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Morriss and Evans recently developed a generalization of the Green-Kubo relations which is valid
for nonequilibrium steady states far from equilibrium. This formalism relates the nonequilibrium
response to transient time correlation functions which connect the nonequilibrium steady state to the
equilibrium state. In the linear regime, the transient time correlation functions reduce to simple
equilibrium Green-Kubo relations. The transient time correlation function method thus provides a
long-sought-after fundamental relation between nonequilibrium molecular dynamics algorithms and
the Green-Kubo formalism which is only valid close to equilibrium. In this paper we demonstrate
the use of the transient time correlation function formalism for isothermal planar Couette flow.
The results show that the nonlinear steady-state response can be calculated by integrating the ap-
propriate transient response time correlation function. In particular, the nonlinear shear stress and
pressure calculated in this way agree with the values calculated directly.

I. INTRODUCTION

The Green-Kubo relations' are fundamental to our
understanding of linear transport processes close to equili-
brium. For linear transport they play a role analogous to
that played by the partition function in equilibrium sta-
tistical mechanics. Like the partition function, G-reen-
Kubo relations are highly nontrivial to evaluate. They do
however provide an exact starting point for approximate
theoretical treatments. They can also be evaluated direct-
ly in equilibrium molecular dynamics simulatioris. More
recently they have been used to develop efficient none-
quilibrium molecular dynamics algorithms for the calcu-
lation of linear transport coefficients. A major limitation
for nonequilibrium statistical mechanics has been the lack
of a corresponding theoretical basis for nonlinear trans-
port processes far from equilibrium. This has not been
for the lack of trying. However, essentially all previous
attempts have either resulted in incorrect expressions for
nonlinear transport, or have led to expressions which al-
though formally exact, are nonetheless very difficult to
analyze and interpret.

In 1979 Dufty and Lindenfeld developed a readily in-
terpretable expression for the nonlinear response which
took the form of an integral of a time correlation func-
tion. Unlike the Green-Kubo expressions, this correlation
function involved correlating the fluctuations of micro-
scopic quantities in the initial equilibrium (or local equili-
brium) state with the corresponding values of these quan-
tities during the establishment of the nonequilibrium state
(the transient response). This transient correlation func-
tion can be constructed from an ensemble of trajectories,
which at the initial time are equilibrium states, but are
then propagated forward in time with a field-dependent
propagator. Unfortunately the Dufty-Lindenfeld tran-
sient correlation functions can easily be seen to diverge.
This is because in the absence of a thermostat, there can
be no steady state. The thermodynamic properties of the

system continue to change in time.
Recently Evans, Morriss, and Holian have made major

improvements in our understanding of the thermostatted
behavior of nonequilibrium systems. These developments
have their origins in the formulation by Hoover and
Evans ' of the so-called Gaussian thermostat. This ther-
mostat is implemented by a change in the equations of
motion of 1V-particle systems so that the heat produced ir-
reversibly in nonequilibrium systems is continuously and
instantaneously removed. Although the original formula-
tion of the thermostat was ad hoc, its validity as a means
of studying nonequilibrium steady states has since been
established. Evans and Morriss derived the equilibrium
X-particle distribution function for an isolated system
evolving under Gaussian isokinetic equations of motion.
They proved that in the thermodynamic limit, equilibrium
time correlation functions computed under Gaussian
dynamics, are the same as the corresponding correlation
functions computed under Newton's equations of motion.
Later it was verified that if one computes the linear
response of Gaussian thermostatted systems to an external
field, one does indeed find that the susceptibility is
governed by an equilibrium time correlation function of
Green-Kubo form but with time propagation generated by
the field-free Gaussian isokinetic propagator. This, com-
bined with the earlier result showing the equivalence of
Gaussian and Newtonian equilibrium time correlation
functions, shows that to linear order in the external field
the adiabatic and thermostatted responses are identical. '

A corresponding series of results ' have been-derived for
the Nose-Hoover thermostat. "

In this paper we give a simplified derivation of the
transient correlation function expressions for the thermo-
statted nonlinear response of X-particle systems to planar
Couette flow. We also show how the transient time corre-
lation formalism is related to the isothermal generaliza-
tion, of Kawasaki's expression' for the nonlinear
response. We test the validity of the transient correlation
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theory by using nonequilibrium molecular dynamics
(NEMD) simulations of planar Couette flow, far from
equilibrium.

