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Plasma relaxation, as well as the relaxation of more general diffusive systems, is discussed from a
dynamical point of view. It is shown that a state which minimizes the rate of entropy production,
as suitably defined, attracts neighboring states and thus causes relaxation. For plasmas, the entropy
principle is compared with Taylor’s hypothesis of energy minimization and is shown to explain ob-
served experimental results. An iteration scheme based on the entropy principle is constructed, and
enables numerical calculation of the relaxed state. The scheme arises more naturally than the “local
potential” method of Glansdorff and Prigogine which is improved upon.

I. INTRODUCTION

The tendency of a plasma spontaneously to approach
some preferred steady state is usually referred to as plas-
ma relaxation. This phenomenon was observed in labora-
tory systems' as well as in astrophysical plasmas,’ and is
now attracting considerable interest. The subject was re-
cently reviewed by Taylor® who also provided the most
popular explanation for this behavior. Taylor suggested*
that through a rapid process of magnetic reconnection a
slightly resistive plasma tends to relax to a state of
minimum magnetic energy subject to the conservation of
magnetic helicity, this quantity being defined as the
volume integral of A-B, where B is the magnetic field
and A is its vector potential, B=V X A. (An important
property of the helicity is that it is a constant of the
motion for nonresistive plasmas.) The minimum energy
state is force-free with VX B=A(B, where A; is a con-
stant. Direct observations in some laboratory plasmas
indeed confirm® the prevalence of magnetic configurations
close to this state, which is now known as the ‘“Taylor
state.” Likewise, some numerical simulations®>® of fluid
plasmas in laboratory-relevant configurations show a
similar tendency.

While the Taylor hypothesis turns out to be remarkably
successful in predicting the relaxed state, the understand-
ing it provides is certainly incomplete. The basic deficien-
cy of the theory is that it lacks a dynamical justification.
Even if one agrees that the magnetic helicity changes
more slowly than the magnetic energy,’ it is possible to
envision, in addition to the helicity, other constants of the
motion of an ideal plasma which should also remain al-
most constant in time in the slightly resistive case.®~1°
Another puzzling question is'®!! why the magnetic energy
is the quantity to be minimized, when it is known that
isolated systems in thermodynamic equilibrium are states
of maximum entropy. Any consideration such as one of
those just mentioned modifies the Taylor state in a way
that allows an even closer agreement with experiment.®—!!

Significant progress was made recently in understand-
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ing the dynamical behavior of weakly turbulent plasmas,
that is, laminar plasmas affected by small fluctuations
which vary on a faster time scale and a shorter length
scale than the mean (average) fields. The effect of the
fluctuations was found to give rise to an additional
anomalous diffusion of the mean magnetic field.!2—16
Essentially the same effect can be seen either from the
point of view of the kinetic description of electrons in a
turbulent magnetic field environment,'? from an empirical
point of view following the consequences of Taylor’s argu-
ments,'* and by following the dynamics of various plasma
modes."*~1® A detailed description of this effect, and the
relaxation it causes, will be given in Sec. II. The main
purpose of the present paper is to explore the relaxation of
mean fields in a plasma. Indeed, it will be shown that
such a relaxation expresses the tendency of the plasma to
approach a state of minimum rate of entropy production,
rather than a state of minimum energy,* which can
nevertheless be shown to be similar to a Taylor state if the
turbulent dissipation is strong enough. The relation be-
tween the two principles is discussed in Sec. III.

When investigating the principle of relaxation to a state
of minimum rate of entropy production, it is worthwhile
to note that such a principle is not valid for all systems.
Indeed, Prigogine’s original work on the thermodynamics
of irreversible processes!” found that such a principle
holds for finite dimensional systems in the linear regime
near the relaxed state and when the Onsager coefficients

_ relating diffusion forces to fluxes form a symmetric ma-

trix and can be taken as constant. In the nonlinear re-
gime, and when the aforementioned conditions are violat-
ed, it was proposed'® to use a so-called “local potential,”
the minimum of which should govern plasma relaxation.
Many authors!® later found that the local potential idea
was at most a means for generating a useful iteration
scheme for the solution of a steady state, much like
Galerkin’s method, but with no dynamical meaning. In
particular, one could not assert that a system will be
driven dynamically to relax to the steady state obtained by
the local potential method. In this work we develop an al-
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ternative description of plasma relaxation, one with a
dynamical content. Indeed, it will be shown in Sec. II
that a state minimizing an appropriate entropy production
functional is a steady state of the system and, moreover, it
attracts neighboring states and brings about their relaxa-
tion.

The relaxation of more general systems is considered in
Sec. IV, where, again, a steady state is shown to be
reached dynamically as a result of an entropy principle.
This result too is only “local,” in the sense that the
minimum-entropy-production state is only shown to at-
tract states sufficiently close to it. We also construct an
iteration scheme based on our entropy-production princi-
ple, and show that it has’good convergence properties to
the desired state. The scheme’s relation to the local poten-
tial method is then discussed. Finally, in Sec. V we work
out a special example and apply our iteration procedure to
the nonlinear heat equation.

II. RELAXATION OF MEAN FIELDS IN A PLASMA

The magnetic field B evolves according to Faraday’s
law 0B /9t +V X E=0, where the electric field E is deter-
mined by Ohm’s law for a resistive plasma

E+vXB=1J, (1)

with J being the current density, J=V X B, 7 is the elec-
trical resistivity, and v is the plasma velocity. In this
work we consider 77 to be a prescribed function of space.

