. Velocity and temperature profiles calculated with the
boundary conditions (73a) and (73b): u{=0.15, T§=3.38,
uy=0.547, T§=6.13. The potential parameters are D, =1.32
kcal/mol and A4 =5X10"!" cm? Other parameters are
K=0.238, M=6, TT=2.32, T5 =9.28.
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FIG. 5. Velocity and temperature profiles for K=1.51,
M=3, T{=232, T5=9.28, p=3.41 umm Hg. The boundary
conditions in this case turn out to be uj=0.36, Tq;=4.88;
uy=0.51, TdH=5.85.

\

the linear heat conductivity. Because of this fact, the heat
due to the viscous heating effect is accumulated in the
midstream. This has an interesting implication since it
can be inferred that less heat is transferred to the boun-
dary from the midstream in the case of the nonlinear heat
conduction.

In Fig.. 5 we investigate the flow profiles of a highly
rarefied gas with a large Knudsen number. The tempera-

FIG. 6. Velocity and temperature profiles for different plate
temperatures in the case of K=1.05, M=2.68. The profiles are
calculated with no slip-boundary conditions.
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ture and velocity slips are calculated with (73a) and (73b).
In this particular case the temperature and velocity gra-
dients are considerably reduced owing to a large slip at the
walls. As a result the nonlinear profiles are indistinguish-
able from the linear flow profiles. Once again, the veloci-
ty and temperature profiles are practically constant al-
most everywhere. ‘

The velocity profile at a normal density calculated from
the Navier-Stokes equation with no slip-boundary condi-
tion suggests that in the Couette-flow geometry most of
the gas follows the hot plate because the gas viscosity is
large there owing to the fact that the viscosity increases
with the temperature. According to Liu and Lees,? this

FIG. 7. (a) Velocity profiles for different Mach numbers.
The solid curves are the nonlinear theory profiles while the bro-
ken curves are the linear theory profiles. The no-slip-boundary
conditions are used and K=1.05, T =2, T5=3. (b) Tempera-
ture profiles for different Mach numbers. The solid and broken
curves are, respectively, the nonlinear and the linear theory pro-
files. The no-slip-boundary conditions are used and K=1.05,
TY=2, T5=3.
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FIG. 8. K dependence of velocity and temperature profiles in
the case of M=2.68, T{ =2.0, and T5 =3.0. No-slip-boundary
conditions are used.

situation is reversed in highly rarefied gases where most
of the gas would follow the cold plate because the velocity
slip is larger at the hotter plate than at the colder plate.

However, the results in Fig. 5 indicate that the predic-
tion of Liu and Lees may not be true in general. Part of
the problem may lie in the fact that Liu and Lees might
be overestimating the velocity slip at the upper wall. It
also appears that their theory of slip. gives well-behaved
results only when the Mach number and the Knudsen
number are relatively small.

We now focus our attention on the flow characteristic
of high-speed rarefied-gas flows when the nature of the
surface is such that the velocity and temperature slips are
negligible. That is, O(T)=6(T,)=1.

In Fig. 6 we investigate the effect of the temperature

1.0

FIG. 9. Nonlinearity factor g, vs £ for different values of K
in the case of M=2.68, T{=2, and T5 =3.
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difference AT =T5 —T7. Since AT is also a measure of
nonlinearity we see that the temperature and velocity pro-
files tend to exhibit the characteristics typical of nonlinear
transport processes observed in other situations studied so
far; cf. Figs. 3—5. Observe that the velocity profiles get
significantly affected by an increased AT, and this is one
of the thermoviscous-coupling effects. The solid curves
are nonlinear theory profiles while the broken curves are
linear profiles.