equivalence of the Schrodinger and Heisenberg representa-
tions. ' For time in-dependent external fields, differentiat-
ing the Heisenberg form with respect to time we obtain

II. TRANSIENT CORRELATION FUNCTIONS
FOR PLANAR COUETTE FLOW

It is well known' ' that the equations of motion for an
X-body system undergoing planar Couette flow can be
written as,

q; =p;/m+n„yy;,

pi =Fi —&x'YES —pi ~

where n is the unit vector in the x direction, y is the
strain rate, and p; is the momentum of particle i mea-
sured in a coordinate frame moving at the streaming velo-
city yy;. The term exp; is the Gaussian thermostat. When
o, is chosen to be

g (Ft 'pi' —'Ypx~ p«r)'
(2)

ps

the peculiar kinetic energy is a constant of the motion. If
we take the peculiar kinetic energy per degree of freedom
as a measure of the temperature, then the Gaussian ther-
mostat maintains the system at a constant temperature.
The transformation in (1) of the boundary condition
which drives planar Couette flow, into the form of an
external mechanical perturbation, is achieved by writing
the equations of motion in terms of the peculiar momenta
p;. ' ' These equations (1), are known as the Sllod equa-
tions of motion for shear flow. '

Isothermal response theory shows that the adiabatic
rate of change of the internal energy Ho ——X(p;/2m +4'),
plays an essential role in determining the thermostatted
response. The adiabatic derivative of the internal energy
dHO/dt is usually written as JI', where J—is the dissipa-
tive flux and I', is the external field. Strictly speaking
this is only true when AII (Refs. 8 and 9) is satisfied.
AII is satisfied by all the commonly used NEMD algo-
rithms including the Sllod equations of motion for
Couette flow. If AII is not satisfied, the form of the
response equations is modified somewhat. For planar
Couette flow J is easily seen to be the shear stress P„„
times the system volume V:

d(8 (t) ) M(t)

In deriving Eq. (5) we have used the result that
dB(t)/dt =iL exp(iLt)8=exp(iLt)iLB. This is only true
if the external field is time independent since in that cir-
cumstance the Liouvillean iL„contains no explicit time
dependence, and hence commutes with its associated
propagator. Integrating (5) by parts we see that,

= —f drB(t) rf(o) .
dt BI

(6)

The boundary term vanishes because the distribution
function f(0), approaches zero as the magnitudes of the
momenta become infinite, and f(0) can be taken to be
periodic with respect to the coordinates. We are explicitly
using the simulation periodic boundary conditions in the
derivation.

Integrating (6) with respect to time we see that the non-
linear nonequilibrium response can be written as,

(B(t)) = (8(0) ) —f 'as f sr 8 (s) rf (O) .

The dynamics implicit in 8 (s) is of course driven by the
full field-dependent, thermostatted equations of motion.
For a system subject to the thermostatted shearing defor-
mation, I is given by Eqs. (1) and (2). If f(0) is the
Gaussian isokinetic or the canonical distribution func-
tion it is straightforward to show that (8/Bl ) [If (0)]
is PVP„„f(0). Thus (8(t)) becomes,

( 8 (t) ) = (8 (0) ) —py V f ds (8 (s)P«(0) ) . (8)

This expression relates the nonequilibrium value of a
phase variable B at time t, to the integral of a transient
time correlation function (the correlation between P„« in
the equilibrium starting state, P„«(0), and 8 at time s
after the field is turned on). The time-zero value of the
transient correlation function is an equilibrium property
of the system. For example, if B =P~„, then the time-
zero value is (P «(0)). Under some, but by no means all
circumstances, the values of B(s) and P„«(0) will become
uncorrelated at large times. If this is the case, the system
is said to exhibit mixing. The transient correlation func-
tion will then approach (8 (r) ) (P~«(0) ), which is zero be-
cause (P~«(0)) =0. For systems that exhibit mixing, Eq.
(8) can therefore be rewritten as,

(8(t))=(8(0))—pyv f 'ds(bB(s)P„(0)), (9)Consider a canonical ensemble (or isothermal ensem-
ble ' ) of systems suddenly subject to a constant shearing
deformation at t =0. The 2V-particle distribution func-
tion at some later time r is f(r, t), where I denotes the
6X-dimensional position of the system in phase space
I =(q, p)=(x, y, z, p„,p«, p, ). (Each of the components
x,y, z, p„,p„,p, is itself an N-dimensional vector. ) The
average value of a phase variable 8 (I ) at time t is,

(B(t))=f drB(I )f(t)= f drf(0)8(r;t), (4)

where,

&8(s)=8(s)—(8(s)) .