The plasma is assumed to be described by a mean state on .

which are superimposed small fluctuations of zero mean
but varying on a faster time scale and a shorter length
scale. Denoting mean quantities by subscript O and fluc-
tuating quantities by subscript 1, we have B=By+B,,
v=vVy+Vj, and the mean Faraday’s law reads

3B, ,

?‘{‘VX(?’]JO_V()XB()-—?):O ) (2)
where

$=(V1XB1)0 . (3)

& is the mean of the quantity in parentheses, and the
mean may be viewed as either an average over an ensem-
ble or as a space-time average over the scales of' the fluc-
tuations. Equation (2) is also used in the magnetic
dynamo problem?® where, however, progress has been lim-
ited because of the fact that an expression for & is not
known. In the case of confined plasmas, fortunately, fur-
ther progress was made possible by the derivation of some
properties of & and, following that, by the determination

of the functional form of &(By) in some cases.!>'® Two

important integral properties of & which hold when the
fluctuation level is low enough and the resistivity 7 is
small enough, are

[ &3dr=— [ n0hdr, [ &-Bydr=0, @

where both equalities are correct to order n, and the in-
tegrals are taken over the plasma volume. These proper-

ties suggest!>! that in a low pressure plasma, with J,
nearly parallel to By, & satisfies

Jo'Bo

(5)
B)

& By=V-(K*VLA), A=

where K? is some positive function. Indeed, a detailed ex-
pression for K? was derived from the dynamical equations
of certain plasma modes.!*~1¢ A typical functional form
of & was derived for a cylindrical plasma of radius a
with all mean quantities depending on the radius r
only.'>1¢ A simplified version of this form, after exclud-
ing the radial component which does not enter Eq. (2), is

1 ) NP0,
& =a——(na’*Bi\N)YBy+B—-TXBy . (6)
rB(z) n 0 o+B B% 0

& deviates from (6) near r =a so that it vanishes at the
boundary, as follows from (3), when we require that v and
B be tangential to the boundary. In Eq. (6) By=|By|,
primes denote d/dr, a and 3 are some positive constants,
and p is the plasma pressure. pg is determined from B,
via the equilibrium relation

Vpo =J0>< Bo (7)

with the additional condition py=0 on "the plasma
boundary which is a magnetic flux surface. We note that
Eq. (7) is correct only up to order 1 and that it implies
that, even though plasma profiles diffuse in time, the dif-
fusion takes place through a-sequence of equilibrium
states. Indeed, vy in Eq. (2) is determined from the re-
quirement that Eq. (7) be satisfied for all time, as in the
diffusion theory of Grad and Hogan.?!

Before proceeding with the question of relaxation we
point out that if & is linear in 1, and vanishes as n—0,
then & must be a homogeneous function of degree one in
By. That is, réplacing By by ¢B; with some constant ¢
causes a change from & to ¢& . This is of course true in
the special case of Eq. (6) and results from the fact that
the full fluid equations are invariant under the transfor-
mation B—cB, v—cyv, p——»czp, t—t/c, Xx—X, and
n—cn. From its definition & —c2&, and our assertion is
verified when the assumed dependence of & on 7 is taken
into account. In the following we assume & to have this
property.

We now start our investigation of the relationship be-
tween relaxation and entropy production, by investigating
a simple example. Consider a solid toroidal conductor,
subject to an applied electric field. For simplicity we con-
sider the torus to be a straight periodic cylinder along the
z axis, and the external electric field to be applied in the z
direction only. The applied field enters the problem via
the boundary conditions

$rEdi=v, $pE-dI=0, (8)

where T is any simple periodic boundary curve in the axi-
al direction of the conductor, and V is the applied axial
voltage per unit length. P is any closed boundary curve
the short way around the cylinder. A fuller discussion of
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the boundary conditions for this problem is given in Ap-
pendix A, where it is seen that we can impose the addi-
tional requirements

B-fi=0, J-Hi=0 9)

on the boundary, with i being a normal vector. We also
specify the total axial magnetic flux ®. The magnetic
field evolves according to

JB

—E)?—I-VXE:O, E=nJ (10)

subject to the boundary conditions (8), (9), and a given ®.
Multiplying Eq. (10) by 0B /3¢ and integrating, we have

2

9 dr, (11)

Ly O

3B
at

where E, =V7Z is the applied electric field, and this term
enters through the boundary conditions as in Appendix A.
Equation (11) implies that the quantity
f d7(n¥?/2—E,-J) decreases monotonically during the
evolution of the system and ceases to decrease only when
0B /0t =0, that is, when steady state is reached. We refer
to this integral as the entropy production integral. It
should be noted that a similar result was derived by Prigo-
gine for some simple nondriven systems.!” It is suggestive
that the entropy production integral continues to decrease
until it reaches its minimum with respect to all possible
“admissible states.” Indeed, solving the variational prob-
lem

Minimize [ (37J2—E,-J)dr : (12)

subject to V:J=0, J-i=0 on the boundary yields the
steady-state solution nJ=E,. B is found by solving
VXxB=J, V-B=0, with B-i=0 on the boundary and ®
specified. [Note that in the more general toroidal
geometry the integral E,-J is replaced by the toroidal
current times the toroidal voltage, and the Euler equation
for the minimization is VX(7J)=0.] Moreover, the
linearity of problem (10) and its equivalence with the usu-
al heat equation implies that every initial state approaches
the unique steady state exponentially fast in time. [The
rate of exponential decay depends on the eigenvalues of
problem (10) with homogeneous boundary conditions.]
Finally, we mention that one may use the relation known
to hold in a steady state :