The flow profiles with no slip conditions are presented
in Figs. 7—9. In Figs. 7(a) and 7(b), where the solid
curves are nonlinear theory profiles and the broken curves
are linear theory profiles, we investigate the effects of
variation in the Mach number. It is seen that as the velo-
city of the upper plate increases, the velocity and thermal
boundary layers become more and more pronounced.
Similarly, as shown in Fig. 8, as the Knudsen number is
increased the rarefaction increases and the nonlinear
features become more pronounced. In Fig. 9 the variation
of the nonlinear index ¢, is shown from which it can be
deduced that the nonlinear transport coefficients go
through a remarkably large variation over the interval
[0,1]. Both  and A get small in magnitude as K in-
creases. In the hope of checking the correctness of the
numerical method used and also gaining some further in-
sight into the velocity profiles we have plotted in Fig. 10
the temperature-velocity correlation curves. They corre-
spond to traces of the values of T* and u ™ in the interval
0< &< 1 for the two different sets of (T7,T5) presented
in Fig. 4. As predicted by the analytical result (92), both
linear and nonlinear profiles for T* and u* trace a single
correlation curve. The only difference between the linear

80 |
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FIG. 10. Temperature-velocity phase diagram obtained from
the profiles in Fig. 4.

and nonlinear profile is different locations on the curve
for the (T*,u™) sets at the same value of £&. The numerals
accompanying the symbols on the curve indicate an as-
cending sequence of the £ value. The linear (T*,u*) (0)
set lags behind the nonlinear (7T*,u*) (x) set until the
maximum is reached but the relative positions are re-
versed after the maximum is passed. This analysis of nu-
merical solutions strengthens the confidence in the numer-
ical accuracy of the results.

Based on the flow profiles obtained from the general-
ized hydrodynamic equations with no slip conditions, we
may infer that the velocity and the temperature jump near
the wall in the rarefied-gas regime which are identified as
the velocity and the temperature slip, may be a direct
consequence of the nonlinear transport coefficients. Thus
to understand the slip phenomena we have not only to un-
dertake a detailed examination of the gas-surface interac-
tions, but also to recognize the influence of nonlinear
transport coefficients in high-speed rarefied-gas flow re-
gime. We remark that the kind of nonlinear transport
processes considered here has not been taken into con-
sideration in slip-flow phenomena in the past.

B. Dense gas

We now turn to investigate the flow characteristics of a
very dense Lennard-Jones fluid. Such an analysis, in spite
of its special geometry, would give some idea about the
nonlinear effects arising, for example, in shock-wave
propagation in a dense fluid. In these experiments the
enormous change in pressure and temperature occur over
a microscale and consequently the linear transport theory
is no longer adequate for the macroscopic description of
dissipative processes in such flow systems.

To calculate the flow profiles of a dense gas, we solve

FIG. 11. Velocity and temperature profiles for a dense
Lennard-Jones gas. The parameters are p*=5, T} =2, T5=3,
M=2.68. :
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the generalized hydrodynamic equations (76) and (78) in
which the transport coefficients are given by the density-
dependent nonlinear viscosity and thermal-conductivity
formulas already presented. The boundary conditions are
formally the same as for the dilute gas, but they are prac-
tically the no-slip boundary conditions since the fractions
6(T;) and 6(T,) are virtually equal to unity; cf. Fig. 2.
The pressure is described by the equation of state (81) for
the Lennard-Jones fluid.

