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We prove that the transition to a convective pattern in a Rayleigh-Benard cell with a step in the
heat input can be obtained by restricting the system to the locally attractive and locally invariant
center manifold in phase space. The problem of providing the adequate scaling factor for the ran-
dom source in the order-parameter equation is solved and the theoretical findings reproduce satis-
factorily the experimentally measured time dependence for the convective heat flow.

I. INTRODUCTION

The contraction in phase space in dissipative systems
beyond a symmetry-breaking instability can be studied by
means of the center-manifold (CM) theory, provided that
there exists a separation of the relaxation-time scales at
the onset of the convective state or dissipative struc-
ture. ' 4

The basic tenets of this theory can be stated as follows.
(i) Let Xf= (XfJ ) denote the vector of fast-relaxing de-

grees of freedom with associated damping constants
A, '~' &&0 and X,=(X, ; ), the vector of order parameters.
Then, after a relaxation time T&M, given by

the probability density functional P (Xf,X„t) is con-
strained to a narrow strip about the CM in such a way
that

((Xf))=Xf(X ),
where (( )) represents an average over an ensemble of
realizations of the random source field and Xf —Xf(X, )

is the CM equation representing the adiabatic following
or statistical subordination of fast variables.

(ii) In order to allow for a continuous flow of probabili-
ty about the CM and obtain the reduced Fokker-Planck
(FP) equation which characterizes each particular unfold-
ing, certain scaling relations determining the strength of
the statistical fluctuations must be fulfilled. In order to
clarify this point, we should first consider the fact that I'
is factorizable in two factors: a time-dependent factor
Q, (X„t)=Q„and a time-independent factor Qf(Xf,X, )
= Qf peaked at the CM. That is,

P=Q Qf .

The factor Q, satisfies the reduced FP equation which
describes the transition to a convective state or dissipative
structure. This equation must be derived from the general
FP equation satisfied by P, making use of relation (3), by
integration with respect to the fast variables along the
CM. In order for this reduction to be possible, the Gauss-
ian width of Qf about the CM should be properly scaled

with the unfolding parameter and with the effective dif-
fusion coefficient.

Each particular unfolding beyond a symmetry-breaking
instability has a defined-scaling associated with it. This
scaling will prove to be of paramount importance in
reproducing the experimentally found transition to a con-
vective state.

The context we shall deal with in this work consists of
a Rayleigh-Benard cell swept through its threshold by
means of a controlled heat input. The temperature of
the bottom plate is time dependent and therefore the Ray-
leigh number R is also time dependent. We shall restrict
ourselves to the case of a step in the heat input. The
theory determines the effect of the fast hydrodynamic
modes which have been projected out when obtaining the
order-parameter equation. This effect is responsible for
the occurrence of an inhomogeneous term in the order
parameter equation. The contribution of these intrinsic
fluctuations allows us to properly account for the transition
to the convective state which could not be obtained from
the homogeneous order-parameter equation.

Thus, we shall not find it necessary to model the effect
of the fast variables with a Langevin source of a
phenomenological origin; instead, the homogeneous order
parameter equation with the source added will be shown
to be equivalent to the CM-reduced FP equation.

We shall demonstrate that the empirical factor neces-
sary to fit experimental data on the time dependence of
the convective heat flow can be obtained from the CM
treatment.

II. CENTER-MAN IFQLD EQUATION

V=X, +Xf . (4)

After a relaxation time of 0 (TcM), this field restricts
itself to the CM and therefore Eq. (4) leads to

((v)) =X,+Xf(X ) .

In general, the stochastic vector field describing the
state of the system, V, near the threshold admits the
decomposition
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This equation simply gives the adiabatic following or
statistical subordination of fast variables. The aim of
this section is to determine the vector field Xf(X, ) for the
convection problem. Following standard notation, we
write:

state to the eigenspace of D generated by the modes
which are excited at the onset of convection. To a first
approximation' ' this equation can be obtained by adia-
batic elimination

V( )e( )

i)2 lql =qp

(]) (&)X, = g Vq

(6)
V 0 J —2 t —TCM

Or, equivalently,

O=(e(qj', D'V+SD V+N(V, V) —aP),

(13)

(14)

where V=(8,u, w), u=(u, u), (u, v, w) is the velocity field,
and 0 is the deviation of the temperature from the linear
conducting profile between the boundaries z =O,z =1.
The field V obeys the Boussinesq equations. The dis-
tance, time, and temperature are scaled, respectively, by d,
d /x. , and ~v/agd, where d is the cell height, I(: and v the
thermal and viscous diffusivities, and a, the thermal ex-
pansion coefficient.

