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A new kind of thermal plasma device has been constructed consisting of an indirectly heated 2100
K X-band microwave cavity. The cavity is filled with a surface ionized K or Cs plasma with densi-

ties of from 1)&10' to 1)&10' m . As a first experiment, the frequency of the TMplp mode has
been measured as a function of microwave power absorbed by the cavity. The measurements are
carried out under conditions where instabilities are not observed in the plasma. The resonant fre-

quency is found to decrease as the microwave power increases. Two theories are developed to ex-

plain the frequency shifts, one depending on the ponderomotive force, the other on high-frequency

resistive electron heating. Frequency shifts predicted by the ponderomotive force theory are sub-

stantially smaller than the observed shifts. The data are in reasonable agreement with the resistive-

electron-heating theory if it is assumed that the work function of the microwave cavity wall is de-

creased by alkali-metal-atom coverage.

I. INTRODUCTION

Surface ionized alkali plasmas confined in hot (-2100
K) refractory metal boxes have in the past been used to
study transport and charged-particle energy-loss phenome-
na. ' Until perturbed, these plasmas are spatially homo-
geneous away from the wall and aperture sheaths, and are
in near thermodynamic equilibrium with the walls of the
box. The electron and ion temperatures are equal and
magnetic fields are negligible unless externally applied. A
new version of this kind of plasma device has been con-
structed in which the confining box is a cylindrical x-band
microwave cavity suspended from two refractory metal
wave guides. The wave guides and cavity are coupled by
narrow slits. Plasma densities are from 10' to 10' m
which correspond to plasma frequencies of from 0.9 to 2.8
6Hz. The microwave frequency is 3—10 times the plas-
ma frequency. Due to the low energy ( & 4 eV) of the un-

perturbe'd plasma particles and the Q of the cavity, mod-
est microwave power ( & 10 W) will significantly perturb
the plasma.

In the first experiment with this new device the fre-
quency of the TMO&0 mode of the plasma-filled cavity is
measured as a function of the microwave power into the
cavity. The microwave power' and particle densities are
low enough so that ionization produced by the microwave
power is negligible. At the highest microwave powers
used, low-frequency oscillations are observed at some mi-
crowave frequencies. These conditions are avoided in the
data presented. It is found that the resonant frequency
moves downward as the microwave power increases. Two
possible causes of the power shift are examined theoreti-
cally. One is the ponderomotive force, which pushes the
plasma away from regions of high microwave field inten-
sity and makes the resonant frequency tend toward the
lower vacuum value as the microwave power is increased.
The other is high-frequency resistive electron heating
caused by the microwave power. It is shown that electron

heating decreases the charged-particle density while in-
creasing the neutral-atom density. Again, a downward
shift in resonant frequency results. The calculated fre-
quency shifts produced by the ponderomotive force are
too small to account for the observed results. The calcu-
lated frequency shifts due to resistive electron heating are
in good agreement with the data if the work function of
the alkali-coated rhenium-plated cavity wall assumes
values of from 4.60 to 4.81 eV, the lower value corre-
sponding to higher alkali densities.

Section II is a brief description of the plasma and ap-
paratus. Section III outlines a computer calculation of
the shift in the resonant frequency of the TMO&0 mode due
to ponderomotive force effects. The electron heating, the
concomitant plasma-density changes, and the resulting
frequency shifts are evaluated in Sec. IV. Section V de-
scribes the apparatus in more detail. Formulas used for
determining the cavity power and Q are derived in Sec.
VI. The experimental procedures and data are presented
in Sec. VII, and the results are discussed in Sec. VIII. In
the Appendix the frequency shift due to the ponderomo-
tive force is calculated using perturbation theory. This is
used as a check on the computer calculation.

II. THE PLASMA

In this section a description of the salient parts of the
plasma device are given along with a few governing equa-
tions so that the following theory will be in context. More
details of the apparatus appear in Sec. V. Figure 1 is a
sketch, not to scale, of the plasma-filled microwave cavi-

ty, its wave-guide support, the alkali-feed system, and the
surrounding coaxial heating element. The cylindrical Ta
cavity is suspended from two Ta waveguides of standard
x-band dimensions. The coupling is through slits. While
the cavity can be operated in a microwave transmission
mode, the data presented are taken using only one
waveguide by the microwave-reAection method. An opti-
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it follows that

and

f f0+fpo2 2 2 (4)

With the microwave power high, where "high" means
high enough to measurably alter the plasma parameters,
the cavity will be uniformly filled if electron heating dom-
inates over ponderomotive force effects. For this case let
nz and n„be the plasma and neutral densities, let the
plasma frequency be cop 2mfp ————[(npe )/(eom)]'~, and
let the resonant frequency of the mode used be A=2m.F.
Then

With the microwave power low, let the plasma frequen-
cy in rad/s with popo 2r——rfpo [(—n—poe )/(eom)]', the
resonant frequency of the empty cavity for the mode used
be coo 2rrf——o, and the resonant frequency of the uniformly
filled cavity be Eo=2rrf. eo is the vacuum permittivity.
Using the cold plasma dielectric function K, where

2 2

K=1— =1— (2)

FIG. 1. Sketch of the apparatus, not to scale. Important di-
mensions are in Sec. V of the text.

2 2 2Q =COp+ COp

&'=fo+fp . (6)

cal pyrometer is focused through a small hole in the side
of the cavity to measure the temperature. To make up for
the small plasma loss through the holes an alkali oven
feeds the plasma chamber through a Ta tube. The cavity
and waveguide are radiatively heated by a surrounding
ohmic element. This element is coaxial so as to reduce the
magnetic field at the cavity to —1 G-. The plasma
chamber and heating element are surrounded by a number
of Ta heat shields. This plasma device is contained in a
large stainless steel high vacuum chamber.

When the microwave power is (10 rnW, which we
designate as "low," the plasma parameters are essentially
the same as with the microwave power off. Then the elec-
tron temperature T, and the ion temperature T; are both
equal to the cavity-wa11 temperature T~. With low mi-
crowave power, the plasma density and neutral particle
density are denoted by nzp and n„p, respectively. We as-
sume that nzp and n„p do not depend on position, an ex-
cellent approximation for this type of plasma. With the
particles very close to thermodynamic equilibrium with
the cavity walls, the densities and temperatures are related
by the Saha equation, which for alkalis is

2

=(2vrmkT~h )
~ exp[ (eI)/(kT )] . —

nnp

I is the ionization energy of the atoms in eV, m is the
electron mass, k is Boltzmann's constant, h is Planck's
constant, and e is the electronic charge. For the parame-
ters of the plasma and the dimensions of the cavity, the
electron and ion temperatures are maintained mostly by
collisions with the walls rather than by collisions between
particles.

