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Macroscopic variables of the macroscopic system lose the quantum fluctuations in the macroscop-
ic limit. A separate Hilbert space corresponds to each c-number value of these macroscopic vari-
ables. The measuring process in quantum mechanics consists of recording these c-number values
and amounts to determination of the Hilbert space to which the system belongs. These observations
provide a solution to the problem of measurement and lead to predictions concerning the c-number

equations of motion of the macroscopic variables.

I. INTRODUCTION

The problem of measurement in the theory of quantum
mechanics has a long history! and is certainly one of the
most important questions of theoretical physics. There
are various aspects of the theory of measurement but in
this paper we concentrate on the following question: If
the system of the object plus the macroscopic apparatus is
described by the usual rule of the quantum mechanics
(i.e., by the Schrodinger equation), then does the interac-
tion between the object and the apparatus bring the pure
state (of the object) into the mixed state (the reduction of
the wave packet)? This is, of course, the central problem
of the theory of measurement.

We discuss in the following the same subject from a
novel point of view and give the answer in the affirmative.
The discussion is based on the method of functional in-
tegration. It enables us to study quite easily the phase
coherence or incoherence for the macroscopic system and
thereby elucidate the structure of the Hilbert space of the
macroscopic system. The results of these investigations,
presented in Sec. II, are that the macroscopic variables of
the macroscopic system have no fluctuations and a dif-
ferent Hilbert space corresponds to different values of the
macroscopic variables. The macroscopic system is
characterized here by the ideal limit where the number of
degrees of freedom N becomes infinite. We are familiar
with the notion of the different Hilbert spaces for dif-
ferent values of the macroscopic variables in various phe-
nomena; ferromagnet, superconductor, chiral dynamics in
particle physics, etc. To measure an object is, in our ter-
minology, to construct a list of the fluctuationless numeri-
cal values (i.e., c-number values) of the macroscopic vari-
ables and this fact brings the process of measurement to
the same level of the Newtonian mechanics. We can also
say that the measurement determines the Hilbert space to
which the system belongs.? The limit N— co answers at
the same time the objection raised on the basis of the uni-
tarity problem.>

In our theory the transition from the pure state to the
mixed state occurs by the interaction of the object with
the macroscopic apparatus. The loss of information takes
place during this transition, and it is due to the complete
destruction of the phase coherence between the states with

35

different values of the macroscopic variables. The transi-
tion time At is estimated in the following to be propor-
tional to 1/N.

It is desirable to have a solution to the problem of mea-
surement within the framework of the quantum theory
without recourse to the theory which has independent and
different bases or assumptions, such as the theory of the
irreversible thermodynamics.* Otherwise the quantum
theory will not be a closed theory. Our theory satisfies
the above criterion.

We also have predictions which can, in principle, be
checked. Several examples of the equations of motion of
the macroscopic variables are presented at the end. There
is no fluctuation to these equations (i.e., they are c-
number equations) even though they undergo quantum
corrections.

The discussions in the following are given in terms of
the second-quantized field theory by introducing the bo-
sonic field operator ¢(x) and its conjugate momentum
field operator 7(x)=(#/i)d/3¢(x) to represent the de-
grees of freedom of the detector system. It is more gen-
eral and easier than the quantum theory of an N-particle
system. The macroscopic nature is represented by the
limit V=« with N/V fixed where V is the volume of the
detector system.

II. MACROSCOPIC VARIABLES
OF THE MACROSCOPIC SYSTEM
AND THE STRUCTURE OF THE HILBERT SPACE

Extensive and intensive variables are associated with
any macroscopic system. In the limit V= o there do not
exist, in the Hilbert space the operators corresponding to
the extensive variables since its matrix elements are infi-
nite. We divide the intensive variables into two classes.
Class I consists of operators denoted by 4;=4;[¢,7],
i =1,2,... which involve averaging of the local variables
over the macroscopic region. Examples are

[ @x¢x)/v, [ dxax)/v,
J @ [ d¥exicx—y)p(y)/V,
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“etc., where C(x) is some c-number function. The integra-
tion does not necessarily extend over the whole region but
can be limited to the smaller region as long as it is macro-
scopic compared with the atomic scale. [The above opera-
tors are intensive since the definition of the intensive
operator is that if ¢(x) and 7(x) become independent of x
it has a finite limit when ¥V = o0.] Class II includes the
rest of the operators, B;=B;[¢,7], i =1,2, ..., especially
the local operators such as ¢(x),7(x) or the operator

d’y ¢(x)C(x—y)d(y), etc. The components of class-I
operators should be subtracted from the class-II operators
of  course: ¢(x) is, for example, actually
d(x)— f d>x ¢(x)/V. Now we state the theorem.