In Fig. 11 the effect of the increase in the effective
Knudsen number on the flow properties of a dense fluid is
studied, with the rest of the parameters given by M =2.68,
T?=20, T5=3.0, p*=5.0. The values of K taken are
1.05 and 3.68. We remark that K in these cases is the ef-
fective Knudsen number as defined in (28). As is evident
from the figure, the velocity and temperature profiles for
nonlinear transport processes deviate considerably from
the corresponding flow profiles calculated with the help
of the linear theory for which g,=1. However, in con-
trast to the rarefied-gas flows described, there is no evi-
dence for the existence of boundary layers in this particu-
lar case. It is also observed that the excessive viscous
heating due to the viscous dissipation of the kinetic energy
decreases the gas density near the upper plate and thereby
nonlinear effects are reduced. In Fig. 12 we investigate
the influence of pressure on the flow profiles. Once again
there are considerable differences between the flow pro-
files for nonlinear and linear transport processes. As the
pressure increases, the fluid becomes less mobile and
therefore the velocity profiles are becoming convex down-
ward whereas the temperature profiles are raised due to an
increased energy dissipation into heat. In Fig. 13 the vari-
ations of density-dependent linear and nonlinear transport
coefficients with respect to & are presented. The parame-
ter set used is p*=5, T1=20, T5=30, M=2.68,
K=23.68. The nonlinear shear viscosity and heat conduc-
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FIG. 12. Velocity and temperature profiles for a dense
Lennard-Jones gas at different pressures. The other parameters
are K=1.05, M=2.68, T} =2, and T3 =5.
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FIG. 13. £ dependence of linear and nonlinear transport coef-
ficients for a dense Lennard-Jones gas. The parameters are
p*=5, TY=2, T5=3, M=2.68, K=3.68, and v*=17.4. The
linear and nonlinear transport coefficients have qualitatively dif-

ferent £ dependences which have significantly different effects

on the profiles.

tivity are considerably smaller than the corresponding
linear values. These transport coefficients are local and
strongly depend on &. It may also be noticed that unlike
the case of rarefied-gas flows where the fluid behaves as
inviscid in the mainstream, the dense fluid exhibits appre-
ciable dissipative effects in the mainstream, exhibiting no
flat portions in the profiles. We again stress that K in the
case of Figs. 11—13 for the dense fluids stands for the ef-
fective Knudsen number defined with the effective mean

free path over which the momentum or the energy is car-

ried in the fluid. This length is not so short in the case of
a dense fluid owing to a relatively long correlation length
on account of intimate interactions of particles.

V. DISCUSSION AND CONCLUSION

The aim of the present work is in studying the effect of
the nonlinear transport coefficients on the velocity and
temperature profiles for a Lennard-Jones fluid. There are,
however, a number of significant aspects of fluid dynam-
ics in connection with the present work that must be dis-
cussed.

A. Nonlinear-transport coefficients
and slip phenomena

The nonlinear transport coefficients obtained in this
work and in the modified moment method in general are
dependent on thermodynamic gradients. Therefore they
are not constant in contrast to the linear transport coeffi-
cients to which they reduce as the thermodynamic gra-
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dients decrease in magnitude. The thermodynamic-
gradient dependence of nonlinear transport coefficients
gets noticeable as 7, and 7, get large. The latter can be
large since they are inversely proportional to the density if
the density is small, or since the linear transport coeffi-
cients become very large owing to the increase in the
molecular correlation length if the density is high. [Note
that the transport coefficients increase exponentially with
the density; see (21) and (22).] Either way, the velocity
and temperature profiles show pronounced deviations
from the predictions by the theory that is based on the
linear transport coefficients of dilute gases. Historically,
the linear transport coefficients?®> have been calculated by
means of the mean-free-path-theory of Clausius,
Maxwell’s kinetic theory, or the first-order Chapman-
Enskog solution!® of the Boltzmann kinetic equation. All
of these theories predict density-independent transport
coefficients which in turn, with the help of hydrodynamic
equations, predict constant.gradients. Yet as the density
is reduced to a sufficiently low value (e.g., 50 umm Hg in
pressure) and as the Knudsen number gets large, one finds
evidence of the linear laws breaking down and the “slip-
ping” of the velocity and the temperature at the wall.
Maxwell’s theory?#® of slip phenomena was an attempt to
make a correction to the constant linear transport coeffi-
cients, and later theories?*®—24d) py ‘others are, in
essence, in the same kind of spirit, and are within the
framework of the theory of linear transport processes, re-
gardless of whether boundary conditions are imposed on
the distribution function or not. (Maxwell’s theory does
not impose boundary conditions on the distribution func-
tion whereas more recent theories by later authors do.)
The theory of nonlinear transport processes on which
the present calculations are based provides an alternative
method of handling the flow phenomena? for all densi-
ties. This theory is different from the existing theories**
in that it acknowledges the importance of the gas-surface
interaction and the basically nonlinear nature of the slip
problem by solving the kinetic equation accordingly to re-
flect the nonlinear nature. The use of a cumulant expan-
sion for the entropy production is ultimately a declaration
of such a recognition, and its correctness appears to be in-
dicated by the velocity and temperature profiles which
manifestly exhibit a boundary-layer structure at the wall.

