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Plasma maser theory for magnetized plasma

JANUARY 15, 1987

M. Nambu
College of General Education, Kyushu University, Ropponmatsu, Fukuoka 8IO, Japan

S. Bujarbarua and S. N. Sarma
Institute ofAdvanced Study in Science and Technology, Assam Science Society, Panbazar,

Gauhati 781 001, Assam, India
(Received 27 June 1984; revised manuscript received 15 September 1986)

The plasma maser theory of Langmuir waves produced from interaction between ion-wave tur-

bulence and electrons in magnetized plasma is presented. The most dominant destabilizing effect
comes from the polarization term. The instability occurs even for the Maxwell electron distribution
function. The importance of the magnetic field for the plasma maser theory is stressed.

I. INTRODUCTION

Since the prediction of the new mode-coupling pro-
cess' (plasma maser), there has been much controversy
about the process. ' Almost all previous studies except
Refs. 5 and 6 deal with unmagnetized plasma. The pur-
pose of this paper is to study the growth rate of the Lang-
muir wave in the presence of ion-wave turbulence for
magnetized plasma. The difference between unmagne-
tized and magnetized plasma is stressed. The most dom-
inant plasma maser effect for magnetized plasma comes
from the polarization mode-coupling term.

The effective dielectric constant of the Langmuir waves
in the presence of ion-wave turbulence is obtained in Sec.
II. The plasma maser effect of Langmuir waves by elec-
trons scattered by ion waves is investigated in Sec. III.
Discussions and conclusions are contained in Sec. IV.

fluctuations. We, therefore, take the unperturbed electron
distribution function Fp as

Foe =foe+ef le+~ f2e r
2 (3a}

Eol ——&EI ~ Bol =Bo (3b)

where E~ is the electric field of the ion acoustic wave. To
order e, we obtain, from Eq. (1),

a a e v&~o a+v. f„(r,v, t)
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where fo, is the space- and time-averaged part of the elec-
tron distribution function (Maxwellian) and f„and f2,
are the fluctuating parts due to the low-frequency-ion
acoustic fluctuations. e is the ordering of the low-
frequency turbulence.

The unperturbed electric and magnetic fields can be
written as

II. FORMULATION

We consider a homogeneous magnetized plasma in the
presence of an ion acoustic wave propagating along the
external magnetic field with wave vector k=(0, 0, k~~ ) (see
Fig. 1). The steady ion acoustic turbulence is driven up
by the relative drift between the ions. Accordingly, it is
safe to assume that the unperturbed electron distribution
function is the Maxwellian
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here J. and
~ ~

denote the components. perpendicular and
parallel to the magnetic field. The interaction of a test
Langmuir wave (or Bernstein mode) with the ion acoustic
waves in a plasma is governed by the Vlasov-Poisson
equations,
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a a e 1E+—vXB f, (r, v, t) =0, (1)
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V E(r, t}= 4vre f f, (r,—v, t)dv, (2)

where the notation is standard.
The plasma already contains low-frequency ion acoustic

FIG. 1. Geometry of model: K=(K&,O, E~~) is the propaga-
tion vector of the Langmuir wave and k=(0,0, k~~) is the propa-
gation vector for the ion acoustic wave. Bo is the external mag-
netic field in the z direction.
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Taking a transform of the form

2 (r, v, t) =g A (k, v, co)exp[i (k r t—pt)],
/

and Fourier-analyzing Eq. (4), we obtain b.E fp, ——0, (10)
m Bv
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where

eP= +v — v&(Bp.
Bt Br mc Bv

where iO+ represents the small imaginary part of co, and
co and k are the frequency and wave number of the ion-
wave fields.

We now perturb the steady state by a high-frequency
electrostatic (ES) test wave field p5Eh (p, «e). The total
perturbed electric field and magnetic field and the elec-
tron distribution function are given, respectively, by

In our detailed considerations, we will assume for mag-
netized plasma

ke )E(( )k((

and

6E=P5Eh +Pe5Eg, +Pe AE,

5B=O,

5f =p5ft, +t ~5', +i F-'~f

where 5EIh, hE are the modulation electric fields and
5flt„b,f are the electron distribution functions correspond-
ing to the modulation fields.