Theorem. For a macroscopic system, all the intensive
variables of class I lose fluctuations.

This is nothing but the law of large number and is
proved by the stationary-phase method. Let the
Schrodinger wave function of the system at the time ¢, be
given. It is actually a wave functional (¢ | ¥) =Y [¢]

in our case. Then the ¥,[¢] for later time ¢ is given in
terms of the well-known functional path integral formula®
by

Vigl= [ [ d8Texp [ [, Lar |W[dollddol
(1)

The Schrodinger operator ¢(x) has been replaced by the
integration variable ¢(x,t), and L(¢')=L[¢(t'),p(z')]

J

K= [ [ [ldalldg'laslexp

—iv3 ft;dt'J,-(t')a,-(t')

(p=d¢/dt) is the Lagrangian of the system (the argu-
ment x of ¢ will be suppressed unless it causes confusion).
The functional integration f [d¢'] is performed for
#(x,t') with 1o <t' <t but at t'=t or ty, ¢'(¢') has a fixed
value ¢(1)=4¢ or ¢(29)=¢,. We write Eq. (1) as

V,[¢1= [ K. (6,00, [$o][ddo] - (2)

The evolution kernel K is rewritten as a sum of the terms
each of which is a contribution to K under the condition
that the arbitrarily chosen set of the class-I operator A;
(i=1,2,...) have a given value a;(¢’) for ¢ty <t' <¢. Thus
we use an identical transformation as

Kiibgo)= [ [ dalldg'lexp [i f, L a |
<I1 II SALsG)]—a ),

(tp<t'<t)
(3)

where in A4;, 7 is_written in terms of ¢ and ¢
A;[d,)]=A;[$,7(d,¢)], and we introduced

Jrdal=[" - [TI II daxe).
' (togtt'gt)

Neglecting the irrelevant constant factor, we rewrite Eq.
(3) as

. t t
exp i [, Ldt'+iV3 [, diT(e)a,¢')] |,

where f [dJ] is similarly defined as f [da]. The functional integration f [d'] gives a factor exp(iW [J,é,d0]). Since
W is a macroscopic quantity, we write W =Vw[J,d,¢,]. Thus K is given by

K= [ [ [dalldT]exp

The integral over J is dominated in the limit ¥ =« by
the region where the phase becomes stationary. We as-
sume that there are S distinct such regions. (In case there
are continuously many such regions the summation in the
following formulas is replaced by the integration.) Thus
K becomes

K= i f [da]exp(ins[a’¢’¢0])C’;,q}o[a] ’ (5)

s=1

where

Mlag.ol=al/ ¢, — 3 [, drditae), (©

which is a Legendre transform of o, and J* is expressed in
terms of a;(t) by solving

sz[J,qS,qSo]——le ft;dt'J,-(t’)a;(t’)] . 4)

an[J s’¢1¢0]
—_— =q; .
is( " a;(1) (7)

Equations (6) and (7) define T" as a Legendre transform of
o and T is called the effective action (density) in particle
physics. The factor _C'd,,d,o[a] is of the order (1/VV ).
Here P is the number of the relevant integration variables.

The integration over a is again dominated by the sta-
tionary phase. Let S’ be the number of distinct regions
satisfying the stationarity condition for each s. Then K is
given by

N
K=3 3 exp(iVT*[a*,$,40])Cy,4 (a**) (8)

s=1s'=1
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5,8’

with another factor C%(a**"), and a>* is determined by

ar[a®*, 4,40l
— =0, s=1,...
9a;"* (1)

This is the c-number equation of motion for q;(z). It is in
general a nonlocal equation in space and time. We call
each solution of Eq. (9) a trajectory. To different s
and/or s’ correspond different trajectories since the equa-
tions of motion are different. The trajectory depends on
the boundary conditions at ¢ and ¢, so that the trajectory
is written as a‘*'(¢,¢,) where (s) represents the set s and
s’. Now we point out several points.

(1) The wave functional ¥,[¢] is a sum of terms each of
which has an infinite phase. The phase difference of an
arbitrary pair of terms of different trajectories is infinite
in general. This is obvious by Eqgs. (2) and (8):

v, [¢]= 2) J 1dgol¥“[e,40] ,
(s
(10)

VO[¢, ¢l =exp(iVT*[a(¢,40)1} Cy,g,[a " (,40)] -

The value of I'*[a'*/(¢,$,)] depends on (s), ¢, and ¢y, i.e.,
on the trajectory.

