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Density dependence of the atomic transition probabilities in hot, dense plasmas
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The atomic properties and transition probabilities of highly ionized aluminum in hot, dense plas-
mas were studied. In particular, we present computational results of the variations with density of
the following atomic parameters: atomic potential and screening factor (due to both bound and free
electrons), free-electron distribution, atomic wave functions, binding energies, line shifts, and, final-

ly, transition probabilities and oscillator strengths. The calculations were carried out using the ion-

sphere model (ISM) which treats the bound and free electrons in the atom self-consistently in a cen-

tral potential. This potential is produced by the combination of the nuclear Coulomb field together
with contributions by the bound- and free-electron charge distributions. The results indicate an in-

creasing effect of the plasma on the atomic properties with increasing plasma density. Particularly,
the free-electron screening reduces the atomic potential, pushes the atomic wave functions away
from the nucleus, and reduces the binding energy of the bound electrons. The transition probability
also decreases monotonically with density up to the ionization limit of the upper state beyond which
it drops to zero. The computational results are compared to those expected from a homogeneous
free-electron spatial distribution.

I. INTRODUCTION

The effort concentrated in recent years on the research
into hot, dense plasmas, particularly astrophysical and
laser-produced plasmas, has stimulated extensive theoreti-
cal and experimental investigation of the atomic processes
in these plasmas. Of central interest in this research are
the attempts to calculate the energy levels and the cross
sections of the various atomic processes of highly ionized
species present in hot plasmas. ' From the results of these
calculations one can gain information about the charge-
state distribution as well as the radiation spectrum and ra-
diation rates.

In this paper we study the variations of the atomic
transition probabilities (the Einstein A coefficients) and
the oscillator strengths versus density and temperature in
hot, dense plasmas. The atomic transition probabilities
and the oscillator strengths have a special importance in
these plasmas because reliable calculations of these proba-
bilities are essential for the correct description of the radi-
ative processes in the plasma. These processes incorporate
the total plasma radiation rate which determine the local
plasma cooling, the computation of the plasma opacities
and the Rosseland mean-free path which are of central
importance in radiation transport calculations, and, final-
ly, the calculation of the emitted radiation spectra for
plasma-diagnostic purposes.

In addition to the transition probabilities we derive in
this paper the density variations of a set of other quanti-
ties as well; these are the (i) atomic potentials, (ii) atomic
wave functions, (iii) energy levels, (iv) free-electron distri-
butions, and (v) chemical potentials.

While the atomic energy levels and the transition proba-
bilities in plasmas up to nT &10 ions/cm (nT is the ion
number density) can be calculated from basic principles
by well-known techniques, at higher densities the sur-

rounding plasma, namely the neighboring electrons and
ions, may have a strong perturbing effect on the atomic
energy levels and the wave functions of the bound elec-
trons, thereby significantly altering the atomic transition
probabilities as well as the atomic cross sections. In prin-
ciple, to obtain a complete solution of such a problem one
should account for the interaction of every plasma parti-
cle with every other one, but as it is impractical to carry
out such a detailed computation, various approximation
schemes have been proposed for this purpose.

The earliest attempt to calculate the effects of the plas-
ma on the atomic structure is the Debye-Huckel theory,
appropriate for low densities, which calculates the screen-
ing of the atomic potential by the plasma particles. Oth-
er, more recent theories include the hypernetted-chain ap-
proximation, the density-functional theory, the
Thomas-Fermi atom' and the ion-sphere model
(ISM). The first four of these models (except ISM) as-
sume a local thermodynamic equilibrium (LTE), namely,
a Boltzmann-type population distribution of the excited
states. This assumption is certainly true for low-
temperature plasmas. However, for every given density
there are temperatures high enough so that the LTE as-
sumption is not valid anymore. ' When this limit is
achieved it is expected that only a detailed-configuration-
(DC) type computation can yield reasonably accurate re-
sults. The ion-sphere model can provide the framework
for such a computation.