If the microwave power is high and ponderomotive
force effects dominate, the simple relations Eqs. (3)—(6)
do not apply. The plasma density is nonuniform. and
solving for the eigenfrequencies is a nonlinear problem.
This is addressed in Sec. III.

III. CALCULATION OF THE RESONANT
FREQUENCY SHIFT

DUE TO THE PONDEROMOTIVE FORCE

The TMpip cylindrical cavity mode is used in this work.
Assume the cavity is filled with a fixed number of singly
charged positive ions and electrons whose number is each
nzpV, where V is the volume of the cavity. Let E be the
peak values of the sinusoidally varying electric field.
When E&0, the ponderomotive force pushes the electrons
away from regions where E is high and the ions follow.
The resonant frequency is reduced and tends toward the
vacuum value cop as E increases. The ponderomotive
force on a single electron can be described by a quasipo-
tential which ean be used, along with the momentum
equations for the ions and electrons, to give the electron
plasma density np(r) as

np (r) =np„exp f (eE) /( 8m Eo k T, )], —
where nz is the electron density at the cylindrical wall
where E =0. Note that np(r) is the plasma density in the
presence of the microwave field, and n~p is the plasma
density when the microwave power is off. The derivation
of Eq. (7) assumes that T, = T; and that neither T, nor T;
depends on position. np(r) depends on position through
the spatial dependence of E. The dielectric function can
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n~(r)e
V XH=icoe~E=imeo 1 —

z E .
Eon m

(10)

H is the magnetic intensity, po is the vacuum permeabili-
ty, and n&(r) is given by Eq. (7). Letting r, 9, and z be the
cylindrical coordinates, we note that H, =0 and 8/00=0.
If the radial and axial parts of Eq. (10) are substituted
into the azimuthal part of Eq. (9), the result is

1 8 1 BP 8 1 BP co P+ +r Bz E Bz Br Er Bz q2r

where P=rHs. Equation (11) plus the boundary condi-
tions define a nonlinear eigenvalue problem whose eigen-
values yield the resonant frequencies, and whose eigenso-
lutions the magnetic field. The boundary conditions are

'now be written as

e nz exp[ —(eE) /(8m' kT, )]E=1-
FOCO Pl

The resonant frequency of the plasma-filled cavity with
E&0 has been obtained by a self-consistent numerical cal-
culation patterned after that used by Motz. ' Although
the TMO&o mode has only a radial dependence, the calcula-
tion is set up to include axial variations for use in future
work. Assuming an exp(icot) time dependence, Maxwell's
equations are written as

V XE= —i~POH,

/=0 on the axis, Bp/Bz =0 everywhere, and ay/ar =0 at
r =a, where a is the cavity radius. The last boundary
condition follows from E,=O at r =a. K is a function of
r through the dependence of nz(r) on E.

Equation (11) is solved by a double-iteration method
consisting of an "inner" and "outer" iteration. A radius
of the cavity is divided into a mesh of up to 100 segments.
The derivatives in Eq. (11) are replaced by central finite
differences, and the resulting difference equations are cast
in matrix form. If the mesh-point values of E are speci-
fied, the lowest eigenvalue and corresponding eigenvector
are obtained by the inner iteration. The eigenvalue gives
the mode frequency and the components of the eigenvec-
tor the value of H~ at the mesh points. The correspond-
ing values of E at the meshpoints are obtained by using
Maxwell's equations.

The resonant frequency and fields of the plasma-filled
cavity containing a given number of plasma particles and
a given electromagnetic energy are calculated as follows.
First E is set equal to the vacuum value of 1 in the differ-
ences equations that represent Eq. (11), and arbitrary
values of H~ are assumed at the mesh points. The inner
iteration, consisting of calculating the eigenfrequency and
eigenfields, is then performed. When the inner iteration
produces no more change in Hg, the spatial dependence of
E is calculated from Maxwell's equations. The fields ob-
tained agree with the analytic values. With the spatial
dependence of the vacuum fields known, they are normal-
ized so as to agree with the microwave power delivered to
the cavity and the Q of the cavity. The relative values of
nz(r) at the mesh points are then calculated from Eq. (7),

9.50

9.40

T=2073 K

Q=516

n, =8.4x 10 c~

C3

C3'
9.30

9.401 GHz = E

FREQUENCY FOR

WITH UNIFORM

9.20

O
V)

9
OF

9.036 —=

9.00 RESONANT FREQUENCY OF THE EMPTY CAVITY

10'
M)CROWAVE POWER (W)

l

10
l

10'

FIG. 2. Resonant frequency vs the microwave power absorbed by the cavity as predicted by the ponderomotive force theory.
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aterw ic n&f h' h (r) is normalized to give the assumed num-
f theber of plasma particles in the cavity. The values o t e

density along with the vacuum resonant frequency are
used to calculate K at the mesh points. The inner itera-
tion is used again to calculate a new eigenfrequency and
the unnormalized eigenfields. The outer iteration, consist-
ing of normalizing the new fields, calculating the spatial
d endence and normalization of nz(r), and using n~ &epen
and the new eigenfrequency to calculate K, is then execu-
ed. The inner iteration is then performed again. Both the
inner and outer iterations are repeated until successive
values of the eigenfrequency differ by less than 1 MHz.

An example of the computer-generated resonant re-
quencies as a function of the microwave power absorbed
b the cavity is shown in Fig. 2 for a cavity Q of 516.
The constant plasma temperature is 2073 K and the uni-
form density at low power is np0 8.4)& 10' m . For no
microwave power in the cavity, the analytically calculated

and 9.036 GHz for the empty cavity. These frequencies
are shown in the figure. The computer-generated frequen-
cies should tend toward the former at low power and the
latter at high power. This is indeed the case and is one
check on the computer results. Figure 3 shows the spatial
variation of the plasma density as a function of distance
from the cavity axis for microwave powers from 0.05 to
20.0 W. Clearly shown in this figure is the movement of
plasma from high-field regions to low-field regions. An
interesting feature is that the curves intersect at a single
point. This is also true for other temperatures and densi-
ties. This fact may be due to a peculiarity of the TMo&o
mode; the electric field is everywhere perpendicular to the
gradients in the electric field and the gradients produced
in the plasma density. To the accuracy of the computer
calculation, this results in an electric-field configuration
that is independent of the microwave power. This is veri-
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FIG. 4. Square of the electric field intensity vs the distance
from the cavity axis. The distance from the cavity axis is given
as the fraction of the cavity radius.

fied by the computer calculations. Figure 4 shows the
computed electric field versus cavity radius for a number
of microwave powers. If the curves are normalized at one
radius, they fall on top of one another.