(2) Let us prepare at t =t; a Schrodinger wave func-
tional W, [¢o] with a well-defined finite phase. It will

decompose into a sum of terms with infinite phase differ-
ence after an elapse of the time Az. The order of magni-
tude of At is estimated as follows. I'[a] always has the
form t' dt'y[a,t'] as is known from the perturbation

theory. Therefore,t for small Ar=t—t, we write
VO =VAt(1/A1) [y dt'=VAry, where 7 is the average
of the action density. The validity of the dominance of
the stationary phase is ensured if

At>>(ryp)~t.

For large V, the wave functional assumes the form (10)
instantaneously.

(3) There does not exist any finite operator that con-
nects different trajectories. To show this, we first observe
that any class-II operator can be represented by f[¢,7]
with f some functional of ¢ and 7. Then we choose a
pair of different trajectories a‘(¢,do), the one with
(s),¢0, and the other with (5),f, (¢ is the same for both
terms). Consider the following matrix element:

fio

*(s)
\Pt [¢’¢0],f i a¢

¢

V[ 6,801 ]

= [ [dg1Css exp{ —iVTa (4,801} f {"’"?5847 ]

Xexp{ing[a(E)((ﬁ’aO)]}C::,JO > (11)

where Eq. (10) has been used. If f[@,d,] is a finite opera-
tor when V= o0, Eq. (11) vanishes in the limit V— 0. It
is of the order (1/V'V )€ where Q is the number of the de-
grees of freedom of ¢ relevant in the integration. (We

have assumed that there exists a stationary phase of

exp(—iVAT) where AT =T"[a'(¢,d0)]1—T[a“ (d,bo)].
If there is not, Eq. (11) vanishes even faster. C'® or C*
also contains some powers of 1/V/V, but it is related to
the normalization of ¥ or ¥®) and has nothing to do
with the orthogonality relation or with the off-diagonal
matrix elements of f[¢,7].) We conclude that W{*'[¢]
constitutes a Hilbert space for each (s): to each different
(s) there corresponds a different Hilbert space.

The same conclusion can also be derived by the obser-
vation given in (4) below. We next have to clarify the
operators acting on each Hilbert space.

(4) For this purpose let us study the operators of class 1.
Since any fluctuation of the class-I operators disappears
and q;(z) obeys the deterministic equation (9), they lose
operator character and become c-numbers. For each
value of a;(¢) there is associated a Hilbert space since for
different a; the value of T" will be different. We note here
an important fact that the operator which is canonically
conjugate to the class-I operator is an extensive operator.
[For example, | d3x m(x) is conjugate to f d3x ¢(x)/V]
Since any extensive operator ceases to exist in the limit,
all the quantum degrees of freedom corresponding to class
I are lost. 1t is the class-II operators that operate in the
Hilbert space specified by the specific value of a;(¢). The
Hilbert space will change at every instant of time, even if
we are following the same trajectory of a;(¢).

Note that the Hilbert spaces with different trajectories
are entirely disconnected: In order to make a finite shift
to a; we need a momentum operator conjugate to 4;, but
it does not exist.

(5) The Hamiltonian of the system which determines
the infinitesimal time development does not exist in the
limit since it is an extensive variable. The usual unitary
operator describing the time evolution for finite time in-
terval cannot be defined accordingly: the time develop-
ment is not given by a unitary transformation. This can be
seen in another way: we have in the theory two kinds of
variables which show c-number time evolution (class-I
variables) and g-number unitary time development. In
such a case it is impossible to construct a unitary operator
which affects the time evolution of the whole system.
This resolves the unitarity problem and at the same time
violates the time reversal invariance—characteristic prop-
erty of the measuring process. It is also impossible to
construct an antiunitary operator to achieve the time in-
version.

It is interesting to note that the disappearance of the
Hamiltonian and the validity of the c-number equation of
motion (9) are ensured at the same time (i.e., V= o0).
This is a consistent trading of the equation of motion.

(6) We have to know how to calculate the time evolu-
tion of operators in each Hilbert space. The problem is
the same as, for example, the ferromagnetic case. There
are several familiar methods to develop the quantum
theory in the presence of c-number nonzero magnetization
density which belongs to class I. In our case it is more
convenient to evaluate Green’s function

Gr=(P(x1,11)h(Xp,15) * * * $(Xp,1,) ) s

in the Heisenberg representation, where the source term



V >, J;(8)A;(¢) is added to the Hamiltonian. As a func-
tion of J, G; is multivalued and when the limit J;(#)—0
(J;(¢)=—0aT[a]/da;(2)) is taken we have to select the
correct branch where the corresponding trajectory a;(t)
defines the relevant Hilbert space we are discussing. The
actual construction of the Green’s function can be per-
formed if the system is defined.