In recent years only a few attempts were made to carry
out detailed-configuration-. type calculations which take
into account the plasma effects. A computation of the
photoabsorption cross sections of an aluminum plasma in
the density range of 1020 3)& 10 cm was carried out
Salzmann, Yin, and Pratt' who compared the plasma ef-
fects on the photoionization cross sections in a T=500 eV
aluminum plasma as calculated within the framework of
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the DC and the average-atom (AA) models. Other DC-
type calculations which treat the bound and free electrons
self-consistently include those by Skupsky, "who concen-
trated on the calculation of the level and line shifts in hot,
dense neon plasmas, and by Davis and Blaha' who solved
the Schrodinger equation for a single hydrogenic neon ion
immersed in a fully ionized hydrogen plasma. This last
paper includes a calculation of the variation with density
of the level and line shifts as well as the transition proba-
bilities and the collision strengths for the Nex ion under
several temperature and ion-density conditions. The
Lyman-a line shifts versus density of the same ion were
calculated recently- also by Nguyen, Koenig, and
Coulaud' using self-consistent nonrelativistic ISM.

A high-temperature pure aluminum plasma was chosen
to illustrate our studies. Most of the calculations were
carried out at a constant temperature of kT=500 eV and
ion densities n.T up to 3&10 cm corresponding to a
plasma coupling constant I of 6.7 (I =Z e IkTR, R is
the ion-sphere radius) covering a range of transition from
weak to rather strongly coupled plasrnas. In this density
and temperature range the plasma consists mainly of hy-
drogen like and heliumlike ions with a small percentage of
fully ionized and lithiumlike species; therefore our calcu-
lations refer to these species only. For comparison pur-
poses, we carried out a set of computations also for
constant-density plasmas to examine the influence of tem-
peratUre variations on the transition probability.

In the next section our basic model is described, and the
results are presented and analyzed in Sec. III.

II. THE BASIC FORMALISM

For discussion purposes, our model can be divided into
two parts: Sec. II A, computation of the atomic potential,
screening factor, electron density distributions, and
bound-electron wave functions and Sec. IIB, calculation
of the transition matrix elements, the transition probabili-
ties, and oscillator strengths. For the sake of comparison,
we list in Sec. II C the formulas relevant to plasmas with
homogeneous free electron distribution.

V(r) = Z—jr+ V, (r)+ V„,(r), (2)

where V„, is t'he exchange potential, which will be dis-
cussed below.

The bound-electron eigenvalues and wave functions are
obtained by solving the relativistic Dirac equation in this
central potential V(r)

[ ia—V+ pmc + V(r)]Q„=EQ, (3)

where a and P are the Dirac matrices, E is the total (in-
cluding rest mass) energy of the bound electron, and

8K K77Z

fn„ (4)

is the eigenfunction with the corresponding quantum
numbers ~=j+—,

' and m. The radial functions g, (r) and

f (r) are the large and small components connected by the
differential equations,

= [E+mc —V(r ) ]f„(r)— g, (r), —
dr r

dr r f,(r) [E mc— V(r—)]g„—(r), —

and Q stands for the angular components of the wave
function. From these wave functions the bound-electron
spatial distribution can be calculated as

nb(r) =g (2j+ 1)
~
g, ~

In all our examples the bound-electron charge distribution
outside the ion sphere was small.

The free-electron spatial distribution is assumed to fol-
low Fermi-Dirac statistics:

duced by these distributions is obtained from the Poisson
equation,

7' V, (r) = 4n—[nf(r)+nb(r)],
where nf(r) and nq(r) are the free an-d bound-electron
densities, respectively. The total potential is

A. The ion-sphere model calculations 1
nf(r, p) =

2~2

3/2
2mkT p —e V(r) e V(r)

kT kT
We consider an ion having nuclear charge Z and ionic

charge Zf positioned at r =0. The number of the bound
electrons (Z& ——Z —Zf ) as well as their distribution
among the various excited states are predetermined condi-
tions of the problem to be solved. The ion together with

Zf free electrons are confined to the ion sphere
r & R =(3/4vrnz )', where R is the ion-sphere radius and
n, T the total ion density. Beyond this sphere the distribu-
tion of the positive charge is assumed to neutralize exactly
the negative electron distribution, thereby producing an
electrically neutral background. Similar models, generally
called ion-sphere models, were used in the literature, '
sometimes with minor variations.