We now linearize the Vlasov equation (1) and obtain

(K'k)/iKf ski &1.
Instead of Eq. (11), DuBois and Pesme assume for un-
magnetized plasma

a a v+Bp
eE~(r, t)+ 5f (r, v, t)

a
Bv

e 8 25Eg(r, t)' (fp +ef ) +e' f2 ) =0 .
m Bv

To orders p, pe, and pe, we obtain from the above equa-
tion

P5ft, — 5Eh fp,
——0,e

m Bv

e 3 e
P5fth — EI 5'.— 5Eh f„

m Bv m Bv

Accordingly, both assumptions are not equivalent. In
comparing the results from both studies [Eq. (C3)], we
take Eq. (11) for Eq. (54) and Eq. (11') for Eq. (Cl),
respectively.

Making use of the above equations and the Poisson
equation, we obtain, after a lengthy but straightforward
calculation, the effective dielectric constant of the high-
frequency ES wave [Ei,(K,Q)] in the presence of the low-
frequency ion-wave turbulence. The result is

e
5Eth fp. =o

m Bv

sh(K, Q) =Ep(K, Q)+ed(K, Q)+Eq(K, Q),
(9)

where Ep(K, Q) is the linear part and is given by

(12)

ep(K, Q) = 1+
K

J„(Kjvi/Q, )
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sd(K, Q) is the direct mode-coupling term

ed(K, Q) =—
2 J,(ICivj /Q, ) g J, (Kivj /Q, )
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sz (K,Q ) gives the most dominant mode-coupling term (polarization term),
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Here, K=(K~,O, K~~) and K~~~
——

K~~
—k~~. J„J„J„arethe

Bessel functions, and co&, and Q, are the electron plasma
frequency and gyrofrequency, respectively. Note that Eq.
(12) agrees with Eq. (12) in Ref. 8 if we keep a =s =n =0
terms of Bessel functions and put Jo ——l. Accordingly,
Eq. (12) is an extension of the unmagnetized analysis into
the magnetized plasma.

sp(K, Q) = 1—
2 2

El( v~I+
2

where /3=K&T/mQ„Z is the plasma dispersion func-
tion, and Io is the modified Bessel function. For
Q/K~~V, &&1, Ep(K, Q) reduces to

III. PLASMA MASER OF LANGMUIR WAVES X exp( —P)IO(P) . (18)

JoJ K~~ fpedv;
(I II II

Ep(K, Q) =0=1+
K

here, fp, ——(I/2~T) exp[ —I'(Uj +"il)/2T]. Equation
(16) reduces to

Pl1+ exp( —P)IO(P)K T

X + Vl
]./2 0 Q

+I( +i(U~
(17)

There are two different modes in Eq. (13): the Lang-
muir wave (Q=co„,K

~ ~

/K) and the Bernstein mode
(Q=nQ, ). In the following, we mainly consider the
Langmuir wave [n =0 in Eq. (13)]. The magnetic field is
assumed to be strong, so that 0, ~ cuz, .

The linear dispersion relation of the Langmuir wave for
magnetized plasma reduces to

2

Accordingly, we obtain the linear dispersion relation of
Langmuir wave for magnetized plasma

Q = co&, [exp( —P)Io(P) ] '~

There are several competing processes which coexist
with the plasma maser effect. The range of validity of
wave numbers K and k are summarized in Appendix A.
Next, we calculate the growth rate of the Langmuir wave
through the plasma maser interaction. The growth rate
originates from two different processes: the direct-
coupling term [Eq. (14)] and the polarization term [Eq.
(15)]. We obtain the growth rate for these cases.

Case A. Grourth rate from the direct coupling term. W-e

keep the n =s =o =0 term in Eq. (14). Bearing in mind
the fact that the plasma maser effect comes from the con-
dition co=k~~U~~, Eq. (14) reduces to

sd(K, Q) =
2

e 2 1 a 1 a Ba g (E((k,co)
( —co —E (IUII

~
II co —

kl(U(I —l 0
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with

a = JQ EJ UJ 0 Q UJ 27TU j VJ (21)

Here fo, (u~~)=(m/2mT)' exp( —mv~~/2T) and

fo, (uq ) =(m/2n. T)exp( —muz/2T), respectively . The
Langmuir-wave resonances are not important for the plas-
ma maser effect. Partial integration of Eq. (20) then leads
to