B. Comparison of the nonlinear transport coefficients
with those in Maxwell’s theory

To understand the nature of the nonlinear transport
coefficients (47) and (48) used in the present theory, we
compare them with the effective transport coefficients de-
duced from the Maxwell theory®* of slip phenomena. To
facilitate a closer comparison, we shall assume that there
is no coupling between viscosity and heat conductivity
and consider only the viscosity. Thus in the case of no
temperature gradient the nonlinear viscosity coefficient is
given by

N=mnesinh~Yry) /7y ,
T=17,/2,

¥ =0u, /3y =Udu* /E=Uy* .

If the reduced quantities defined in (55)—(63) are used, the
argument of the inverse hyperbolic function may be writ-
ten as

Ty =v,K(du* /3&)=v,Ky* ,
where
vo=L61yy/A(T*)~ V12 M .

Note that the Knudsen number is inversely proportional
to the density.
The nonlinear viscosity in terms of the reduced quanti-
ties is
n=nosinh ™' (v,Ky*)/v,K7*
=noln{vyKy* +[1+(,Ky* 112} /vKy* . (95)

On the other hand, in the Maxwell theory of slip flow the
velocity near the wall is given to first order of K by

d=1yl—aKy*), . (96)

where U, is the velocity at the wall and a is a parameter
independent of y*. This velocity profile implies the
viscosity in the form

n=m10/(1+2aK) . 97)

This is an effective viscosity formula that we wish to
compare with (95). There is an important difference be-
tween them since 7 in (95) depends on y* whereas 7 in
(97) does not, at least in the order of approximation made
for (96). However, both formulas (95) and (97) predict a
viscosity vanishing as n increases. In this sense they are
similar in their density dependence. As the density de- -
creases, K increases and thus 7 vanishes in both cases,
with (95)

N~nlnn~! ‘ (98)
and with (97)
n~n, . (99)

both of which mean that the rarefied gas becomes practi-
cally inviscid, as is well known. Therefore in such a range
of density the fluid behavior is practically that of an invis-
cid fluid except for thin layers near the walls confining
the gas. In the thin boundary layers the viscosity, howev-
er small it may be, must be taken into account when the
profiles are calculated.
A similar comparison holds for thermal conductivity.

C. Conclusion

The present work fills the lacunae left by the previous
work on a Maxwell gas. Here we have studied the veloci-
ty and temperature profiles for both dense and dilute
thermoviscous Lennard-Jones gases. Density and
temperature-dependent linear viscosity and thermal con-
ductivity coefficients are used as well as a virial equation
of state proposed by Ree on the empirical ground. The
calculations presented show that there are significant non-
linear effects on velocity and temperature profiles that
arise when the nonlinear nature of transport processes is



836 D. K. BHATTACHARYA AND BYUNG CHAN EU 35

taken into account in hydrodynamics. The theory em-
ployed provides, in effect, an alternative method of study-
ing flow problems since the present method is a unified
hydrodynamic theory for flow problems ranging in the
density from the rarefied to the dense-gas regime. This
unification is made possible by the theory of boundary
values that enables us to calculate the boundary conditions
in terms of the surface-gas molecule interaction parame-
ters. This approach has not been taken before in fluid
dynamics. Although we have considered the simplest

kind of flow geometry in the present work, the implica-
tions of this work would probably hold generally for other
types of flow geometry. This line of work is still interest-
ing and worth studying further.
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