In our model both the bound and the free electrons are
treated self-consistently in a central potential V(r). More
accurately, assuming some initial estimate for the free-
and bound-electron charge distributions, the potential pro-

(7)

where F&(x;p) is the incomplete Fermi-Dirac function of
order j defined by

Fz(x;P) = dy,
P exp(y —x )+ 1

and p is the chemical potential, which is solved numeri-
cally from the equation

Zf ——f nf(r;p)d r . (9)

The solutions for the densities nf(r) and nb(r) are then
substituted back into Eq. (1) to yield a better approxima-
tion for the potential V(r) and the whole procedure is re-
peated until convergence is attained. In this sense the fi-
nal potential can be regarded as self-consistent in both the
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e V„,(r) =—

bound and free electrons.
Exchange interactions are introduced through a zero-

temperature Slater-type exchange potential,

3e
[31r n, (r)]'~',

4~

M12 ——im L, +1 2L+ 1 +
L(L+1) (@1+F2)II (CO)

whereas for electric-type multipoles

M12 M12(0)+GLM12

(12)

(13)

B. Transition probability and oscillator strength

The calculation of the transition probabilities was based
on the formulas published by Grant. ' These formulas
correspond to relativistic single-particle transitions which
account for the various gauge transformations of the elec-
tromagnetic field. The spontaneous transition probability
per unit time from an upper state 2 to a lower state 1 is
given by

2ji+1
2L+1

Jz L Ji
1 10
2 2

2

M12
~

where a is the fine-structure constant, co is the transition
frequency, Aco=Ez —E~, and L is the transition mul-
tipole. The transition matrix element takes different
forms for magnetic and electric transitions. For magnetic
transitions,

where n, (r) is the total (bound plus free) electron density.
For the calculations of the bound-electron wave functions
a Latter-tail-type asymptotic behavior [for r~ oo,
rV(r)~ —(Z —Zb —Zf —1)=—1] was used in calculat-
ing g. It is expected that a Latter-tail-type boundary con-
dition is appropriate as long as the electron orbital fre-
quency is much higher than the plasma frequency, other-
wise a time-dependent screening of the free electrons on
the atomic potential should be accounted for. For the
cases studied in this paper the electron orbital frequency
was at least 20 times (more often 10 times) larger than
the plasma frequency so that the Latter tail seems to be a
plausible assumption. However, at present the signifi-
cance of the Latter tail is still an open question and a
separate research into this problem would be highly desir-
able.

Our calculation lacks a few ingredients, which were in-
cluded in various previous work. First, the free-electron
correlations"" are neglected. These are introduced gen-
erally by means of an effective potential, but they prob-
ably have only a minor effect on the results. " Second, no
finite-radius boundary conditions are used, thereby limit-
ing our treatment to atomic states which are not too close
to the ionization limit. Finally, the neighboring-ion spa-
tial distribution is implicitly included in the ISM by as-
suming a neutral background beyond the ion sphere, rath-
er than using an explicit pair correlation function (radial
distribution function ) g(r). For a very high coupling
constant such a description may be inadequate, as a
lattice-type structure builds up in the plasma, but for
I &7, which is the limit of our present calculations, a
homogeneous ion distribution beyond the ion sphere is
still a plausible approximation. '

(14)

is the electric matrix element, and

M12 ——i [(2L+ 1)JI.+(v1 vz)(II+—+1+II+ 1)

LII. 1—+ (L +—1)II +1] (15)

is the longitudinal matrix element.
In formulas (12), (14), and (15) the following notation is

used:

+ d'orII (CO) = (g1f2+f1gzj)I dP,
0 c

(16)

cOr
IL (~)= (g1f2 flg2j)I,0 c

(17)

JL(~)= (g1g2+f1f2)JI.0 c

JL is the spherical Bessel function of order L.
The oscillator strength is obtained by

2jp+1
f1~2

2 ~ 2 2
~ +1 2~1

The factor GL in Eq. (13) is the gauge parameter.
Grant' showed that for the Coulomb gauge one has
Gl ——0. For this value of GL his results reproduce in the
nonrelativistic limit the usual dipole-velocity matrix ele-
ment. On the other hand, the value GL, ——[(L+1)/L]'
when L =1, corresponds to the dipole-length matrix ele-
ment.

The difference between the dipole-velocity and dipole-
length matrix elements depends not only on the value of
GI, but on the value of the longitudinal matrix element,
M1z, Eq. (15), as well. In Ref. 16 a theorem is proved
which states that this matrix element vanishes identically
for all pairs of states which are eigensolutions of the same
Dirac Hamiltonian. In all our calculations of the isolated
hydrogenlike ion case, this condition was rigorously ful-
filled. However, our calculations of the transition proba-
bilities in high-density plasmas or complicated ions is
based on the relaxed core assumption, which uses slightly
different Hamiltonians for the upper and lower states.
The transition probabilities, as calculated in the dipole-
velocity or dipole-length eases are, therefore, not neces-
sarily equal, and moreover, their difference is density

where

1/2

M12(0)=i [(a1 az)I—g++1+(L +1)II+1]L+1
1/2L+1 +

L
[(a.1 az)II. —

1 LIL, —1]—
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dependent. We shall come back to this point in the next
section.