The eigenvectors eq"s depend on the vertical coordinate
z and are proportional to exp(iq r) where r is the horizon-
tal vector, q a horizontal wave vector, and qo the critical
wave vector for convective onset. The linear self-adjoint
Boussinesq operator with eigenvectors eq', i ) 1 is D de-
fined as:

02+2+
az2

Where 5D is the matrix with zero in every entry except
in the place of R, in Do. In that entry there is the ele-
ment 5R =R —R, . The term N( V,V) corresponds to the
nonlinear part of the Boussinesq operator and it is given
by

N(V(, Vq) = —[V( B]V2,

where

(15)

B=(O,V, B/Bz) . (16)

Neglecting terms of 0 (e) and noticing that the integra-
tion by parts gives (eq~', BP ) =0, we get

Vqj' ——
~

A, qj'
~

'(eqj', N(V, V) ), j & 2 . (17)

The equation can be simplified further by retaining only
the slow modes in the nonlinear part,

(18)

0 o. V+
Z2

2
a'

o. V+
BZ

III. SCALING FACTOR FOR THE RANDOM
SOURCE DETERMINING THE TRANSITION

TO THE CONVECTIVE STATE

(8)

The gradient V refers to the horizontal vector r, R, is the
critical Rayleigh number and o. is the Prandtl number.
Free boundary conditions are assumed. ' The Fourier
coordinates are defined in the canonical way

The inner product ( V&, V2) is defined by

(V&,V2) =[o0(Oq+R, (u( uz+w~ to2)] (10)

e=(R —R, )/R, . (12)

The CM has the local dimension of the order-parameter
space and it contains the locally attractive and locally in-
variant behavior of the system. It is tangent at the steady

The symbol [ ] indicates that we are averaging over a
layer, that is, along the vertical direction given by the
coordinate z.

The Nusselt number X is determined from the convec-
tive heat flow which is given by (N —1)R/R, . Thus, we
have

(N —1)R
Rc

The constant c will be given later. The scaling relations
will be given in terms of the small parameter t defined as

This section is devoted to showing how the probability
density is distributed along and about the CM at the onset
of convection.

The distribution along the CM, Q„ is determined by
the reduced FP equation which is equivalent to the order-
parameter equation with a Langevin term added. The
crux of the argument is that, in order to determine this
distribution, we must properly display the relative size of
each term in the FP equation integrated with respect to
the fast variables. This implies that the distribution about
the CM determines the distribution along the CM. Alter-
natively, the relative size of the terms is displayed by
proper scaling of the Gaussian width of Qf.

The starting point of the CM theory is the general FP
equation for I',

BtP= — g g g (, (V "P)

q, q' ij&1

This equation is subject to the conditions'

P =Q/(I Vq'Iq, )Q.([ Vq" Iq, &), (20)

Q/= H H(g,"/~)'" exp[ —g,"(V,"—(( V", )&)'] .
lql =qp i&2

(21)
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In order to be able to scale each term in the resulting equation, the diffusion coefficients dq s are factorized as
dqJ' =kd qj', where k is a small parameter to be properly scaled, and d qj'=O(1). Making use of relations (20) and (21),
the general FP equation (19) can be integrated along the CM as given by Eq. (18), to yield the following relation:

a,„,(((V,("))Q,)+((V,(")&g g '
... g, — g g(a, „,&(V,())))g,

2gq
~

iql =po

g 2k'(d"')'g"'Q, +g g 4k'd"'d"'g"'8 (« V,"')&)Q,+k'gd', "d, t)', Q
iqi =~o j~2 q, q' j&2