[ n¥dr= [ E,-Jdr, (13)

and to impose it as an additional constraint on the varia-

tional problem (12). An additional constraint which is

satisfied by. the solution of the original problem does not,

of course, change that solution. But using (13) we see that

the entropy production integral has the negative value
—nJ3?/2d7, so that (12) may be written as

Maximize f YT (14)

subject to (13), with V-J=0 and J-fi=0 on the boundary.
Expression (14) has the traditional meaning of entropy
production, and the steady state is found by maximizing
the rate of entropy production, subject to equality (13)
which is a statement of conservation of energy in steady
state. To conclude, we find in the case of the electrically
driven solid conductor that the relaxation of the magnetic
field is intimately related to some entropy production
principle. A state B represents the unique relaxed state if
and only if it minimizes the entropy production integral
as defined in (12) or, equivalently, maximizes (14) subject
to Eq. (13).

We now return to the case of the plasma. For simplici-
ty we deal with an incompressible plasma. This assump-
tion reduces the complexity of the problem by decoupling
the temperature equation from the equation for B, the
only one to be followed, and is consistent with the con-
sideration of 7 as a given function of space. (7 should ac-
tually depend on the temperature.) For additional simpli-
city we deal with a plasma inside a cylindrical conductor
as in Appendix A and, furthermore, we consider all mean
profiles to depend on the radius » alone. The effect of
this assumption is to cause the term vy XB; in Eq. (2) to
drop out, since only the radial component of v, enters (2),
but div vo=0 implies that the radial component of v is
zero. Likewise, By and J, have zero radial components.
(Appendix B describes the relaxation in a simple configu-
ration where the flow does play a role.) The evolution of
the mean magnetic field is determined by

%I}+v><(nJ-sf)=o, (15)
where from now on the subscript O is dropped. The term
in parentheses, namely the electric field, satisfies Eq. (8)
which here takes the form

nJ—&=E, on r=a, ‘ (16)

with E,=VZ as before, and &(B) is assumed to be a
known vector-valued function, as in Eq. (6) for example.
A finite plasma pressure may affect & but is again deter-
mined from B by Eq. (7). We note here that since the
tangential component of & vanishes on the boundary, Eq.
(16) actually involves only J. This property of & becomes
important when we integrate by parts and use
fB-(VX g)dT=fJ'$dT, while replacing & with nJ
yields additional contributions from boundary terms.

We proceed now with the question of relaxation. Equa-
tion (15) is nonlinear in B, and moreover, the precise
functional form of & (B) is not known. We can, neverthe-
less, proceed formally by considering the state at the ini-
tial time to be sufficiently close to a steady state such that
a linearized form of &(B) is valid. Let B° be a steady
state of (15), (16), and let SB=B—B°. We write

VX &=VXx&°+L6B+O(|8B|?), 17

. where superscript O denotes steady-state quantities and

where L is a linear operator (VX & is assumed to have a
Frechet derivative). We write L as L =S + A4, where S is
a symmetric operator and 4 is antisymmetric, both de-
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fined with respect to the usual inner product of square in-
tegrable functions. Note that L depends on B° but not on
time. Multiplying (17) by dB/dt, we have near steady
state

38; [ dr(in¥—E,-J—&"J—1S5B-5B)
2

9B | L o(|5B|%

35B
——deASB-—a—t——z——de ;

<0. (18)

The second integral on the left-hand side vanishes at
B=B° (6B=0). Moreover, its time derivative also van-
ishes when B=B? because of the antisymmetry of 4. If
we think of time derivatives as variations of a functional,
the last observation implies that the second integral does
not contribute to either the first or the second variations.
Thus, we disregard this integral and view the first integral
in (18) as an “entropy production integral,” the minimiza-
tion of which should yield the steady state B’. Moreover,
the inequality in (18) suggests, as in the case of the solid
conductor, that nearby states will be attracted, and relax,
to B®. These points are to be explored now.

We first simplify the entropy production integral. Us-
ing the assumed first degree homogeneity of & in B, we
assert that VX &°=LB°. This is seen by taking in Eq.
(17) 8B=aB", with some small constant a, so that

VX&B)=(1+a)VX &B)=(14+a)Vx &°.

The result then follows immediately from Eq. (17) by
comparing first-order terms in «. Using it in the entropy
production integral and rewriting it while keeping only
terms up to second order in 6B, the integral takes the
form (correct to second order)

= [disnP—5&T—E, I+ 1(&1°—&°1)] .
(19)

In this form no longer do we need to know the details of
S and A, since only & appears in (19). Note that the dis-
sipation due to fluctuations, — | d7 &-J, appears on an
equal footing with the dissipation due to the mean field.
(This is a result of the first degree homogeneity of & in
B.) The first variation of % with respect to B when
keeping J° and &? fixed reads (after identifying J with J°
and & with &°) 8.7 = [ dr8J-(nI°—&°—E,). Integra-
tion by parts yields the Euler equation

VX (n)°— &% =0, , (20)

and the natural boundary condition, which is exactly Eq.
(16). Thus, the first variation of (19) does indeed yield the
steady state. The second variation equals

82 = [ dr(n |87 |*—S8B-8B) , @n

and its positivity is necessary in order for B° to corre-
spond to a local minimum state of .. Returning to Eq.
(15) and linearizing it so that it reads

ag—?+v><(n51)—;53=o | (22)

we have, after multiplying by 6B,

-;-’; 1|6B|%dr=— [ dr(n|6J|>*—SSB-6B).  (23)
A comparison with (21) shows that the positivity of 825
implies that a state B sufficiently close to B° will be at-
tracted to it by the dynamics. We summarize the result as
follows.