The adiabatic systems treated by Dufty and Lindenfeld
cannot exhibit mixing because in the absence of a ther-
mostat d(8(t))ldt does not go to zero at large times.
Thus the integral of the associated transient correlation
function cannot converge. Other systems which are not
expected to exhibit mixing are turbulent systems or sys-where the second equality is a consequence of the

Ho = JF, = —yg —" "' +y;F„= yP„«V . —
rn
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tems which execute quasiperiodic oscillations.
The derivation of our fundamental Eq. (8), is simpler

than that given in Ref. 8. In that paper equation (8) was
derived from the Kawasaki form of the nonequilibrium
distribution functjon. The derivation depended upon a
lemma which gives an exact relationship between distribu-
tion function propagators and their adjoints, phase vari-
able propagators. It is also interesting to note that the
present derivation is given in the Heisenberg picture rath-
er than the customary Schrodinger picture. '

We can use recursive substitution to derive the
Kawasaki form for the nonlinear response from our tran-
sient time correlation formula, Eq. (8). The fact that we
can derive the transient and Kawasaki forms of response
theory from each other shows the fundamental
equivalence of both representations. The first step in the
derivation of the Kawasaki representation is to rewrite the
transient correlation relation using iI.- to denote the phase
variable Liouvillean, and —i W to denote its non-
Hermitean adjoint, the distribution function Liouvillean.
Thus dB/dt =iLB and df/dt—: i Wf. U—sing this nota-
tion Eq. (8) can be written as,

(B(t))= f drBf(0)

P—yV f ds f dI f(0)e' 'Be 'L'J (10)

= f dI Bf(0)
—13yV f ds f dI [e ' 'f(0)]Be '~'J .

Equation (11) can be written more simply as,

(B(t)) = f dI Bf(0)

—Pyv f ds f dI B(0)J( s)f(s—). (12)

We can now successively substitute the transient correla-
tion function expression for the nonequilibrium distribu-
tion function namely,

f(t)=f(0) PyV f ds—J( s)f(s)—
into the right-hand side of (12). This gives,

(B(t))= f dI Bf(0) PyV f d—s, f dI B(0)J(—s, )f(0)

+(PyV) f ds, f ds f dI B(0)J(—s, )J( —s )f(0)+. . .

= f dI B(0)exp —Py V f ds J(—s) f (0) .

(14)

This is precisely the isothermal Kawasaki form of the
nonlinear response. ' Comparing the transient time
correlation expression for the nonlinear response with the
Kawasaki representation, we see that the difference sim-
ply amounts to a time shift. In the transient time correla-
tion form it is the dissipative flux J, which is evaluated at
time zero, whereas in the Kawasaki form the response
variable B, is evaluated at time zero. For equilibrium or
steady-state time correlation functions the stationarity of
averages means that such time shifts are essentially trivial.
For transient response correlation functions there is of
course no such invariance principle, consequently the time
translation transformation is accordingly more complex.

The evaluation of the time-dependent response using
the Kawasaki form directly, Eq. (14), is numerically un-
stable. The inevitable errors associated with the inaccura-
cy of the trajectory, as well as those associated with the fi-
nite grid size in the calculation of the integral itself, com-
bine and are magnified by the exponential. This exponen-
tial is then multiplied by the phase variable B(0), before
the ensemble average is performed. In contrast the calcu-
lation of the response using the transient correlation ex-
pression, Eq. (9), is, as we shall see, far more stable.

It is trivial to see that in the linear regime the transient
correlation function expression for the system response
reduces to the usual Green-Kubo expression. The Green-
Kubo expression for the linear response is identical in
form to the corresponding transient correlation relation
except that the time evolution in the second term on the
right-hand side of (8) is governed by the field-free ther-

mostatted propagator in the linear case and by the ther-
mostatted field-dependent propagator in the nonlinear re-
gime. The Green-Kubo correlation function is an equili-
brium correlation function. We know ' that in the ther-
modynamic limit there is no difference between the ther-
mostatted equilibrium time correlation function and the
corresponding Newtonian or adiabatic correlation func-
tion.