IV. ELECTRON HEATING EFFECTS

%'ith the densities and temperatures used in this experi-
ment, the flux density of electrons from the plasma to-
ward the cavity wall sheath is always greater than the
thermionic-emission flux density of electrons from the
wall into the wall sheath. Steady-state conditions then re-
quire that the sheath potential lt be such that the plasma
is positive with respect to the wall. Then most of the elec-
trons when they enter the sheath from the plasma are re-
pelled back out without having hit the wall, and are in
poor .ermathermal contact with the wall. On the other hand,

i 11the ions, once having entered the sheath, will practica y
always hit the wall and are in good thermal contact with
the wall. As a result of the weak electron-wall interac-
t' th strong ion-wall interaction, and the weakion, e

illelectron-ion interaction, modest microwave power wi
heat the electrons so that T, ~ T;, but T; will remain close
to T .

As the electrons get hot, it will be shown that the num-
ber of electrons and ions in the cavity decreases and the
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neutral density increases. This lowers the resonant fre-
quencies of the cavity, an effect we calculate as follows.
The electron flux density from the plasma that hits the
wall, I P, is given by

I ~ =
4 n u, exp[ —(eg)I(kT, )]

1/2
ko.,T

2&m
exp[ —(eg)/(ka, T )], (12)

I,~=4~mk h T exp[ (ey)I(kT—„)), (13)

where y is the work function of the wall. In steady state,
I p =I,p, leading to

1/2
ka, T

n& exp[ —(eg) I(ka, T~ ) ]27TI

=4nmk h T„exp[ —(ey)j(kT~)] . (14)

The flux densities of ions and neutrals from the plasma to
the wall, I P and I P, respectively, are given by

1/2
ka;TI;"=4 npU; =nppw 2' (15)

where u, =[(8ka, T )/(mm)]'~ is the average electron
speed in the plasma and a, =T, /Tw. The exponential
factor gives the fraction of the electrons incident on the
sheath that surmount the sheath potential f and hit the
wall. The electron flux density from the wall that enters
the plasma, I,p, is given by the Richardson equation as

P; [1—exp[ (—e@)l(kT )])exp[ (—e@)j(kT )], and that
it hit the wall a third time and be returned as an ion is
P; I 1 —exp[ —(eg)j(kT~)]I exp[ —(eg)/(kT„)]. These
terms represent the first three terms of an infinite
geometric series that summed gives for F; the fraction of
incident ions or neutrals from the plasma that hit the wall
and are returned to the plasma as ions,

P;exp[ (eP—) l(kT„)]
1 P; I

—1 —exp[ —(eg)/(kT )]I
From the above we now have

r ~=(r' +r~")F

(18)

1/2 k Tw=(a; n~+n„) 2'
1/2

Equating I P to I;~, and using Eqs. (17) and (18) for F;
and P;,

np
=2a,' exp[e(I+/ y)j(kT~—)] .

nn

[2] '

a,'"[a,] '"
(3 )/2

2~mkT

'Equating the neutral flux densities between plasma and
wall gives the same equation. The plasma potential g can
be eliminated between Eqs. (14) and (20), yielding the
"modified" Saha equation

P; = I 1+2exp[e (I —y)/(kT~)] I (17)

If the particle leaves as a neutral, it immediately reenters
the plasma. If it leaves as an ion, it has a probability of
exp[ —(eg)j(kT )) of surmounting the sheath barrier and
reentering the plasma, and a probability of
1 —exp[ —(eP)/(kT~)] of being repelled by the sheath
and rehitting the wall. An incident ion or neutral from
the plasma thht hits the wall and comes off the wall as an
ion -could hit the wall as an ion a large number of times
before coming off as a neutral or as an ion with enough
energy to overcome the sheath barrier. The probability
that a neutral or ion from the plasma (as distinguished
from the sheath) hits the wall (first bounce) and comes off
as an ion that enters the plasma is P; exp[ —

(erat

)I ( kT„)].
The probability that the same neutral or ion hit the wall
twice and be returned to the plasma as an ion is

and
1/2

kT
(16)

u; =[(8ka; T„)/(~M)]'~ is the average ion speed,
u„=[(8kT )I(AM)]'~ is the average neutral speed, and
a;=T;/T . M is the neutral or ion mass, and the neu-
trals are assumed to be at the wall temperature Tw. The
flux of ions from the wall to the plasma. I;p, is more
complicated. The usual assumption made for thermal
ions or neutrals hitting a hot metal wall is that the proba-
bility of leaving the wall as an ion P;, is the same for
both. P; for alkalis is given by

npe (v ice)—
m(v +co )

(22)

where v is the electron-ion collision frequency. We as-
sume ponderomotive forces are small enough so the np
can be taken as independent of position. The computer
calculation of Sec. III supports this. The real part o., of o.
is o.,=(n~e v)j(men ), where (v +co ) has been approxi-
mated by co . The microwave power absorbed per unit
volume by the plasma electrons p is

nevE
p= ~ opE (23)

2&i CO

Xexpj —e[I+(a,—l)p)/(kT )j . (21)

When the microwave power is low, np becomes npo, n„
becomes n„o, and a, =a; =1. Equation (21) then reduces
to Eq. (1), the usual Saha equation. The right-hand side
of Eq. (21) has the factor expI[ —e(a, —1)p]/[kT~]I
which makes the plasma density a sensitive function of
the electron temperature T, =n, T .