ImZ = —~'"sgn(k„) (25)

where Im is the imaginary part of the relevant term and
sgn(k~~) is the usual signum function. The growth rate of
the Langmuir wave due to the direct mode-coupling pro-
cess (yd ) is

'2
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(22)

yd
———ImEd(K, Q) Reeo(K, Q);

here Re is the real part of the relevant term. From Eq.
(18), we get

2
' 2

a
Reeo(K, Q) = exp( —13)IO(P) . (18')
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In deriving Eq. (22), we have replaced (Q —
K~~v~~) by

0
Equation (22) can be written as

Inserting Eqs. (18') and (24) into Eq. (26), we obtain

)'a(K») 3a mm
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Z*
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(23)

where Z (z) is the plasma dispersion function, and e
denotes the complex conjugate. Under the small-
argument limit (co/k~~u, && 1), the imaginary part of Eq.
(23) becomes

Equation (27) is a slight modification of the previous re-
sult' obtained for unmagnetized plasma.

Case 8. Growth rate from the polarization term The.
dominant contribution for the Langmuir wave occurs
from the n =s =a =0 term in Eq. (15) which is justified
by the assumption Q, &coze. The neglected terms are
smaller by a factor (co&, /Q, ) . Equation (15) reduces to

2 - ~ 2

1/2
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E

4
cop, K(( fk(( ja 8; 2k,

(24)

here, 8",=[
j Et(k, co)

j
/4vrXT](k, /k) is the normalized

ion-wave energy and k, is the electron Debye wave num-
ber. In deriving Eq. (24), we have used the following rela-
tion:

e~(K, Q) =

with

)[2 co, (IC —k )K
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here,
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f ~ 1 8 a b 8+ . +k IIVII
—co+ l 0

(29)

00

b — Jo(ICJ vJ /Q, )fo, ( uq )2vruz du& ——exp( 13)IO(f3)—
It is instructive to rewrite Eq. (29) into
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with

a b aA= fpe(UII )dUII

D+E~
(AQ —XXV II)(Q —XIIVII)(kllvll —~+&0 )

(32)
X fpe(VII )dull

BU()
(39)

1 8 b aB = fpe(UII )dull0—
%~~ UI~ BU~~ Q) —kI~U~~ +P 0

Accordingly, Im[(A +B)(D+E)]=0 because A +B
~ (D+E)*; here, e represents the complex conjugate.
Thus, the imaginary part of Eq. (31) reduces to

(33)
ImS =ImB )& ReF+ImE g ReC . (40)

C= 1 8 a —b 8
fp, (vll )dvll,0—K()U)( BU)) 4B—+AU(( OUI(

a
X fpe(VII)dvII ~

BUii
(36)

1 B bD= fp, (vll)dvll,
vll ~v

(35)

1 8 b

AQ —~VII Bull kllull —+7+10

sgn(kll ),

and

In deriving Eq. (40), we have used the condition for the
plasma maser Im 3 = ImC = ImD =ImF =0.

Now, it is straightforward to show
1/2

m mm coImB = — s n(k„), (41)T 2T k
lI

ReF =
n4 (42)

1/2

ImE =—b(&ll —kll) m mar

~2k~i T M
(43)

a —b (a —b)XII(3KII —
kll )

ReC =
n4 (44)

(37)

where AQ=Q —co and AK =XII —kll. Now, it is easy to
show

2+Bo=
II
+

In obtaining Eqs. (41) and (43), we have used the condi-
tion for the plasma maser m =k IIVII. On substituting Eqs.
(41)—(44) into Eq. (40), we obtain

ImS =
A k(i

1/2

and

a
X fpe(V II )dVII

BU))
(38)

sgn(kll) . (45)

Thus, we get the imaginary part of the polarization term

COpe
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From Eq. (18), we obtain

ep(K —k, Q —co) = 1 —
~ 2
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I
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2 2 '2
~pe +]) 2& 2k~~ Kg

Ep(K —k, Q —co) =—
I
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In obtaining Eq. (48), we have used the linear dispersion
relation eo(K, Q)=0 [Eq. (18)]. Accordingly, under the
following conditions,

1/2
M &e ) 1
m K)) E

and (49)