Conclusion. A state B° corresponding to a strict local
minimum of the entropy production integral . is a re-
laxed state of the plasma, in the sense that (a) it is a steady
state of the system and (b) states sufficiently near it con-
verge to it in time (in the energy norm).

It is important to notice that our analysis is only local,
and applicable to states in the vicinity of the steady state
B®. We also emphasize that knowledge of B° has to be
assumed in the minimization of .*. This does not mean
that we need to know the solution before we find it.
Rather, the minimization must be achieved via some
iterative procedure, such as guessing B°, carrying out the
minimization and updating the guess. Section IV deals
with the question of the convergence of some natural
iteration schemes, but we mention now that the same kind
of procedure occurs in the Glansdorff-Prigogine'® local
potential approach, which in our case corresponds to
minimizing (as one possibility) f dr(n)?/2—&°J
—E,-J). Although the first variation of this functional
yields the correct steady-state equation, its second varia-
tion, which is always positive, has no relation to dynami-
cal stability. Further discussion of the Glansdorff-
Prigogine method will appear in later sections. We now
consider the likely steady states resulting from the tenden-
cy of the plasma to minimize the rate of entropy produc-
tion.

III. A GLOBAL ENTROPY PRINCIPLE

While in Sec. II we have shown that the plasma dynam-
ics causes relaxation to a state which yields a local
minimum of the rate of entropy production, we do not
have enough information to determine that state. The
reason is more than the fact that our analysis holds only
for small deviations from a steady state, and allows in
principle the existence of multiplicity of relaxed states.
The real difficulty is that we do not actually know the
functional form & (B). The special form (6) is an approxi-
mation'>!® based on a model of the turbulence, but the ac-
tual & could be much more complex. In this section we
attempt to develop an approximation to principle (19)
which requires as little information on & as possible.

We first rewrite the entropy production principle as

Minimize .7 = [ dr(373*—+&-J—E,-J), 24)
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subject to the wusual boundary conditions, and to
f dr(&-1°— &°.J)=0. Since the integral constraint is
satisfied identically by the solution of problem (19), im-
posing it does not change the result. To this constraint we
may add additional constraints which are also satisfied by
the solution. We choose to impose

[ dr(n¥—&-J-E, D=0, (25)
[ dr(n3B—E,-B)=0. (26)

These constraints imply that the amounts of energy and
helicity dissipated in steady state equal the amounts re-
plenished by the applied electric field. Moreover, they
correspond to the two properties expressed by Eq. (4)
which we know to hold for &. We now drop the con-
straint fdﬂ'(%’-JO—ZO-J):O, and thus dispose of the
need to know the detailed &, but at the expense of a pos-
sible error. The error is generated by allowing the station-
ary state of .Z to have too low a minimum value, and to
be, perhaps, dynamically inaccessible. What we gain is
that now the only information on & that needs to be sup-
plied’ is the single integral f &-Jdr. This may be ap-
proximated by a phenomenological expression such as
[ dr(K*| VA|2+L?|Vp|?) with K* and L? being posi-
tive functions of B, as in form (6). To summarize then,
we propose to minimize (24) subject to constraints (25),
(26), and a given axial magnetic flux. Corresponding to
the case of the solid conductor, we may also use relation
(25) to change the problem into the maximization of
f dr(n¥*— &-J) subject to (25) and (26). This integral
has the more traditional meaning of entropy production.

It is interesting to note that the error discussed before is
undetectable by the information we have. Thus, suppose
that the modified variational problem has been solved.
Denote the solution by B°® and define &%x)
=1J%x)—E,(x). With this &° the equilibrium condition
(20) is satisfied and, since we do not know the functional
form of &, it is not possible to tell whether our &P is
indeed &(B°). If we now minimize .% in (19), the solu-
tion is again B®. The only possible detection of the error
hereby generated using information we presently have can
be made by checking properties (4), but these properties
were imposed as constraints and are therefore trivially
satisfied.

We now discuss the relation between an entropy princi-
ple, such as the one proposed in this section, or the exact
one, Eq. (19), and Taylor’s minimum energy principle.* A
typical form for the turbulent dissipation, like the expres-
sion in Eq. (6), is

— [ &3dr= [ (aK?|VA|24BL2|Vp |d7, @7

where a and S are positive constants and K2 and L? are
positive functions of x and B. Equation (27) reflects the
fact that resistive instabilities?® responsible for the tur-
bulence are driven by current or pressure gradients. If a
and S8 become large, . and .¥ can only be minimized by
a state for which |VA| and |Vp| are small, such that
the turbulent dissipation terms remain comparable to oth-
er terms. (In fact, it was shown!® that a=1 is sufficient
to yield very flat A in some fusion devices.) In the limit of

a— o and B— w0, the minimizing state must therefore be
a Taylor state, with J=A¢B and Aq=const. Comparing
now constraints (25) and (26) for the Taylor state limit, we
find that in that limit [ &-Jdr—0 as well. The
minimum problem 1is thus reduced to minimizing
f dr(n¥?/2—E,-J) subject to a given amount of axial
magnetic flux, with B being a Taylor state. Equation (26)
is automatically satisfied by the minimum state and from
it we get