The rnicrowaves heat the plasma electrons by delivering
a power P, to them. The electrons can lose energy by col-
lisions with neutrals or ions, or by collisions with the cavi-
ty walls. For the plasma being studied, the last effect
dominates. Let P be the net power exchange between the
plasma and the wall due to electron flow. In steady state,
P, =P . First we calculate P, . From page 324 of
Shkarofsky, Johnston, and Bachynski, ' the complex ac
plasma electric conductivity o. is
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p 27T

12 m

1/2 2
e 1

(ka, T )
(24)

For A, the Debye length divided by the 90 impact param-
eter, the high-frequency form given by Eq. (7-29e) of Ref.
10 is used. This is

where, as before, E is the peak value of the electric field.
From page 325 of Ref. 10, v is obtained from v= YlnA,
where

EdX= 2

P, Op

e07rf(1 fp if—') (27)

Combining Eqs. (23)—(27), the microwave power delivered
to the plasma electrons is

the definition of Qo and using the cold plasma dielectric
function from Eq. (2), the integral in Eq. (26) can be ex-
pressed in terms of the microwave power absorbed by the
cavity P, as

3/2
4Epm 2k' T

A=
ge~f gm

(25)
P, Qon~e

3(27r) (mka, T ) /VQ(f f~)—
where /=exp(y), and y is Euler's constant. The total mi-
crowave power absorbed by the electrons P, is

n e v
(26)

where the integration is over the volume V of the cavity.
Let the internal Q of the cavity be Qo (see sec. VI). From

I

/2e (ka T )'/2
)& ln

2 1/2g5/2f
(2S)

For the calculation of P~, let Pp be the power due to
electrons flowing from the plasma to the wall. If the z
axis is normal to the wall, and if u„, u„, and u, represent
the Cartesian components of the electron velocities, then

(29)

(30)

U =+ U =+ U =+
PP=S J f f u nqf(u) ~m(u, +uy+u )du de du

where S is the area of the wall and f ( u) is the electron velocity distribution. Using the Maxwellian distribution for f ( u),
1/2

ka, T„
P, ~=ST(eg+2ka, T~) exp[ (eg) l(k—a, T„)] .

2&m

Using Eq. (14) the exponential factor with P may be replaced with one containing y, giving

Pp =S47rmh (kT„) (ef+2ka, T„)exp[ (eq&)/'(kT„—)] . (31)

To calculate P, , the power delivered to the plasma by the thermionic wall electrons, the Fermi-Dirac distribution of
the electrons in a metal fF(u) is used where

fF(u)=2m'h 'I 1+exp[e(e ep)l(kT„)]—I '=-2m h exp[ —e(e eF)l(—kT~)] . (32)

Here e is the electron kinetic energy and eF is the Fermi energy. As usual, we neglect the 1 in the denominator. Then
again taking the z coordinate normal to the wall,

U =+oo V =+oo V =+oo
PP=S J f f f~(u)u, [ ,'m(u +u +u,—)+e(f eF y)]dv„duad—u,—

=S47rmh (kT ) (ep+2kT~)exp[ —(ey)l(kT„)], (33)

where uI I[2e(eF+y)]/(m)J' . The net power to the
wall, P„, is then

=87rSmh k T~(a, —1)exp[ (ey)/(kT )]—.

The additional equations necessary to solve for the fre-
quency shift due to electron heating are the following.
Denote the sum of the ion and neutral densities by n„
which is assumed independent of microwave power. With
the microwave low,

(34) n, —npo+nno . (36)

With the microwave power high,

(37)nt np +nn

Equations '(4) and (6) are written in terms of the plasma
densities as

2

f'=f0+
&om 4~

Letting P, =P,
6P, Qonpe

3(27r)9/2(mka, T ) 2e+~(f —f2)

27/2
( k T )3/2

e 2. I /2g5 /2f

= 87rSmh k T~(a, —1)exp[ (ey)/'(kT~)] . —
(35)
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Figure 1 shows the part of the apparatus that is inside a
stainless steel high vacuum chamber. The plasma.

Equations (35)—(39) together with the modified Saha rela-
tion Eq. (21) are sufficient to solve for the frequency shift
bf=f F if a; is—set equal to 1 in Eq. (21). This last as-
sumption is justified by a calculation that shows that the
ions do not get enough energy from the electrons to signi-
ficantly raise their temperature. The following procedure
is used to solve these six equations. It is assumed that T,
f, fo, I, p, and Qo are known. T~, f, fo, and Qo are the
quantities actually measured at very low microwave
power. Equation (38) is used to obtain n~o, and Eq. (1),
which is Eq. (21) with a;=a, =l, is used to get n„o
Equation (36) is then used to calculate n, . bf is specified,
so that Eq. (39) can yield n~, and n„ is obtained from Eq.
(37). Equation (21) is solved for a„using the solve rou-
tine of a Hewlett Packard 15C calculator, and finally I',
is given by Eq. (35). By specifying various Af s, a curve
of frequency shift versus P, is obtained.

Figure 5 shows three predictions of the hot-electron
theory. The resonant frequency shift (f E), the electro—n
temperature T„and the plasma potential relative to the
wall g are plotted as a function of the microwave power
absorbed by the cavity, P, . The plasma parameters are
those of run No. 1: neo

——6.71&10' m, T, =2048 K,
Qo~ 1751, @=4.65 eV, f=9.345 && 109 Hz, and

fo ——9.051X10 Hz. One watt of absorbed microwave
power decreases the resonant frequency by 100 MHz,
raises the electron temperature to 2500 K, and raises the
plasma potential from 656 and 735 mV. As the electron
temperature increases, an increase in plasma potential is
necessary to keep the net electron flux between plasma
and wall zero. Additional curves of frequency shift
versus microwave power appear in the data graphs of Sec.
VII.