Equation (48) reduces to

Mp~e(K—1 Q ~)= 0
2 2

Kj 2kit

JC K Kff

Xexp( —P)IO(f3) . (50)

To the lowes~ order in tl e small parameter k~, /
~

K ~, we
get

2

max[y~(K, Q)/yd(K, Q)] & 1 . (57)

Accordingly, we can conclude that the polarization term
gives the main destabilizing effect in the plasma maser
theory for magnetized plasma. Note that the contribution
from the polarization term [Eq. (54)] vanishes for unmag-
netized plasma because b =a. Unfortunately, both the re-
cent erratum' for Ref. 8 and Eq. (35) in Ref. 4 over-
looked this point. Accordingly, we can conclude that the
most dominant destabilizing plasma maser effect
originates from the polarization mode-coupling term for
the magnetized plasma (for details, see Appendix B).

In this paper, we have considered only the Langmuir
waves (n =0) in Eq. (13). By the same method, we can
study the generation of the ES Bernstein mode [Q-nQ,
in Eq. (13)] through the plasma maser effect. It is easy to
show that the most dominant destabilizing term for the
Bernstein mode comes also from the polarization term
[Eq. (15)]. We have assumed a steady ion-wave tur-
bulence throughout this paper. For a growing ion-wave
fluctuation, an additional damping term is pointed out
(for details, see Sec. IV and Appendix C).

il

/K —k/z
(51)

IV. DISCUSSION AND CONCLUSIONSOn substituting Eqs. (50) and (51) into Eq. (46), we obtain
4 1/2

~pe 3(a b) vrm—
ImE&(K, Q) =

x+&,
k,

(52)

In obtaining Eq. (52), we have used Eq. (30).
The growth rate of the Langmuir wave due to the. po-

larization term (yz) is

yz ———ImE~(K, Q) ReEO(K, Q) .
BQ

(53)

Using Eqs. (18').and (52), we get
r
' ~m, (b —a)—

COpe M

1/2

[exp( —P)Io(13)]

L
X g rv,

k,

For k, ~XII -(M/m)'~~, Eq. (49) gives

)(K/Xi) & 1 .
Vl

(56)

Furthermore, by definition, b &a. Thus, the maximum
value of Eq. (55) reduces to

Note that b )a by definition [Eqs. (21) and (30)]. Thus,
y&(K, Q) &0 even for the Maxwell distribution function
of electrons.

It is straightforward to compare the magnitudes of the
two growth rates, Eqs. (27) and (54):

yq(K, Q) (b g)
(55)yd(KQ) 2a I&i

There is some experimental evidence which shows the
energy up-conversion from low-frequency ion density
fluctuations to high-frequency Langmuir waves. In the
presence of a coherent low-frequency ion-wave pump
field, the turbulent electrostatic bursts with frequency co~,
were observed in laboratory experiments. "' The similar
experimental results were reported earlier. ' The high-
frequency Langmuir waves are also observed in a Z-pinch
plasma. ' In space plasma physics, the Langmuir-wave
emissions are modulated by the low-frequency ion density
fluctuations. ' In all of the above experiments, the ampli-
tudes of the low-frequency waves are much larger than
those of the high-frequency Langmuir waves. It is, hence,
tempting to assume that the Langmuir emissions are
modulated by the low-frequency turbulences through the
plasma maser effect considered in this paper.

Here, we comment on the relation between the plasma
maser effect and clumps' in plasma turbulence. The
plasma maser effect comes from the resonant electrons
The resonant electrons are known to form clumps in
phase space. Accordingly, the plasma maser effect may
belong to the clumps effect in plasma.

In almost all previous studies, the steady turbulent state
of ion acoustic waves is assumed. Accordingly, the calcu-
lation does not permit the background electron distribu-
tion to evolve by plateau formation hence, the energy
transferred from the ion acoustic waves by resonant in-
teraction must go into unstable Langmuir waves. This
raises the question of the behavior of the system when the
ion acoustic turbulence and background electron distribu-
tion function are not fixed by external agents, but are free
to evolve self-consistently. As an answer to the above
question, there' are now two papers (for details, see Nam-
bu' and Isakov et al. ' ). The first one' writes the induc-
tion [D(x, t)] in the form
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x t
D(x, t) = f dx' f dt'sz(x x—', t t—', (t +t')/2)