(7) An example can be given for the quantum mechan-
ics of an N-particle system of equal mass with N = oo.
Let the coordinates of each particle be X; (i =1—N) then
the center-of-mass coordinates X= 3V  x,/N is a
class-I operator and becomes the c-number X, when
N = . The canonically conjugate variable is the total
momentum P= 2?’=1Pi which is of the order N, and
when N = «o it does not exist as an operator in the Hilbert
space. Thus, the above variables are eliminated from the
quantum degrees of freedom. Instead the value x, defines
a Hilbert space where the relative coordinates and the rel-
ative momenta act as well-defined operators. They belong
to the class-II operators.

III. MEASUREMENT OF THE OBJECT

The measuring apparatus is a macroscopic system
which interacts with the object. The measurement is per-
formed by reading off the values of the macroscopic vari-
ables such as the position of the needle, the grain density,
or the current density, etc. They all correspond to the
operator involving the average over the region of macro-
scopic size (which is assumed to be infinite compared with
the atomic size), i.e., they belong to class I. The above
consideration comes from the unavoidable uncertainties
involved in the observation which is macroscopic in prin-
ciple. There is another important issue here—the class-I
operators have no fluctuation and hence lie on the same
level as the dynamical variables in Newtonian mechanics.
We recall here the standard two criteria of the measuring
theory.

|

35 MACROSCOPIC VARIABLES OF THE MACROSCOPIC SYSTEM . .. 11

(i) Let the eigenstate of the operator A, of the object be
| Ax ) with the eigenvalue A; and let the state of the total
system before interaction be

!\I’>=[§ckl7»k>]l¢>, (12)

where | Ay ) refers to the object and |) to the apparatus.
Then, after the interaction between the object and the ap-
paratus

W)= cr | M) ) =Sew | k), (13)
k k

where |y ) is the characteristic state of the apparatus
specific to k.

(ii) For different k and k', the phases of the states | k)
and |k’) are incoherent. In other words, there does not
exist any operator with a finite and nonzero matrix ele-
ment between | k) and | k).

We show in the following that in our case these are indeed
satisfied in a natural way. In order to observe A we first
choose the apparatus whose interaction with the object is
given by the interaction Hamiltonian H'[A,é,7] or the
interaction Lagrangian L[A,¢,4].

A macroscopic variable of the apparatus chosen in the
measuring process is written as 4 which belongs to class
I. It is actually c-number a (¢), and its equation of motion
is obtained by repeating the same arguments as before. In
Eq. (1) we have only to replace L—L +L7+L° where
LY is the Lagrangian of the object and v, [¢o]— | ¥) of

Eq. (12). The functional integrals include the integrals
over the degrees of freedom of the object. But for the mo-
ment we neglect them and assume as usual that the coeffi-
cients c;’s are given functions of ¢. This neglects some
quantum effects but will not be crucial for our discus-
sions. Then we have

(@19)=Z 0] 20 J 1d¢'lexp [f S ' LIG1+L 10, 6] | <o | ¥, [ddo]

For each k we get a different equation of motion for a(z),
OI'[Ag,a]/da(t)=0, so that there is unique correspon-
dence between k and the solution a;, and hence, the state
of the apparatus [criterion (i)]. There is an infinite phase
difference exp{iV(T'[Ay,ar]—TlAg,ar])} if ks#£k’, so
that there does not éxist any finite operator that connects
k and k' [criterion (ii)]. In the usual experiment the c-
number value a®(¢) of a(t) is recorded before the interac-
tion L' (which is ¢ independent usually). It selects one
Hilbert space associated with that a (z). After the interac-
tion a (2) is also measured to get a“(¢), and it is the differ-
ence a(t)—a®(t) that gives the information on Ag.
Whether a“(z) is clearly separated from a®(¢) or not de-
pends on the efficiency of the detector, and amplifying de-
vices are introduced which should be included in the
Hamiltonian of the apparatus.

The reason why a small number of degrees of freedom

[

(even one degree) can produce a macroscopic shift of the
apparatus is clear in our case: each contribution to the
phase from the individual degree of freedom of the ap-
paratus adds up to make the total phase stationary.

As an example, consider the measurement of the posi-
tion y of the charged particle. We take as A the grain
density operator 4, = f L P(x)d 3x /V, where the integra-
tion extends over the ma(éroscopic region V around x.

is _given by the Coulomb interaction
Li=—¢ fd3x |y—x| ~%c(x) where c(x) is the charge
density of the apparatus, y is the position of the object
particle, and e is the charge of the particle. Ay, will have
a c-number finite value near x,=y.