V. APPARATUS

chamber is a cylindrical x-band microwave cavity which
when cold has an inside diameter of 2.54 cm and a height
of 8.052 cm. The cylindrical walls are 50.8-pm Ta foil
and the ends 0.508-mm Ta sheet. The cavity is Re plat-
ed" to increase the surface ionization efficiency for al-
kalis hitting the surface. An optical pyrometer is sighted
through a 0.794-mm hole in the cavity wall to measure
the temperature. The cavity is suspended from two
1.016&(2.286 cm rectangular Ta waveguides which are
17.1-cm long. The Ta waveguides have axial slots in the
middle of the 2.286-cm sides for vacuum pumpout. The
slots are positioned so as not to interfere with the TEIO
waveguide mode. Only one of the waveguides is coupled
to the cavity, a 0.508& 11.43 mm coupling slit being used.
The waveguides are attached to a stainless steel circular
"oven" flange which is water cooled by Cu tubing. Above
the oven flange two flexible sections of commercial Cu-Be
x-band waveguide are attached. These are connected to
straight waveguide sections which pass through the
waveguide flange, after which they are sealed off by three
iris resonant-type windows. The waveguide flange rests
on top of the vacuum flange that seals off the top of the
main vacuum chamber. An alkali oven sits on the oven
flange and feeds alkali vapor to the cavity through a
3.175-mm-i. d. Ta tube. The oven flange rests on a pair of
flanges designated as "upper" and "lower. " These are wa-
ter cooled, electrically insulated from each other, and held
by a pair of coaxial support tubes that carry electric
current and water to them. These two support tubes pass
through and are mechanically connected to the vacuum
flange. An Ohmic heating element surrounds the plasma
chamber which it heats by radiation. This coaxial heating
element is made from 25.4-pm W foil and consists of an
inner cylinder and outer cylinder with diameters of 6.985
and 9.208 cm. The lower ends of the heating-element
cylinders are connected together and the upper ends are
attached to the upper and lower flanges which supply 480
A of regulated dc current. The coaxial design of the heat-
ing element and support tubes minimizes the magnetic
field due to the heating current at the position of the mi-
crowave cavity. A large number of heat shields made
from 25.4-pm Ta foil are shown in Fig. 1. After outgass-
ing, the pressure in the vacuum chamber is —1X10
Torr when the cavity is at the nominal operating tempera-
ture of -2100 K. Further details may be found in Kim's
thesis, Ref. 12.

The microwave system outside the vacuum chamber is
shown in Fig. 6. The microwave source is a Hewlett
Packard (HP) model 8620 sweep oscillator which drives a
Varian model VTX 618681 traveling-wave-tube amplifier
(TWTA). The power level is adjusted after the TWTA by
an attenuator. The power is fed into a circulator and then
to the microwave cavity. The power reflected from the
cavity is directed by the circulator to a HP model 912A
attenuator, a HP -model 486A waveguide thermistor
mount, a HP model 4318 power meter, and a HP model
7004A x-y recorder whose x axis is driven by the sweep
oscillator. The waveguide thermistor mount and power
meter are the primary standard in the experiment for
measuring the microwave power and were calibrated by
Test Equipment Services, Inc. ' To measure the mi-
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FIG. 6. Microwave system for the frequency-shift measurements.

crowave power incident on the cavity, the waveguide
thermistor mount is inserted at the point where the power
first enters the circulator. The microwave power diverted
by the directional coupler goes to a HP model 382A at-
tenuator, a waveguide to coaxial adaptor, a HP model
423B coaxial low-barrier Schottky detector, and an oscil-
loscope. A HP model 352 wavemeter is inserted between
the attenuator and adaptor.

VI. CAVITY MICROWAVE POWER AND Q

The two quantities necessary to evaluate the field
strengths in the cavity are the power delivered to the cavi-
ty, P„and the internal Q of the cavity, Qp. Measuring
these two quantities is not straightforward as the vacuum
part of the waveguide system contains components, some
of them fabricated in house, that have higher attenuation
and reflection coefficients than the more standard mi-
crowave components. As mentioned in Sec. II, the cavity
is suspended from two waveguides so the microwaves can
be used either in transmission or reflection. Transmission
gives by far the better-looking resonance curves, but also
involves two nonstandard waveguides. Rather than have
to deal with two imperfect waveguides in our analysis for
Qp and P, it was found advantageous to block off one
waveguide and use a single waveguide in the reflection
method. Due to the nature of the hot waveguide and oth-
er microwave components inside the vacuum system, the
reflected microwave signal has significant undulations in
power that are not associated with cavity resonances.
These undulations make the use of many standard mi-
crowave techniques, such as measuring the positions of
voltage minima, difficult and tedious. For this reason, we

developed a method which depends just on the measure-
ment of various microwave powers for determining P,
and Qp. The method takes into account the absorption in
the waveguide, but does not take into account reflections
caused by reactances which produce undulations. The mi-
crowave system is represented by the lumped element cir-
cuit shown in Fig. 7(a). See, for example, Chap. 9 of Ref.
14. The cavity mode is portrayed as the series circuit
composed of the inductance L, the capacitor C, and the
resistance R, . R, takes into account Ohmic losses in the
cavity walls, radiative losses from small holes in the cavi-
ty walls other than the coupling aperture, and dissipation
in the plasma. The last loss leads in principle to an E.,
that is dependent on nz. This loss is always less than 1%
of the total loss in the cavity, and the dependence of R,
on nz is neglected. The resonant angular frequency is
co= 1/(LC)'~ and the internal Q is Qp (coL)IR, T——he.

Rs

p]z
I + i2@,

FICx. 7 (a) Equivalent circuit assumed for the cavity and
waveguide. (b) The circuit of (a) transformed.
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reflected power at the half-power points, P2 is the reflected
power at resonance, and co+ and co are the half-power frequen-
cies.

coupling to the cavity is represented by the mutual induc-
tance M. L 1 is the self-inductance of the coupling aper-
ture, and R accounts for the waveguide losses. It is as-
sumed that the waveguide is driven by a generator
matched to the characteristic impedence of the waveguide,
Zo. As shown on page 426 of Ref. 14, if the cavity loop
is transformed into the generator 1oop, and then the self-
inductance L& of the coupling mechanism is neglected,
the circuit of Fig. 7(b) results. The cavity is now
represented by a parallel resonant circuit, and the im-
pedance ZL presented to the microwaves is

PIZO
ZL ——R+ I+i 2Qo5

(40)

where Pi is the coupling parameter and equal to
(coM) /(ZoR, ), 5 is the frequency-tuning parameter and
equal to (co' —co)/co', and co' is the microwave frequency.
At resonance; 5=0 and ZL ——(R+piZO) which is real.
Well off resonance 6 is large and ZL ——R, also real. Let
the incidence microwave power be P& and the reflected
power be P2. Figure 8 shows P2 as a function of mi-
crowave frequency for the circuit shown in Fig. 7. P2 is
the detuned reflected power, P2 is the reflected power at
resonance, P2 is the reflected power and the half-power
points for the resonance curve, and co+ 2rcf + and-—
co =2rcf are the half-power frequencies. These are the
quantities, along with P„actually measured. The power
absorbed by the cavity at resonance is