&& 5E„(x',t'), (58)

and obtains the growth rate of the Langmuir wave in the
presence of the nonsteady ion acoustic wave turbulence as
follows:

y(K, Q(t), t)

Thus, the growth rate of the Langmuir wave obtained in
this paper is basically valid even if we permit the back-
ground electron distribution to evolve the plateau forma-
tion. ' The second one' assumes the induction in the
form

x t
D(x, t)= f dx' f dt'eg(x x', t ——t', t')5Ep, (x', t') .

a= —Imet, (K,0(t), t ) Redo(K, Q(t), t ) .
BQ t

(59) Then, they obtain the growth rate

a",(K,n(t), t )
y(K, Q(t), t) = —

Immit, (K,A(t), t)+ Redo(K, Q(t), t ) .
BA t

(61)

If we substitute Eqs. (16), (24), and (52) into Eq. (61), we
get

y(K7II(t)pt) 3
( /M)j/2[ ( p)I (/3)]

—3/2

most dominant destabilizing plasma maser effect comes
from the polarization mode-coupling term [Eq. (54)]. The
growth of the Langmuir wave occurs even for the
Maxwell distribution function of electrons.

xg~,
k,

X [a b+(b ——a)/2(K/X~ )'] .

(62)
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Equation (62) vanishes for unmagnetized plasma (b =a).
For magnetized plasma (b &a), the growth rate vanishes
only for Kj IC ~~. According——ly, we can safely say that the
up-conversion from the ion-sound waves to the Langmuir
wave occurs for magnetized plasma even for the nonsta-
tionary background electron distribution function due to
plateau formation.

Here, we clarify the physical mechanism of the plas-
ma maser instability. A system contains both the low-
frequency resonant field (Et ) and the high-frequency non-
resonant field (5Et, ). A nonresonant field 5Et, causes par-
ticles to oscillate with a frequency Q* different from the
field frequency Q because of the Doppler effect, i.e.,
Q*=Q —KU. It is common to assume that a high-
frequency nonresonant field on the average performs no
work. This assumption is correct only if we are talking
about the average work over the period. However, when
there is a resonant field E~, the average must be calculated
slightly more accurately. The electrons experience the ac-
celeration or deceleration due to the resonant interaction
with the low-frequency resonant field. Thus, the period
2m/0* increases or decreases due to the Doppler effect.
Accordingly, electrons can exchange energy also with the
high-frequency nonresonant field in addition to the low-
frequency resonant field. In other words, the modulation
fields cause high-frequency dissipative nonlinear forces,
which is the origin of the plasma maser instability.

In conclusion, we have obtained the effective dielectric
constant of the Langmuir wave in the presence of the
ion-wave turbulence for magnetized plasma. The analysis
predicts that, in contrast to the unmagnetized plasma, the

APPENDIX A

kii &k, . (Al)

The second one is the resonant decay interaction. The
conditions are Q(K)+co(k) =0'(K') and K+k=K'. The
three-wave decay instability is kinematically possible
under the conditions

co~, [exp( /3)Io(P)]'/—

=co~, , [exp( p)IO(p)]'/ +k~~c—, , (A2)

+ii+kil ~

Ej ——Lg

(A3)

(A4)

In deriving Eq. (A2), we use Eq. (19) and co=k~~c, .
Furthermore, to identify the plasma wave as the high-
frequency mode, the following condition is necessary:

There are two competing processes which potentially
give the same order contribution as that of the plasma
maser. The first one is the nonlinear Landau resonance. '

The condition is Q(K)+co(k)=(K+k) v. This gives the
resonance velocity u~~ -0/(IC~~+k~~)-co&, /(K~~+k~~) for
Q))co. Accordingly, for Kii &k, and kii &k„ the reso-
nance velocity is much larger than the electron thermal
velocity (u~~ &&u, ). Thus, we can rule out the nonlinear
Landau interaction under the condition
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' [exp( P—)I,(P)]'"&~r, . (A5)
We assume that the above conditions are satisfied
throughout this paper.