C. Homogeneous free-electron distribution

For comparison purposes we list here the formulas for
the energy level shifts and line shifts which correspond to
the case of a homogeneous free-electron spatial distribu-
tion throughout the ion sphere. This case can be solved
analytically resulting in rather simple formulas which can
be compared to the more accurate computations.

The potential produced by a homogeneous free electron
distribution inside the ion sphere is

632i =1+c].2]n7+ p2]n7+
A2i

(25)

The minus sign indicates that the lines are shifted to-
ward lower energies, namely, they are all red shifted. We
recall that this is a second-order-approximation result and
is, therefore, strongly dependent on the accuracy of the
model.

The density dependence of the transition probabilities
cannot be expressed by simple expressions like Eqs. (21) or
(22). Second-order perturbation theory indicates that this
parameter is linearly dependent on the total ion density as
long as the upper level is not too close to the ionization
limit,

3Zfe
e Vf(r)=

2R
r

1 ——
R

2

(20)

4m
2

5E=—
2 R 3

1/3
1/3fe PET (21)

Therefore, within this approximation, the emitted
spectral-line energies should not be influenced by the
plasma-density effects.

The line shifts are predicted as a second-order approxi-
mation, which takes into account the (r/R) term too.
The result is

When the radius of the ion is much smaller than the
ion-sphere radius, the second term in Eq. (20) is negligible
relative to 1, and Eq. (20) predicts that all the ionic energy
levels are shifted upward by a constant amount, which is
proportional to the density to the power —,',

Only near the ionization limit do the quadratic and
higher-order terms come into effect. The coefficients a
and P have a rather complex dependence on the isolated
ion dipole and quadrupole matrix elements which connect
the upper and lower states of the transition to all the other
atomic levels.

III. RESULTS

Calculations were carried out for a pure aluminum
plasma at kT=500 eV and ion densities up to 3&10
cm . The criterion in choosing the upper limit for the
ion density was the requirement that the bound electron in
the upper level would be confined within the ion sphere
with probability greater than 90%, J z i pi d r )0.9.
A set of computations was carried out also for a constant
density plasma to examine the influence of temperature
variations on the results. The following transitions were
considered:

t](h )= —— (( &
—( &),

1 Zfe
R

(22)

where ( r ) are the average of r in the upper or lower
states given by, '

2

(r„i)= tn [Sn +1—3l(l+1)]J
2ao

2 2 Cri1. (23)

Here Q is the effective charge and c„] is defined as the
term in the curly brackets. Substituting Eq. (23) into (22)
one gets a linear dependence of the line shifts on the ion
density,

A1 XIII, H-like:

Al xi', He-like:

Al XI, Li-like:

1s S]/2 —2p P]/2
1s Si/2 —2p P3/2
1s S&/2 —3p Pi/2
» '~]z2 3p 'P3pz-
ls 'So—ls 2p( —,, —,

'
)

1s 2s Si/2 —1s 3p P~/2
1s 2s S~/2 —1s 3p P3/2
s 22p 2P1/2 ls 23s 2S

i /2
1s 2p Pj/2 —1s 3d D3/2
1s 2p P3/2 —1s 3s Si/2
1s 2p P3/2 ls 3d D3/2
1s 2p P3/2 —1s 3d D5/2

f5(I]v) = —— e ]20nT(c2 —c, ) .
3

(24) These transitions are, in general, the strongest in plas-
mas under consideration.
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IQG ls- 2p 4.0
Li- like

3.0

increasing ion density. This is a result of the screening of
the atomic potential by the free electrons which shifts up-
ward the atomic levels. The level shifts are of the order of
40eV at nT ——10 ' cm up to 200 eV at nT ——10 cm

The shift of the binding energies follows very closely
the values predicted assuming a homogeneous free-
electron distribution up to nT ——10 cm, see Eq. (21).
This result suggests that a homogeneous free-electron dis-
tribution is a good description of the. plasma at low densi-
ties up to (almost) solid density, and the level or line shifts
can be approximated by the formulas (21) and (24),
respectively, with adequate accuracy. Substantial devia-
tions from this behavior can be observed only at higher
densities, reflecting the effect of the free-electron polariza-
tion around the nucleus in high-density plasma.