O pl Z0
P, =(Pi P2)—

R +PIZO
(41)

1/2
2

Pi
R' —I
R'+1 (42)

Pi and P2 are related by P2 ——
~

1"
i Pi, where I is the

voltage-reflection coefficient and equal to
[(ZL/Zo) —I]/[(Zz, /Zo)+ I]. With R'—:(R/Zo), it fol-
lows that

Equation (42) can be solved for R', and Eq. (43) for
(R'+ pi). In both cases the sign ambiguity is removed by
experimental observations. As the reflected power goes
down rather than up when the cavity is tuned to reso-
nance, Eq. (42) leads to

1 (P'/P—)'"
R'=

1+(P,/P )'" (44)

The sign ambiguity in Eq. (43) is resolved by measuring
the position of a voltage minimum as a function of fre-
quency. This shows the cavity to be undercoupled in the
sense that (R'+pi) (1. Thus

1 —(P2/Pi )
R +/31 o (45)

1+(P2/P, )'

Inserting Eqs. (44) and (45) into Eq. (41),

2(p ) 1/2[(p ) 1/2+ (po )1/2] [(pd )
1/2 (po )1/2]P—

[(p, )'"+(p",)'-"]

(46)
This is the expression used to calculate P, from measured
quantities. When the microwave power is high enough to
distort the resonant curves, P2 is taken as the peak of the
curve.

Qo can be obtained from co+ and co as follows. Defin-
ing the values of 6 at the half power points as
5+ ——(co+ —co)/co+, the equation P2 ——

i
I

i Pi evaluated at
the half-power points gives

P2 4Qo5+(R ' —1) + (/31+R ' —1 )
(47)

4QO5+(R'+ 1) +(P, +R'+1)
Solving for 5+,

—+ 1

2Qo

(P, +R' 1)'P, —(P, +R—'+1)'P,
(R'+1) P2 —(R' —1) Pi

(48)

Since 5+ ———5 and co =co+(1—5+ ) = co (1—5 )
=co (1+5+), we then have co+(1—5+)=co (1+5+).
This last equation can be rearranged to give
Aco=(co+ —co )=(co++co )5+. If 5+ from Eq. (48) is
used and the resulting expression solved for Qo, then

(co++co )[(Pi )' '+(P2)' ']
(49)

2bco[(P, )'/ +(P )' ]
This is the usual expression for Q multiplied by a factor
which corrects for the waveguide loss. In measuring the
parameters to determine Qo, low microwave power is used
so that the resonant curves are symmetric.

VII. EXPERIMENTAL PROCEDURE AND DATA

After appropriate outgassing of the plasma device, the
cavity is brought to the operating temperature. The
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FIG. 9. Frequency of the TMO~O mode vs the cavity temperature. The alkali oven is cold for these data.

heater power to the alkali oven is then adjusted to give the
desired plasma density at low microwave power, n~o. ri~p
is determined by using Eq. (38) which relates this quantity
to f, the resonant frequency of the TMOIo mode of the
filled cavity at low microwave power, and f0, the resonant
frequency of the same mode of the empty cavity. The
necessary resonant frequencies are read from resonant
curves which are obtained by feeding a voltage propor-
tional to the reflected microwave power into the y axis,
and a voltage proportional to frequency into the x axis, of
an x-y recorder. The determination of f is straightfor-
ward, while the determination of fo is complicated by the
fact that the cavity at operating temperatures always has
plasma in it, even when the alkali oven is cold. This is
particularly true after alkali has once been introduced into
the cavity. To circumvent this effect, the alkali oven is
kept cold and f is measured as a function of T~ = T, = T;
for temperatures from about 1050'C up to the operating
temperature. Examples of the data are shown in Fig. 9.
The linear portion of the curve with negative slope be-
tween 1050'C and 1500'C is due to a nearly empty cavity
which is expanding as the temperature increases and
represents accurate values of fo for the corresponding
temperatures. For temperatures slightly above 1500'C the
curve starts to increase due to the presence of plasma. fo
for these higher temperatures is determined by extending
the straight-line portion of the curve.

With the plasma at the desired density, a series of
resonant curves are taken each at a higher power than its
predecessor. Tracings of three curves from a series are
shown in Fig. 10. The K plasma has n&o 2 28)&10'

FREQUENCY SWEEP DIRECTlON

~ f = 9. 144 GHz
Po 2 3)0 ~ P) = 8.30 mW

P = 3.43 mAl

f = 9. 1469 GHz

f = 9. 1411 GHz

P 4

. 138 GHz

131.5 mN

P, = 0.460 W

P, = 0. 196 W

F = 9. 124 GHz
P2 0.972 W

P, = 3.65 W

Pc = 1.52 W

P = 2. 099 W2

FICx. 10. Tracings of three resonant curves from run No. 2.
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m and T, =2048 K. The frequency is swept from high
to low and decreases to the right in the graphs. Frequen-
cy markers are not shown. Reflected power increases in
the downward direction so that the resonant curves appear
upright. The vertical power scales are different for the
three curves, but the horizontal frequency scales are the
same. After the series of curves is recorded on separate
sheets of paper, the plasma density is changed sufficiently
to move the resonant curve out of the frequency range be-
ing swept. Then each curve is put back in the x-y recor-
der and a background curve taken. In the frequency re-
gion of the resonance, this is shown as a dotted curve in
Fig. 10. Away from the resonance the background curve
and the curve containing the resonance are so close as to
be represented by a single line in the figure. This fact al-
lows us to infer that the background curve in the vicinity
of the resonance is a proper "baseline" for the resonance
curve.