The coincidence at small fields of the Green-Kubo and
transient correlation formulas means that unlike direct
NEMD, the transient correlation method can be used at
small fields. This is impossible for direct NEMD because
in the small-field limit the signal-to-noise ratio goes to
zero. The signal-to-noise ratio for the transient correla-
tion function becomes equal to that for the equilibrium
Green-Kubo method —a small, but nonzero number.
Thus at small fields the efficiency of the transient correla-
tion method is comparable to that of Green-Kubo. The
transient correlation function method forms a bridge be-
tween the Green-Kubo method which can only be used at
equilibrium, and direct NEMD which is the most efficient
strong-field method.

It is also easy to see that at short times there is no
difference between the linear and ' nonlinear stress
response. It takes time for the nonlinearities to develop.
The way to see this is to expand the transient time corre-
lation function in a power series in yt. The first term in
this series for the response of the shear stress is just
V(I'„z ) /kT, the infinite frequency shear modulus, G
Since this is an equilibrium property its value is unaffect-
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'ed by the strain rate and is thus the same in both the
linear and nonlinear cases. If we look at the response of a
quantity like the pressure whose linear response is zero,
the leading term in the short-time expansion is nonlinear
in the strain rate and in. time. The linear response of
course is the first to appear.

III. PHASE-SPACE MAPPINGS

In this paper we use nonequilibrium molecular dynam-
ics of shear flow in simple fluids to illustrate the transient
correlation function formalism. The initial ensemble of
starting states was generated from a single field-free
Gaussian isokinetic trajectory. At equally spaced inter-
vals along this single field-free trajectory, shearing simula-
tions were started and followed for approximately 200
time steps. The response calculated from the integral of
the transient correlation functions was compared with the
direct response computed by averaging (B(t)). In prac-
tice the calculation proceeded by performing an equilibri-
um isokinetic molecular dynamics simulation for X, time
steps followed by a nonequilibrium run of X„ time steps.
Each of these cycles gives one initial phase I, for the
transient correlation function. The number N„should be
greater than the characteristic time required for the sys-
tem to relax to a steady state. X, is chosen to ensure that
the initial phases are sufficiently uncorrelated. Here we
used X,=X„=200. This process can be made more effi-
cient if we use the equilibrium starting state generated by
X, time steps, to provide more than one initial phase for
the nonequilibrium trajectories.

We note that given an initial starting phase
I

&

——(x,y, px, py) then new starting phases, which occur
within the equilibrium distribution with the same proba-
bility as the I ~, can be obtained using the following map-
pings:

I 2
——( —x, —y, p, py),

~3 ( x&y~ Px~py ) ~

I 4=(»y~px~ —py)

These three new configurations, along with the original
one, give four different starting states and four different
shearing trajectories from the single equilibrium. run of
X, time steps. Each of the mappings consists of a pair of
reflections in a coordinate or momentum axis. The map-
ping which produces I"2 for example, is obtained by re-
flecting in both the x and y axes. The resulting particle
configurations are then imaged by the usual periodic
boundary conditions. The overall effect of this mapping
is to rotate the simulation cell through 180. In total there
are 2 states that can be obtained using the reflections of a
two-dimensional phase space; however, only 2 of these
states will result in at most a sign change in the shear
stress. Only 2 of the remaining mappings lead to dif'-

ferent shearing trajectories. The shearing trajectories ob-
tained from I; and —I; are identical. The probability of
each of these states occurring within the equilibrium dis-
tribution of states, is identical because the Hamiltonian
Hp is invariant under these reflections and inversions ofI.

IV. NUMERICAL RESULTS

To test the validity of the transient correlation function
formalism we carried out a series of molecular dynamics
simulations of shear flow in two and three dimensions.
We used a second-order Runge-Kutta method to integrate
the equations of motion with a time step of 0.005t in
two dimensions, and 0.004 t * in three dimensions
[t*= t(o (m /e)' ) ']. The Runge-II utta method was
used rather than the more common Gear or leap-frog al-
gorithms because unlike the latter, the Runge-Kutta
method is self-starting. Since we are interested in the
transient response we need to be able to calculate the sys-
tem trajectories from a specified initial phase. The Gear
and leap-frog algorithms only achieve accuracy after an
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FIG. 1. The direct (D) and transient time correlation func-
tion {T) results for the shear stress in two dimensions at
y*=0.1, 0.5, and 1.0. A typical error bar is included on the
y*=1 transient time correlation function result at t*=1. For
comparison we include (GK) the, Green-Kubo equilibrium esti-
mate for the response PyV f ds—(P„«(s)P„«(0)) evaluated at
y*=0.5 and 1.0.