The arguments have been given above for the pure state
| 4) but they also hold if it is a mixed state.
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IV. EXAMPLES OF THE DETERMINISTIC
EQUATION OF THE CLASS-I1 VARIABLES

Finally, some examples of Eq. (9) are given within the
framework of the quantum mechanics of an N-particle
system. We derive in particular the equation of motion of
the center-of-mass coordinate of the macroscopic object
(with finite macroscopic extent in space). These are the
predictions of our theory which can, in principle, be test-
ed.

Let the N-particle system of mass m with the mutual
interaction potential V(x; —Xx;) be in the external poten-
tial W (x;) produced by the source at the origin. Denot-
ing the center of mass by X and the relative coordinate by
x’ the Lagrangian is given by

L=3 "x? v — 3 Wix,)
=3 541- 3 Vinos)- IWin
i i, i
(i >jj)
2_ 2 W(X+X;~)—Lrel ,
i

M,
2

where M =mN, and L™ refers to the relative coordinates
only. We assume here | X>> | x;| and expand W, using

21’ X;' =0’ as
S W(X+x})=NW(X)
i
+1 S @ /ax*axX xkx+ - -
ikl

This is inserted into the functional integral formula -
k= [ [ [dX][dx"lexp [i fL dt]
and perform the x} integration. We define
f [dx;1x/*x;"exp [i fLre‘dt]
f [dx;lexp [i fL’eldt]

where (X'?) is the mean-square radius of the system.
“Then

K= [ [dX]exp li f Leffdt],
where
Leff=—1‘54—;';2_NW(X>——1§-<X'2>AW(X>

and A=V2 For N— o we get a deterministic equation
of motion for X: '

M

75’(+NVW(X)+—16\1<X'2>VAW(X)=0 ) (14)

The quantum effects are continued in (X'?). In the ab-
sence of the external potential it reduces to X =0 which
has the same form as the Heisenberg equation of motion
X =(i/#)*[H,[H,X]]=0 but our equation is a c-number
equation and X does not show any quantum diffusion.

When we have two macroscopic bodies with particle
coordinates x; ({ =1—N) or y; (j =1—N’) and the poten-
tial V(x;—y;), we introduce the center-of-mass and rela-
tive coordinates of each body as x;=X+xj, y;=Y+y;.
Define Ry=X*Y and assume |R_|> |x;|,|y;].
Then we get two kinds of c-number equations in the limit
N,N'— o0,
R,=0,

(15)

uR_4+NN'VV(R_)

+A’6L((i'2)+(?'2))VAV(R_)=O ,

where u~!=(Nm)~!'4+(N'm)~! and ( ) is the average in
the relative coordinates of each body. Equation (15) may
represent the equation of motion of the system of two
large molecules or nuclei. The detailed discussions of Eq.
(14) or (15), including numerical estimates, will be given
in a separate paper.

V. DISCUSSIONS

We have seen that the essential ingredients that cause
the transition from the pure state to the mixed state is the
structure of the Hilbert space inherent in the macroscopic
system. More precisely it is the complete loss of the phase
coherence between the states with different values of the
macroscopic variables—the class-I intensive variables.
Note that they involve the averaging over the region of
macroscopic size. The entropy defined by the expectation
value of the negative of the logarithm of the density ma-
trix increases during this transition time Az which has
been estimated to be 1/7V in point (2) of Sec. II. When
V— oo the entropy change becomes discontinuous.

It seems that our measuring theory is a purely objective
one. The process of the observation is finally a subjective
event and the discussions should include the chain of sys-.
tems, object—apparatus—amplifying systems—our brain.
In order to complete our investigations we have only to
include the apparatus and all the macroscopic devices fol-
lowing the apparatus in our macroscopic system. Howev-
er, the reduction of the wave packet occurs definitely at
the first junction through the interaction between the ob-
ject and the apparatus. The role of the subsequent chain
of macroscopic systems is to transfer (or read off) the c-
number values of the macroscopic variables of the ap-
paratus to new values of the macroscopic variables of
another macroscopic system. The interaction between two
macroscopic systems is easily arranged in such a way that
the transcription from the first system to the second can
be performed without changing the state of the first sys-
tem. This part may be discussed on the classical level
since any class-I operator has no fluctuation and the
quantum effects on the c-number values will be negligibly
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small [see Eq. (14) or (15), for example]. We emphasize
again that in our theory the process of measurement is on
the same level as the Newtonian mechanics. It is clear
from the above observations that the reduction takes place
whether we look at the apparatus or not.
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