The top curve in Fig. 10 is the low-power curve. It is
undistorted by power, quite symmetric, and is used to
determine f and Qo. The parameters f, f+, f, P2, and

pz are obtained from this curve as shown in the figure.
As explained in Sec. V, I'& is measured independently and
found to be 8.30 mW. Then Eq. (46) is used to give P, as

3.43 mW and Eq. (49) gives Qo as 1824. The bottom two
curves have had their peaks shifted downward in frequen-
cy. The peaks are now designated by I', and the frequen-
cy shift is (f I'—). The determinations of Pz and P2 are
also indicated. The shapes of these curves are distorted by
the power because the plasma density changes during the
frequency sweep. Far out on the high-frequency wing of
the resonance very little power gets into the cavity. Negli-
gible electron heating and plasma-density reduction take
place and the resonant curve is similar to the top curve.
To the left of the resonant peak, as the frequency contin-
ues to move downward, more power gets into the cavity
and the density decreases, decreasing the resonant fre-
quency. In effect, the decreasing microwave frequency
"pushes" the cavity resonant frequency downward ahead
of it. At the peak of the curve, the maximum reduction
in density for the fixed amount of incident power being
used is obtained. To the right of the resonant peak a fur-
ther reduction in frequency results in less power to the
cavity and causes the resonance to now move up in fre-
quency as the frequency sweep continues to move down-
ward. This accounts for the steep right-hand side of the
curves. The right-hand side of the bottom curve is so
sharp that x-y recorder overshoot is evident. As would be
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FEG. 11. Frequency shift vs the microwave power absorbed by the cavity for runs No. 1—No. 5. The solid curves are the predic-
tions of the hot-electron theory. The cavity wall temperatures are runs No. 1 and No. 2, 2048 K; run No. 3, 2033 K; run No. 4, 2036
K; and run No. 5, 2037 K.
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expected, there is considerable hysteresis in the resonant
curve if the frequency is now swept back through the res-
onance from low to high frequency, the frequency shift
being less. In taking data, the frequency was always
swept from high to low frequency so as to obtain the max-
imum frequency shift for the power being used.

At some microwave frequencies and for the highest mi-
crowave powers used, the reflected microwave power was
modulated at frequencies of from 30 to 60 kHz. This was
observed by looking at the demodulated reflected mi-

crowave power on a 1-MHz oscilloscope. Frequencies for
which this occurred were not used in the data presented.
The modulation of the reflected microwave power is prob-
ably caused by ion acoustic oscillations of the plasma in
the cavity. The density fluctuations associated with the
ion acoustic oscillations would change the impedance
presented to the waveguide by the cavity, resulting in the
modulated reflected microwave signal. We are not report-
ing on these effects here except to note that for the data
analyzed density oscillations in the plasma at frequencies
(1 MHz were not present at sufficient levels to be ob-
served in our oscilloscope. '

Due to continual improvements in the apparatus, the
last five runs are the most reliable, and for convenience
are numbered from 1 to 5. The data for each run consist
of from 9 to 11 high-power resonant curves plus one
resonant curve at low power. Figure 11 shows the
resonant frequency shifts versus the microwave powers
absorbed by the cavity for these runs. Runs No. 1 and
No. 2 are for a K plasma, and runs No. 3—No. 5 are for a
Cs plasma. For each run nzo and T are held constant.
The densities for the different runs range from 2.28 X 10'
m to 8.47&&10' m, and are given in the figure. The
temperature for the runs are all around 2050 K, but the
exact values are in the figure caption. The data for each
run have been fit by a curve calculated from the hot-
electron theory of Sec. IV. The work function y used for
each curve has been adjusted so the curve passes through
the points near the middle of the data. For the different
curves, the values of y range from 4.60 to 4.81 eV, and
given in the figure.

For the data presented in Fig. 11, the frequency mea-
surements are accurate to +1 MHz, and the temperature
measurements to +10'C. The latter have been corrected
for absorption by the window through which the optical
pyrometer is sighted. The random error associated with
the measurement of microwave power is estimated to be
+5%, about the horizontal width of the data point sym-
bols in the figure. Due to calibration uncertainties of the
microwave-power-measuring equipment and attenuators,
a systematic error of up to +15% may affect all power
measurements. The quoted Q's are estimated to be accu-
rate to +10%.

VIII. DISCUSSION

The frequency of the TMO&0 mode of a hot cylindrical
cavity filled with a surface ionized K or Cs plasma has
been measured as a function of microwave power to the
cavity. The electric fields and pressures are not high
enough for significant ionization of the plasma by elec-

tron impact to occur, and microwave excited instabilities
have been avoided. It has been found, as shown in Fig.
11, that the resonant frequencies are lowered as the mi-
crowave power increases. This implies that either the
ponderomotive force has pushed the plasma away from
regions of high electric fields, or that the plasma density
has been reduced by the microwave fields in some other
way. A theory has been developed which assumes that
the fields heat the electrons resistively. The plasma
equilibrium is then shifted so that the plasma density is
decreased while the neutral density is increased. This hot
electron theory is portrayed by the solid curves in Fig. 11.
Not shown in Fig. 11 are curves calculated from the
ponderomotive-force theory. These curves show frequen-
cy shifts that are of the order of 2% of those for the hot-
electron theory. It is apparent that ponderomotive force
effects are not responsible for the frequency shifts.

As explained in Sec. IV, the data for each of the five
runs are fitted by a curve generated by the hot-electron
theory. The work function cp of the cavity wall is treated
as an adjustable parameter for each curve, so that there
are five values of the work function used to fit the data.
The data for a given run are represented very well by its
curve. y has been adjusted so that the data and curve
agree near the middle, but note that there is a.range of
power of from 100 to 1000 for each curve and agreement
is good over the whole power range. Furthermore, the
frequency shift versus power data is not represented by
simple linear, exponential, or power-law functions. The
relationship between frequency and power is complicated
and well represented by the hot-electron theory.

To fit the hot-electron theory to all five runs, it is
necessary to assign different values of y to each run. The
fitting of the curves is quite sensitive to the value of cp.
Two workers might differ by 0.01 eV in the assignment of
y, but it is unlikely that they would differ by as much as
0.02 eV. Thus the differences in the values of y for runs
No. 1, No. 4, and No. 5 are significant, as are the differ-
ences between these runs and runs No. 2 and No. 3, while
the differences between runs No. 2 and No. 3 are not too
significant. It is noteworthy that the values of y increase
as the plasma density decreases, except for runs No. 2 and
No. 3 which are quite close together in density. The obvi-
ous explanation is that alkali wall coverage is lowering y
at the higher densities. It would be desirable to have
quantitative confirmation of this effect. Taylor and Lang-
muir' determined the work function of W partially coat-
ed with Cs, but, unfortunately, measurements do not seem
to have been made for K and Cs on Re. We do not attri-
bute too much significance to the fact that all our values
of y are below the value of 4.96 eV measured by Wilson. '

In our measurements there is always some alkali present
while Wilson's measurements were made on clean sur-
faces. Additionally the work function depends sensitively
on the crystal structure of the surface, and it is possible
our Re plating was not quite complete, or flaked off in
isolated spots.