There is a second, more important, advantage of this
procedure. If we examine the transient response formula
(8), we see that at long time the correlation function be-
comes —(B(ao))(P «(0)). The steady-state average of
8 is usually nonzero. This is not the case for equilibrium
time correlation functions. To minimize the statistical
uncertainties in calculating the transient correlation in-
tegral, it is convenient to evaluate (P„y(0)) in a con-
strained ensemble in which Q,Pxy(I. ;) is identically zero.
The phase mapping procedure described above achieves
this. If the shear stress, computed from the original start-
ing phase is P„y(I &), then the shear stress of I 2 is also
equal to P y(I ~), but the shear stresses of both I 3 and I'4
are equal to —P„y(I &). This means that the sum of the
shear stresses of these four starting phases is exactly zero.
The statistical difficulties at long time, associated with a
small nonzero value the average of P „(0),are eliminated.
These mappings can be trivially generalized to three di-
mensions, and as the z coordinate does not appear in I'„~
we obtain the same four starting phases and precisely the
same advantage is gained.



796 GARY P. MORRISS AND DENIS J. EVANS 35

initial startup period and are therefore unsuitable for cal-
culating transient responses.

In each simulation the direct average of the shear stress,
pressure, normal stress difference, and thermostatic multi-
plier a, were calculated along with their associated tran-
sient correlation functions using typically 2000—3000
starting states. In Fig. 1 we present the results obtained
for the shear stress P~~=P «(o /e) in two dimensions.
The two-dimensional simulations used a system of 896
soft disks [/=4'(o lr)' ], at a density of p* =pa
=0.9238, a temperature, T*=kT/@= 1, and a range of
values of the strain rate, y*=y(m/e)'~ o. The potential
was truncated at r*=(r/cr) =1.5. The values of the shear
stress calculated from the transient correlation function
expression agree within error bars, with those calculated
directly. The errors associated with the direct average are
less than the width of the lines on the graph, whereas the
error in the integral of the transient correlation function is
approximately 15%.

The curves labeled GK give the linear response, as cal-
culated from the Green-Kubo relations. The GK curves
thus give the response of a hypothetical Newtonian fluid
whose thermophysical properties exactly match the ther-
modynamic and linear transport properties of this soft
disk fluid. The reduced zero shear rate shear viscosity,
g*=rio (me) '~, at this state point is 3.8. When the
time integration is truncated at t*=1, the Green-Kubo
estimate is 3.7+0.2. The statistical uncertainties of
Green-Kubo and transient correlation calculations of
equivalent length are similar. Both are substantially less
accurate, at these strain rates, than direct NEMD calcula-
tions. At a reduced strain rate of one we see that the
steady-state shear stress is reduced to approximately two
thirds of the value it would have if the fluid was com-
pletely Newtonian. This is reflected in both the direct
NEMD results and in the response predicted by the tran-
sient time correlation functions. They are in good statisti-
cal agreement. It is also clear that this fluid exhibits
stress overshoot, a well-known property of non-Newtonian
fluids. Stress overshoot is apparent both in the direct
NEMD results and in the transient time correlation func-

tion predictions for y* of 0.5 and 1.
At the lower shear rate, y*=0.1, the response is closer

to the linear prediction given by the Green-Kubo relations
and there is no evidence of stress overshoot. Indeed the
linear response is indistinguishable from the transient
correlation function result. The presence of stress
overshoot indicates that for y & -0.1, the transient time
correlation function, the derivative of the response, is neg-
ative at long times. This has never been observed in the
equilibrium stress autocorrelation function.

The shear-induced increase of pressure with increasing
strain rate is known as shear dilatancy. It is an intrinsi-
cally nonlinear effect and is not observed in Newtonian
fluids nor is it predicted by the linear Green-Kubo theory.
In Fig. 2 we present the direct and transient correlation
function values of the difference between the pressure
p*=p(cr /E) and its equilibrium value (bp"=p* —po).
The Green-Kubo predictions are of course zero because
the equilibrium correlation function, (, bp(t)P„&(0)) is ex-
actly zero at all times. The agreement between the direct
average, and the value obtained from the transient correla-
tion function expression at y =0.5 and 1.0 is impressive.
At y' =0.1, we are in the turnover regime' where shear
dilatancy has all but vanished. It is important to note
that the agreement between theory and simulation shown
in Fig. 2, is a test of the predictions. of the theory for an
entirely nonlinear effect. It is a more convincing check on
the validity of the transient correlation formalism than
are the results for the shear stress because there is no
underlying linear effect.