[ E,Bdr
Ao="F—7 (28)

f nBdr

Substituting in the entropy production integral we find
2

_ f E,'-B d’r]

== (29)
2 f nBXdr

Notice that f E,-Bdr equals the applied voltage times
the axial magnetic flux, and has therefore a given value.
The minimization of entropy production rate is then
achieved by minimizing [ nB?dr. Thus, if subject to a
given toroidal flux, more than one Taylor state can be es-
tablished in a device, the entropy principle predicts that
the relaxed state will be the one with lower | nB%dr. For
n=const, namely for a constant temperature which ap-
proximately holds in turbulent plasmas, this criterion cor-
responds to minimizing the magnetic energy. The energy
criterion is considered to have been verified experimental-
ly,3 most dramatically in multipinch experiments23 where,
in case of bifurcated solutions, the plasma appears to
choose the state of lower energy. It is as consistent to
conclude that the plasma is merely minimizing the rate of
entropy production. ' '

IV. ITERATION SCHEMES

We return now to the problem of minimizing the entro-
py production integral .#, defined in Eq. (19), which has
the peculiar feature of depending on the test function B as
well as on the solution B. In this section we consider
& (B) to be known so that the solution of the exact prob-
lem may be sought. Our main result here is the construc-
tion of an iteration scheme which, starting with a suffi-
ciently accurate initial guess, is shown to converge to a
steady-state solution as long as this state is a local
minimum of the entropy production integral. We will
also compare our method with the Glansdorff-Prigogine
(GP) scheme.!®

The discussion may be simplified if we cast the problem
in a general form rather than deal with the special form
suitable for a plasma. In order to develop a better under-
standing we will describe in Sec. V the special case of the
heat equation. Consider then the equation

P N(w)=o0, (30)

ot
where P is a positive definite linear operator which may
depend on u, and N is a nonlinear operator. We use the
usual inner product for square-integrable functions and
proceed formally while assuming that the domain of the
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operators considered is rich enough to yield a meaningful
problem. An example of Eq. (30) is the nonlinear heat
equation

2L _v.nvrI=0, 31
where «(T) is a positive function, and the temperature 7'
is required to have a prescribed value on the boundary of
some spatial domain. We first derive the appropriate en-
tropy production principle. Multiplying (30) by ou /0t,
we have

[arvw<o. (32)
at

Expanding N (u) about a state uy we have
N(u)=N(ug)+(S + A —ug)+0(|u —uy|?, (33)

where S is a symmetric and A4 an antisymmetric linear
operator, both depending on u,. Using this expansion in
(32) and dropping the term containing 4, as in Sec. II, the
problem reduces to minimizing

J (Nwou +F[S(u —ug)lu —ug)}dr (34)

which is analogous to the minimization in Eq. (19). The
minimum is sought with respect to functions u, while u,
is held fixed. The Euler equation for minimizing (34) is

Notice that the minimum of (34) exists if and only if S is
positive definite. Equation (35) is, of course, the steady-
state equation of Eq. (30) when u =u,.

A natural iteration scheme for the variational problem
(34) is to guess u,, minimize (34) or, equivalently, solve
(35) for u, rename it u, and continue until convergence is
achieved. Let us explore the convergence of such a
scheme. Let % be the actual solution of N (i#)=0, and
consider ug to be close to #. Also, let Su=u
—1u,0ug=uy—1u. Expanding all terms in (35) about #
and keeping only first-order terms (in the deviation from
%) we have,

N(7)+(S+A4)8ug+S(8u —8ug)=0 . (36)

The bar over S and A indicates that they are evaluated at
u. Using N(u#)=0, Eq. (36) can be written as
Séu+Aduy=0. This equation determines the conver-
gence of our scheme. The scheme converges if the spec-
trum A of the problem

— Av=ASv (37)

satisfies |A| <1. Here we assume, for simplicity, com-
pleteness of the spectral expansion based on (37). Note
that in order to be consistent with the minimization prob-
lem (34) we still require S to be positive definite. If 4 is
bounded with respect to S, which implies that the spec-
trum A is bounded, and which is often the case (as will be
seen in Sec. V for the heat equation), the iteration scheme
may be improved. Instead of using u as the next guess in

place of ug, let us “back-average” and take as the next
guess a linear combination w =au +(1—a)u,, with a
some real constant. Then Sw=w — 7 =adu + (1 —a)du,,
and Sw solves S8w =[ —ad +(1—a)S16u,. This itera-
tion converges if the spectrum p of the problem

[—ad+(1—a)STv =uSv , (38)

satisfies l,u | <1. We rewrite this problem as
—Av =a~ (u+a—1)Sv, which has the form (37). Thus
p=ai+1—a. Since A is purely imaginary because of the
symmetry properties of the operators in (37) (as long as S
is also definite), we have

|| ?=a? | A2+ (1—a)?. (39)

Minimizing the right-hand side with respect to a, we find
that the minimizing a equals to (1+ | A |2)™!, and then

2

1.
ENPNER

As seen from (39), if the value of a taken corresponds to
the largest | A |, then the entire u spectrum will be inside
the unit circle. We summarize as follows.

Conclusion. If S is positive definite and A4 is bounded
with respect to S, there exists a back-averaged modifica-
tion of the simple iteration scheme based on the variation-
al problem (34), which converges locally to the steady
state @ with N (77)=0.