Here, co&, is the ion plasma frequency. If we substitute
Eqs. (A3) and (A4) into (A2), and assume k, &X~~ &k~~,
we get

APPENDIX B

According to Eq. (4) in Ref. 4, the polarization mode-
coupling term [sz(K,Q)] for the unmagnetized plasma
reduces to

K=ke(M/m)'~ [exp( —P)Io(P)]'~~ . (A6) 2

Equation (A6) with k, &K~~ does not coexist with the
necessary condition, Eq. (A5). Thus, we can conclude
that, at least for k, & K~~ & k~~ considered in this paper, we
can rule out the two competing processes: nonlinear Lan-
dau resonance and the resonant three-wave decay process.

4me
e~(K,Q)=g

X(& +&)(C+D),

with

eo(K —k, Q —co)

(81)

A = dv (K—k). k fo,
1 a 1 a

Q —K v Bv co k—v+i 0+ Bv
(82)

k. (K—k) fo,
a 1

Bv Q —co —(K—k) v Bv
(83)

C=f dv k K fo.Q —cg —(K—k) v Bv Q —Kv Bv
(84)

D= dv K k. fo,
1 1

(85)
Q —co —(K.—k) v Bv k v co+—i 0+

where
~
p(k, co)

~

is the turbulent potential fluctuation of the ion waves. eo(K —k, Q —co) is the linear dielectric function
of the electrostatic waves. K,Q and k, N are the wave number and the frequency of the Langmuir and ion-wave fields.
The + i 0+ in the denominator of Eqs. (82) and (85) is the small imaginary part.

It is instructive to rewrite the polarization term into

(A +B)(C+D)=(a +c)(b +d),
where

a= f dv (K—k).1 8 1 1+
co —k.v+i 0+ Q —~—(K—k) v

ak fo,
Bv

(87)

b= dv
1 K.

Q —e—(K—k) v Bv

1 1+k.v —co+i 0+
ak fo,

c=J dv
1 k. (K—k) fo, —(K—k), k. fo,

a 1 1 8
Bv Q —co —(K—k) v Bv

' Bv' Q —co —(K—k) v Bv
(89)

d=f dv
1

Q —co —(K—k) v

r

k
c) 1 K ~f —K 8 1

k Bf
Bv Q —K v Bv ' Bv Q —K.v Bv

(810)

Now, it is easy to show that a = —b *; here
represents the complex conjugate. Thus, Imab =0; here
Im stands for the imaginary part. Accordingly, the imag-
inary part of the polarization term comes from
Im( ad +bc) = Ima X Red + Imb X Rec =Ima XRe(d +c);
here Re shows the real part. After a straightforward cal-
culation, we get

[k IC (k.K)~]fo, —
Rec = —Red= f dv

(Q —K.v) [Q—e —(K—k) v]
(811)

l

Thus, Im(ad +bc) =0 exactly for the unmagnetized plas-
ma. Accordingly, Eq. (35) in Ref. 4 vanishes identically
for the unmagnetized plasma.

APPENDIX C

DuBois and Pesme consider the nonresonant
parametric interaction caused by the nonsteady ion-sound
turbulence. They obtain an additional damping term
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5y (K,Q) —1 e vk (kK)k,
d'kIk

fit K cope pe

(Cl)

Next, the ratio of the two growth rates reduces to

~5yNa(K, Q)
~

1 k* k. m vk

y&(K Q Bp+0) 10 K k M
(C3)

where Ik and vk are the ion-sound spectrum and the ion-
sound growth rate, respectively. Accordingly, the growth
rate of the Langmuir waves in the presence of the ion-
sound turbulences is written as a sum of three terms:

y(K, Q) =y7'w(K, Q)+y~(K, Q,Bp~0)+5yNR(K, Q),
(C2)

where y~s (K,Q) is obtained in Ref. 1, yz(K, Q,Bp&0) is
Eq. (54) in this paper, and 5y (K,Q) is given by Eq.
(Cl).

where m and M are masses for the electron and the ion.
k, , k„and v' are defined in Ref. 4. The ion-sound
growth rate vk cclm(e'k+Ek); here Ek and Ek are the
linear and nonlinear dielectric functions for the ion-sound
wave. Accordingly, for steady ion-sound turbulences,
vk ——0 and the damping term 5y vanishes. Further-
more, if we assume a quasisteady ion-sound turbulence,
Eq. (C3) is smaller than unity because vk «v'. Thus,
5y gives an additional secondary damping effect for the
plasma maser.
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