The three-dimensional simulation was performed for
the Lennard- Jones fluid (P =4m[( o /r) ' (o /r ) ]), at its-
triple point (p* =0.8442, T' =0.722). The simulations
employed 108 atoms and a potential cutoff at i =2.5o.
The results are presented in Fig. 3. The agreement be-
tween the direct average and the transient correlation
function expression is again very good for both the shear
stress and the pressure.

Although it is not easy to see in the figures, the initial

1.5—

1.0

2D Soft Disks

D Y =1.0

P

3D Lennard-Jones

D

0.8

0.5 Y = 0.5
D

= 0.722

xy

FIG. 2, The direct (D) and transient time correlation func-
tion ( T) results for the pressure in two dimensions at y* =0.1,
0.5, and 1.0.

FICi. 3. The direct (D) and transient time correlation func-
tion (T) results for the shear stress and pressure in three dirnen-

sions at y*=1.0. Note the positive y axis is the reduced pres-
sure while the negative y axis is the reduced shear stress.
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slope of the pressure response curves is zero. This con-
trasts with the initial slope of the shear stress response
which is 6 . This is in agreement with the predictions
of the transient time correlation formalism made in Sec.
II. Figures 1 and 3 clearly show that at short time the
stress is controlled by linear response mechanisms. It
takes time for the nonlinearities to develop.

Comparing the statistical uncertainties of the transient
correlation and direct NEMD results shows that, at the
fields studied in these calculations, direct NEMO is about
2 orders of magnitude more efficient than the transient
correlation function approach. On the other hand, the
transient correlation method has a computational efficien-
cy which is similar to that of the equilibrium Green-Kubo
method. It appears that the efficiency of the transient
correlation function method decreases slightly with in
creasing field strength, although further calculations are
required to confirm this observation. This is to be con-
trasted with direct NEMD whose efficiency increases
with increasing field. However, direct NEMD has zero
efficiency at zero field.

V. CONCLUSION

We have outlined and tested a new formalism for
analyzing the nonlinear response of many-body systems.
In the past, many people have conjectured that nonlinear
transport coefficients, or at least their derivatives with
respect to the perturbing field, might be related to steady-
state time correlation functions in much the same way
that linear transport coefficients are related to equilibrium
fluctuations. The present formalism does not satisfy this
implicit wish. Instead we have shown that the nonlinear
response is related in a very simple way to correlations be-
tween the initial equilibrium state and the transient which
establishes the steady state. The simulation studies sup-
port the correctness of the resulting expressions.

In contrast with many previous approaches, the tran-
sient time correlation formalism does not require the use
of ad hoc convergence factors as in Zubarev's method, '
nor does it require the use of difficult to interpret or
analyze projection operators. ' lt is also the first of any
of these methods to be tested directly, either by compar-
ison with experiment or with simulation data.

At high fields, y —1, the transient correlation function
method is clearly not as efficient as the direct NEMD. At
low fields, however, this situation will be reversed. This is
because at low fields the transient time correlation func-
tions reduce to Green-Kubo correlation functions. Al-
though these functions are difficult to calculate with high
accuracy, they can be calculated. On the other hand,
direct NEMD calculations cannot be performed at zero
field. There is therefore a critical-field value below which
the transient correlation function approach is more effi-
cient and above which direct NEMD will be more effi-
cient. The transient time correlation approach should
therefore prove useful in attempts to settle the controver-
sy, ' over the form of the low-field, asymptotic nonlinear
response. Previously the only method which was applic-
able to very low (but nonzero) applied fields was the dif-
ferential trajectory method. The Kawasaki representa-
tion for the response does not appear to be directly useful
in computer simulations.

The most important aspect of the transient time corre-
lation formalism is likely to be theoretical rather than
computational, however. It is possible that the transient
time correlation form of the nonequilibrium X-particle
distribution function can be used to form a nonequilibri-
um partition function. Indeed, some preliminary results
are already available. Evans ' has recently used the tran-
sient time correlation function expression for the internal
energy of the steady state to derive a theoretical expres-
sion for the specific heat of a nonequilibrium steady state.
Preliminary simulation results support the validity of
the specific-heat expressions so derived.
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