The interesting feature of this result is its relation to the
dynamics of the problem, Eq. (30). The linearized form
of this equation reads

P—Qé‘s—tl‘—+(§+2)8u =0, 41
and implies that du—0 in time (i.e., u—#) if the real
part of the spectrum of S+ 4 with weight P is positive.
A sufficient condition for this to occur is that S be posi-
tive definite. Our result means that we are guaranteed
convergence of the iteration scheme as long as we are
guaranteed relaxation of the dynamical system via the
positivity of S. An additional advantage is that the itera-
tion proceeds by solving the symmetric problem (35) for u
thus, for example, enabling the utilization of a spectral ex-
pansion. Let us compare our approach with that of the
GP scheme.'® While in general their minimizing func-
tional can be arbitrary as long as it produces the correct
Euler equation, and thus has no relation to the dynamics
of the problem, occasionally z particular choice may be
very useful. Thus, it may happen (as in the heat equation)
that we can write N (u)=L,u, where L, is a positive de-
finite linear operator which depends on u. The GP
scheme seeks to minimize successively f dr(L,u)u/2,

which amounts to successive solutions of L, ¥ =0, with

uo taken as a guess and u is the updated guess. Expand-
ing all terms about # and keeping only first-order terms,
we have (in our previous notation)

Léu +(L8uy)z=0, (42)

(| ?=

where (L ;8u,) is the first-order term in the expansion of
L. Since N(u0)=Lu0uo for all u,, we can expand the re-

lation about # and get to first order (S+4)8u,
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=L8ug+ (L 8ug)a. Substituting the result in (42), we
have Ldu +(S+A4 —L)buyg=0. Thus, the GP scheme
converges if the spectrum v of the problem

[L—(S+4)v=vLv (43)

satisfies | v| < 1. The positivity of S only implies Rev < 1
and does not guarantee convergence. However, back
averaging can still produce a convergent scheme. Using
w =au +(1—a)uy as the new guess in place of u, with a
real constant «, we obtain convergence if all |u] <1,
where u =av+1—a. Minimizing |u |? with respect to &
for a particular v=v, yields a=(1—wvy,)/|1—vy|?
where subscript r indicates the real part. For this a we
have

2(1—v, (1 —w,)

!1*"0|2

(1—vg, )* | 1—v|?

\1—"0\4

lu|?=1—

Using v, < 1, the requirement |u | %<1 implies -
1—w,

[1—v[?~

I—Vor

(44)
[ 1—vo|?

This inequality can easily hold for all v if we choose v,
such that it minimizes (1—vy,)/ | 1—v,|?2 over the spec-
trum v. The minimized quantity is simply Re(1—v)~L
The transformation z=(1—v)"! maps the half plane
Rev < 1 onto the half plane Rez > 0, in which is contained
the image of the spectrum v. Thus, an appropriate v, ex-
ists and the back-averaged GP method converges if S is
positive definite. We again remind the reader that this re-
sult has only been shown to hold when N (u)=L,u with
L, positive definite."

We conclude this section with a remark about some
freedom we have in writing Eq. (30). The equation may
be multiplied by QP~!, with Q some positive definite
operator, and then N is replaced by M =QP ~!N. The en-
tire discussion can then proceed as before, but the linear
part of M, yielding S and 4, is now changed. Likewise, u
itself may be transformed. Clearly, one should use this
freedom to make A as “small” as possible compared to S,
having the maximal |A| in (37) become as small as possi-
ble for fastest convergence (as long as S remains positive
definite). Once the entropy functional has been deter-
mined, however, a transformation of u will not change
matters. Indeed, transforming u to w gives rise to the
linear transformation of du =T8w, with S transforming
to T*ST (T* is the adjoint operator to T), and similarly
for A. The convergence of the scheme is not affected by
such a change.

V. THE NONLINEAR HEAT EQUATION

A simple illustration of the iteration scheme discussed
in Sec. IV may be obtained by considering the nonlinear
heat equation (31) which is widely used as a model for
diffusing systems. By transforming from T to 7(T) such

that d7/dT =«k(T), the equation takes the almost linear
form k~'97/3t=V-(V7). It is possible to derive an exact
entropy principle for this equation by multiplying it by
d7/dt and showing that the integral of |V7|? (up to a
boundary term) decreases monotonically in time. We will

not proceed in this way in order to generate a nontrivial
problem. The GP approach!® uses the variable u =T ~!
(the gradient of which is a diffusion “force”), so that Eq.

.(31) is rewritten as

—20u
at

which is a form useful for back averaging, as discussed
before. We consider u to be defined in some finite
domain with a prescribed value on the boundary (a Dir-
ichlet boundary condition). Let f(u)=x(u""u =2 and
expand f(u) about some ugy: f(u)=fo+f1(u—uy)
+ 0, with fo=/f(uo), f1=df(uo)/du,. Also, denote
#=u —uy. The linear part of the operator N (u), as in
Eq. (33), is (S+A)u=—V-(f1uiVuy+ foVii). Note that
% vanishes on the boundary. By examining the quadratic
form of S + A which eliminates the contribution of 4, we
find

St =—V-(foVit)— 57 V-(f1Vuy) , (46)

—V- [k "YHu"Vu]=0, (45)

and S is a second-order operator, while A is only first or-
der. Following Eq. (35), our convergence scheme requires
that we solve successively

The GP method, in contrast, requires the successive solu-
tion of the somewhat simpler equation V+(f,Vu)=0.