E. Line shifts

In Fig. 6 we show the shifts of the H-like Lyman-a and
He-like resonance lines versus the plasma density. The
line energies were calculated from the eigenvalues of Eq.
(3). The lines are all shifted toward the red, as expected
on the basis of Eq. (24). The line shifts are of the order of
0.03 eV for nz ——10 ' cm up to 10 eV at nT ——10
cm . We recall, however, a point which was already
mentioned in the previous section, namely; that the line
shift is a second-order effect, and one should be very con-

2.0

o I.o
fs 2p

ls —3p

2 3
Density (IO cm )

FKx. 6. The shifts versus density of the H-like Lyman-a and
the He-like resonance lines.

3d
sent 2p)xz

1s 3s (y2 ls 2 p(/2

0
0

1H 3s —1s~2p
l

3
l I

I 2
ion density(IQ ~crn &)

FIG. 8. Same as Fig. 7 for Li-like ions.

F. Transition probabilities

The behavior of the transition probabilities of H-like,
He-like, and Li-like species as a function of density are
shown in Figs. 7 and 8. These figures are the final results
of the present paper.

The transition probabihty is a monotonically decreasing
function of the plasma density. At low densities the devi-
ation of the value of the transition probability from the
isolated ion case changes linearly with the density. Only
when the upper state approaches its ionization limit does
a quadratic term come into effect. Similar behavior
would hold true should 'the free-electron distribution be
homogeneous, Eq. (25). When the upper state merges into
the continuum, the transition probability finally drops to
zero.

fident with the accuracy of his model down to second or-
der in order to claim a rigorous result for the line shifts.

A few words of caution are in order. Recently it was
proposed that these line shifts may be used to measure the
ion-density in highly compressed laser-produced plas-
mas. "' lt should be emphasized that the line shifts are
affected by the local instantaneous ion density in the vi-
cinity of the emitting ion rather than the average density
in the plasma. This local density undergoes large tem-
poral as well as spatial fluctuations over the whole ensem-
ble. It can be shown' that the density fluctuations are of
the order of magnitude of the average ion density. Conse-
quently, the spectral lines are not only shifted, but are also
broadened, with the linewidth being of the order of the
line shift. These line shifts are, therefore, very difficult to
verify experimentally except at very low densities.

2
lon Jensity (lO +clT1-p)

FIT&. 7. Ionic transition probabilities of H-like and He-like
ions versus density.

C. Dipole-velocity —dipole-length versus density

The longitudinal matrix element, M&2 in Eq. (15), van-
ishes identically for any two states which are the eigen-
solution of the same Dirac Hamiltonian. In fact, for the
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FIG. 10. Variation of the Lyman-a line transition probability
with the plasma temperature at nT ——2.5)& 10 cm
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1Q 23
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Ion density (cm-& )

FIG. 9. Density dependence of the relative difference be-
tween the transition probabilities of the H-like Lyman-o. and
He-like resonance transitions as calculated by using the dipole
velocity and the dipole length matrix elements.

transition matrix elements in an isolated hydrogenlike ion
this condition was satisfied to within the numerical accu-
racy of our computations. Regarding more complicated
ions, as we used relaxed core-type calculation, the upper
and lower states were solved in slightly different poten-
tials, so we found differences between the dipole velocity
and dipole length transition probabilities even without in-
cluding the influence of the surrounding plasma.

The presence of the free electrons in the plasma also af-
fects the difference between the dipole-velocity and
dipole-length transition probabilities, see Fig. 9. The ori-
gin of this difference is the fact that the free electrons are
distributed differently when the ion is in its upper or
lower states. The two Hamiltonians are therefore not
identical and moreover, their difference increases with in-
creasing ion density.

H. Temperature dependence of the transition probabilities

For comparison purposes we show in Fig. 10 the varia-
tion of the transition probability of the 2p-1s transition in
an H-like ion versus temperature between T=200 eV and
T= 1000 eV, which is the range where these ions have sig-
nificant abundance. The ion density is nT ——2.5)&10"
cm . Only 20% variation is observed along the whole
range. This justifies our concentration on the density
rather than the temperature effects of the surrounding
plasma.
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