The ionization potentials of the atoms used, 3.89 eV for
Cs and 4.34 eV for K, appear exponentially in the theory.
The use of both K and Cs is a sensitive check of the
theory, and the data of Fig. 11 are fitted well for both al-
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kalis. We conclude that the frequency shifts observed are
adequately described by the hot-electron theory.
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APPENDIX

A perturbation calculation of the resonant frequency
shift of the TMO&o mode, valid for small values of E and
the expansion parameter p capo/coo, was made as a fur-
ther check on the computer-calculated frequency shift.
This calculation is patterned after methods discussed by
Hayashi. ' The starting point is Maxwell's equations (9)
and (10). Instead of eliminating E in favor of H, H is
eliminated in favor of E,=E so that

d E dE coKrE
dr dr c

(Al)

where c is the velocity of light in a vacuum. With vacu-
um in the cavity, E = 1, and this reduces to Bessel's equa-
tion. Then the peak electric field in the cavity is
E =AJo(ao&r/a), where Jo is the zeroth-order Bessel
function, and o.o& is its first zero. The radius of the cavity
is a, and the maximum value of Ewh, ich is on the cavity
axis, is A. The vacuum resonant frequency is

coo = ( cxo )c ) /a .
With plasma present the cold plasma dielectric constant

K is given by Eq. (2). Following is an expansion of E in
terms of 3, the maximum value of E in the cavity and
not a function of r, and E, the peak value of the electric
field in the cavity and given, for low values of E, by
AJo(ao~r/a). n~„, the plasma density at the cylindrical
wall, is a function of A (but not of r) because, as in the
computer calculation, the total number of charged plasma
particles is required to stay constant. Letting the unper-
turbed constant plasma density be nzo, the equation
governing the value of n„ is the integral of Eq. (7) over
the volume of the cavity, which is

f nz(r)d x= f n~~exp[ —(e E )/(8mco kT, )]d x

=npoV . (A2)

To calculate the dependence of nz on 3, the Jo Bessel-
function dependence of E is used. The latter is a good ap-
proximation for low values of E, as the computer calcula-
tion indicates that the dependence of E upon r hardly
changes as E increases. The exponential in Eq. (A2) is ex-
panded, and the result integrated, yielding

neo n~„ I 1 —[DA J)(ao——, )]/co ], (A3)

where D =e /(8mkT, ). J, (ao, ) arises from

Jo(ccoir /a)2'«" = VJ i (ceo& )
0

(A4)

where J& is the first-order Bessel function and h is the
height of the cavity. Solving for n& and expanding,

n~ =n~o[1+[DA Ji(ceo, )]/co I . (A5)

Putting this result in Eq. (8) and expanding the exponen-

tial in that equation, E becomes to order A and E,
K = 1 —co~o/co —[Dco~oA J)(ao))]/co

+prDc cooco E =0 . (A7)

The fields and frequency are now expanded in powers of
p where subscripts indicate the order in the expansion,

E=Eo+PE] +P E2+ .

2 2 2 2 2
CO =COO+PCO] +P CO2+

I/co = 1/coo —(@cod)/coo

(A8)

(A9)

+p (coi/coo —cop/coo)+ '2 4 6 2 4 (A10)

E'=Eo+V 3«i+P'3Eo«oE~+E &
)+ . .

Using these expressions in Eq. (A7), and collecting the
zeroth-order terms gives

d2Eo dEo
r

2 + +rcooc Eo =0
dr dr

(A12)

with the solution Eo=2Jo(ceo]r/a). Collecting the first-
order terms gives

d E) dEi
+ +morc E]

dr dr

2 [[co&—coo —D~ Ji(cxoi)]E'o+DEoI (A13)

To extract co~ from Eq. (A13), E~ and Eo are expanded in
a series of Jo s as

E
~

——g a;Jo(ao; r /a)
i =]

(A14)

and

Eo ——2 Jo(ao;rla) =2 y bg Jo(ao;r/a) .
i=1

(A15)

The first term in the expansion for E& is a~Jo(ao~r/a)
and makes the left-hand side of Eq. (A13) zero. Therefore
the projection of the right-hand side onto Jo(ceo&r/a)
must be zero. The Projection of Eo onto Jo(ao&r/a) is the
coefficient of the first term of the series in Eq. (A15).
This projection is b~A, where

b )
——

P 4
o Jo(ao~r/a)r dr

(A16)f Jo(czo~r/a)r dr

Then equating the total coefficient of Jo(ao&rla) on the

=0.5658 .

+ (Dco~oE') /co" .

Expressing cozo in Eq. (A6) in terms of the dimensionless
expansion parameter p and substituting K into Eq. (Al),
there results

dE dE r2

+ [co —pcoo —pcooco DA J, (aors)]E
dr dr c
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right-hand side to zero gives

cot=coo+Pt«ot) —btj~'D . (A17)

2~~,'oDP, Qof J t (ctot) —b i ]
co coo+ cop 0+ 2 2 2 2 2 ~ (A 20)

cotta hcoo(co —coqo)Jt(tzo&)

=coo+cot o+cat ocoo ~ [Jt(&o&)—b& 1 (A18)

The expression relating 3 to the cavity power I', and the
cavity Qo is

2coP, Qo

@orna h (co —co~o)J&(aot)
(A19)

where the variation of the dielectric constant K over the
cavity volume is neglected. Inserting this into Eq. (A18),

To first order, the desired eigenfrequency co of Eq. (Al) is
given by

2 2 20+

For a given P„Qo, and co~o, co is obtained by using the
solve routine of a Hewlett Packard 15C calculator.

The predictions of Eq. (A20) have been compared to the
computer calculation for a cavity with a Q of Qo ——1500,
a plasma with T, =2100 K, and densities of from 2&& 10'
to 1&& 10' m . The perturbation calculation gives fre-
quency shifts that are from 10% to 25% higher than the
computer calculation for microwave powers ranging from
0.14 to 14 W. As would be expected, the agreement is
best (10%) for low plasma density and low microwave
power. The agreement is close enough to give us reason-
able confidence in the computer calculation and reinforce
our belief that the ponderomotive force is not responsible
for the bulk of the frequency shifts.
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