We now consider a special case suggested by Kruskal
for which the convergence of the GP method has been in-
vestigated.”* Let u be a function of x only, 0 <x </, and

- the prescribed boundary conditions for T are

T(0)=a, T()=b. (48)

We also take k(T)=1 so that f(u)=u"2 and thus
fo=ugyif1= —2ug®. (Note that always, f,Vuo=Vf,.)
It was shown in Ref. 24 that the GP scheme converges for

_ 12 b
e 2mw/(3) <—<e
a

2m/(3)172 . (49)
In our back-averaged method we need only be concerned
with the positivity of S. Let T(x) be the exact steady-
state solution of (45), d*T /dx?>=0, so

x

+b7 . (50)

x

T(x)=a ]

1—

Writing the equation Si# =0 explicitly, we have from (46)

1d%T?)
2 dx?

4a
dx

724U

=0 . 51
™ =0 (51)

By a standard oscillation theorem, S is positive definite if
and only if any solution # of (51) vanishes no more than
once in the interval 0<x </. A general solution can be
obtained by considering the function #=T ¢, where c is
constant. Notice that dT /dx =(b —a)/I, a constant, so ¢
must satisfy the indicial equation

¢?+ec+1=0, (52)

except for the case dT/dx =0 for which S is trivially
positive definite. The solution of (52) is c¢=(—1
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+iv'3)/2. Thus, & oscillates as sin(+v31InT) and the
nonoscillation of # in the interval implies exactly that cri-
terion (49) holds. In this special case, therefore, the local
convergence properties of our back-averaged scheme and
the GP scheme are identical. If we back average the GP
scheme in this model example, it can be shown to con-
verge for a wider range of b/a than our scheme.
Nevertheless, in general, as in the plasma case for exam-
ple, there does not appear to be a particularly useful GP
functional, and our scheme is apparently the natural one
to use. In particular, if 4 =0 then Eq. (37) implies that
the scheme converges and has a better accuracy than first
order. In fact, in this case it reduces to the usual Newton
method for solutions of N (u)=0.

VI. CONCLUSIONS

This article presents a dynamical description of the ob-
served tendency of a plasma to relax to some preferred
steady state. The present understanding of this
phenomenon, which is based on Taylor’s minimum energy
principle,* involves neither a dynamical nor a strictly ther-
modynamical description of the relaxation. Our ap-
proach, in contradistinction, does address these two as-
pects. What is shown to relax is the mean magnetic field,
the evolution of which is governed by Eq. (2). The relaxa-
tion occurs if the system is in the vicinity of a state
representing the minimum of some entropy production in-
tegral, as defined in Eq. (19). The physical effect causing
the relaxation is the resistivity, both the collisional resis-
tivity 77, and the turbulent eddy resistivity due to the fluc-
tuations which affect the mean field through the genera-
tion of &.

We caution that reaching these rigorous conclusions re-
quires some strong assumptions about the plasma. In par-
ticular, our analysis is carried out for incompressible plas-
mas in a cylinder. The incompressibility assumption
brings about vast simplification, as we are relieved of the
need to consider the evolution of the temperature, espe-
cially since heat conduction in confined plasmas is so
poorly understood. The addition of a temperature equa-
tion would appear at first glance to pose only technical
difficulties. The really new element that would be intro-
duced, however, is the effect on the evolution of mass
flow. We have eliminated the flow from our problem by
making the cylindrical assumption. In general configura-
tions, or even for a compressible plasma in a cylinder, the
flow has to be taken into account. We do not know what
the possible effects of the flow could be, especially since
there is no independent evolution equation for it, and it is
determined indirectly by the requirement that Eq. (7) be
satisfied at all times. A very simple case which includes
flow is treated in Appendix B and suggests that our re-
sults may still hold. Likewise, employing an aspect ratio
expansion which is suitable for tokamaks, it has been
shown? that the evolution of the magnetic field is in-
dependent of the flow. Whether such conclusions hold in
the general case is left as an open question.

A second set of results involves the construction of
iteration schemes based on the entropy principle to calcu-
late the relaxed state. One such scheme is shown to con-

verge as long as the steady state represents the state of
minimum rate of entropy production. We also compare
our scheme with the “local potential” method of
Glansdorff and Prigogine.!®* While the latter method is
not based on the dynamics of the evolution problem, we
find that by a suitable “back averaging” it is possible to
improve the method in some cases so that it also con-
verges if the relaxed state is a state of minimum entropy
production. :
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APPENDIX A: BOUNDARY CONDITIONS
FOR A DRIVEN PLASMA

The common idealization whereby the solid wall sur-
rounding a plasma is taken to be a perfect conductor, is
not suitable when the plasma is driven by external fields.
A perfect conductor isolates the system from outer elec-
tromagnetic fields and does not allow the driving force to
penetrate and affect the plasma. This can be easily seen
from Faraday’s law

9B +VXE=0, (A1)

ot

which implies that the magnetic energy evolves according
to

% 1Bdr=— [BJdr— (ExB)adS, (A2
where the last surface integral is taken over the boundary.
On a perfect conductor, E is parallel to the unit normal 0,
the last integral vanishes, and no electromagnetic energy
enters or leaves the system. Seeing it even more clearly,
the loop voltage P E-dl measured as a line integral over
any closed curve on the boundary, trivially vanishes with
no possibility for an electric drive.

We get around this difficulty by imposing the following
boundary conditions (in a toroidal configuration):

B'fi is given and time independent , (A3)
Jn=0, : (A4)
$rEdl=v;, $rEdl=V;, (AS)

where the subscripts T and P refer to simple curves lying
on the boundary and closing on themselves in the toroidal
(the long way) and poloidal (the short way) directions,
respectively. Vr and Vp are the applied voltages. For
confined plasmas, the physically necessary form of (A3) is
B-fi=0. Condition (A4) may be interpreted as approxi-
mating a thin vacuum (or cold plasma) layer between the
plasma and the wall, which prevents currents from flow-
ing into the boundary. Condition (AS5) requires some ex-
planation. The reason the line integrals used there do not
depend on the particular curves but only on their homolo-
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gy class, is that from (A1) it follows, after using (A3), that
f-(VXE)=0 on the boundary. Thus, the component
tangential to the boundary of any E satisfying (A1) is a
surface gradient for which (A5) may be prescribed. No-
tice that (A4) implies that B must also be a surface gra-
dient. It now follows that

¢ ExB)ads=V, P B-dl—V; $,Bdl .

Here, the outer normal, the poloidal, and the toroidal
directions form a right-handed system. We see that the
electromagnetic energy supplied to the system is expressi-
ble in terms of the applied voltages times the total
currents in the appropriate directions. [The line integrals
of B yield total currents and are also curve independent
by (A4).] Relation (A6) means that the boundary is only
“imperfect” with respect to the applied electric field, but
otherwise retains its insulating property. Physically, con-
dition (A6) may model the case of a highly conducting
boundary through which the applied electric field is able
to penetrate over a time longer than the wall skin time,
but faster changes still come up against a perfectly con-
ducting wall.

An indication that the boundary conditions (A3)—(AS5)
give rise to a well-posed problem (up to boundary condi-
tions on the velocity) may be seen when Eq. (Al) is ap-
plied to a solid conductor rather than a plasma. In this
case E=nJ, where 7 is some fixed function. Equation
(A1) becomes essentially a vector heat equation for B, and
conditions (A3) and (A4), together with the restriction
(which is merely an initial condition) V-B=0, count as
the three required boundary conditions. The necessity of
the two period conditions (AS) is seen from a uniqueness
proof. If B; and B, are two solutions of the system, and
are equal at =0, define B=B;—B, and use Eq. (A2).
Noticing that the boundary voltages corresponding to B
both vanish, and using (A6), we get

2 [ 4Bdr=— [ wrdr<0. (A7)
B =0 initially implies B=0 for all time. We note that the
proof would have alsp worked if instead of (A5) the values
of QS rB:dl and pB-dl were imposed. This corre-
sponds to driving the system by passing a prescribed
amount of current in it. Likewise, a combination of
prescribed currents and voltages may also be imposed. Fi-
nally, we note that if the system is only driven toroidally,
with ¥, =0, the total toroidal magnetic flux is constant in
time. Any relaxed state of the system carries the toroidal
flux it had initially. As seen in Sec. II, the current in a re-
laxed state may be independent of initial conditions, but
solving for B requires that the toroidal flux be known.

(A6)

APPENDIX B: EXAMPLE OF PLASMA
RELAXATION WITH FLOW

We consider a two-dimensional, incompressible plasma
in which the flow is laminar. Both the velocity field v
and the magnetic field have only x,y components, and z is
an ignorable coordinate. Also, 7 is taken to be a constant.
The system is driven by a voltage V applied in the z direc-
tion. The evolution equations are

0B

"iaT—FVX(UJ—VXB):O , (B1)
Vp=JXB, (B2)
V-v=0, (B3)

and v-fi=0 on the boundary.
flux function 1, we can represent

Introducing a magnetic

B=ZxVy, J=(A¢Y)Z, (B4)

and Egs. (B1) and (B2) take the form

%’tﬁ+v-v¢=nA¢—V, (BS)
__©op
Ay= 2y - (B6)

p =p(¢,t), and dp /Y is a derivative with ¢ held fixed. ¥
is given on the boundary, a condition appropriate for a
perfectly conducting wall. Multiplying Eq. (B1) by
dB/0dt, we have

[ [B}+3,-(nJ—E,)+3,-(Bxv)]dr=0, (B7)

where E, = V'Z and the subscript ¢ indicates a time deriva-
tive. Using (B2) we see that

[ 1-Bxvdr=— [ GXB)-vdr+ [ v-Vpdr,

but we note that the last integral vanishes because of (B3).
The first integral on the right-hand side may be evaluated
by using Egs. (B5) and (B6). We have

[ 1-Bxvidr= [ Ap(v-Vy,)dr

= g_i[wvmap/arﬁ)+v-V<V'V¢>]dT-

The first term integrates to zero and the second term

yields f — | v-Vy | ?3%p /3y?dr. Thus, Eq. (B7) takes the
form
8 [ (1,2 E..
o [ (G’ —E,ndr
oB azp 2
- 9B _ 9P . dr. (B8
3 o |v-Vy | T (B8)

The pressure profile of a confined plasma is typically par-
abolic, going from a maximum value at the center to zero
on the boundary. If the steady-state pressure has this
property then 8%p /3y? <0 and the right-hand side of (B8)
is negative for neighboring states until B,=0 and
v-Vi=0. This result suggests relaxation via the minimi-
zation of the same entropy production functional used in
the solid conductor case of Sec. II.
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