+k' g d"'d "' g '

q, q', q"

(j)~ p'(1)g q
q

(J) () y(1) Qs +
g q

~ y(1) y(1)g q"

2g (j)

(j)~ y(1)gq"
q

(j)gq"
—2gq'(8 „,&( Vq')) )' Qz

' . (22)

This equation has been obtained making use of the fact
that Qf behaves like a 5 function peaked at the CM when
the strength of the statistical fluctuations is small. It suf-
fices to show [cf. Eq. (21)] that the Gaussian width tends
to zero, or the gq s tend to infinity, when the noise inten-

sity tends to zero. Specifically, we have used the facts

Thus

c=[cr(8o) +R, (
~

u()
~

+w()) ]'~

c = [(wo8o) /R, ]' c

Thus, the reduced FP equation is

(29)

(30)

(a) ((M(x„xf) )) =M(x„xf),
(b) IMQf dXf —M(X Xf) .

(23)

(24)

[e ko(V'+qo—)' g4']4+f —(r, t
Bt 'ro

We must adjust the Gaussian widths g~~'s so that relation
(22) becomes an equation of continuity for Q„ that is, we
have a conserved flow of probability on a strip about the
CM. The aim is to reduce Eq. (22) to a FP equation
equivalent to the empirical Langevin equation proposed
previously,

a, g, = —g a,„,I(( V,("))g, I

I

+k2y d (1)d (1)g2 g
q q

(31)

(32)

The quantities k and g&~', j bigger than 1, are of O(1).
We also have

In order to obtain Eq. (31) from Eq. (22) we have to intro-
duce the following scaling relations:

-(j)

(el')

where the inhomogeneous term was regarded in previous
treatments ' of this problem as a phenomenological
source term. This forcing field modeled the effect of the
fast hydrodynamic modes which adjust themselves in the
adiabatic following. The parameters in Eq. (25) were
evaluated, cf. Ref. 5 and 9, ro (3' /2)[o/(o+1)]-—, '

go=8/3n ~ go=4qogo~ cr=0 78~ qod ='n/v 2~ g =0.5.
The radius of the cell under consideration is I. =4.72.
The order parameter is defined as follows:

1 N
G = lim —g g'J)

j=l

0.02—

(33)

tir=c g Vq 'exp(iq. r) .
q

(26) O

001 — ~

The constant c is obtained from the following relations
(cf. Ref. 9):

iqu()(z)

e"'(r,z) = — wo(z) e'q'

(9p(z)
10

where

u p(z) =4i cos(1rz),

w()(z) =2v 2sin(1rz),

gp(z) =9K 27r sin(vrz) .

(28)

FIG. l. Integration of Eq. (31) making use of the scaling re-
lations (32) and (33) and the relation (34). The solid line
represents the convective heat flow given directly by c2~ ~X,

~

~2.

The experimental data was taken from Ref. 9 in the text. The
bifurcation parameter for the unfolding takes the value
e=0.049+ 1.049ngp/I. '. .



35 TRANSITION TO A CONVECTIVE ROLL PATTERN AS. . .

Then, to O(e), Eq. (22) reduces to Eq. (31) if and only

(j) g(j ) /( kd (j)
)
2

Rq =
q q

This relation represents the competition between the fast
drift towards the CM, given by the relaxation of the fast
hydrodynamic modes, and the statistical fluctuations
which give the diffusive effect. The relations (32)—(34)
and (21) justify relations (23) and (24). The parameters
bearing a tilde can be chosen arbitrarily with fhe only con-
straint being that they are of order 1. In this work they
have been chosen equal to 1.

The integration of Eq. (31), or, alternatively, of Eq.
(25), can be carried out making use of relations (32)—(34).
The solid line in Fig. 1 corresponds to the convective heat
flow given by c

~
~X,

~ ~

. The experimental data was taken
from Ref. 9. The step in the heat input determines e,
@=0.049(1+sr g()/L )+sr g()/L .

We observe that the theoretical prediction with the aid
of the scaling given by Eq. (32) exhibits a very good agree-
ment with the experimental data. Particularly, vis-a-vis
previous results ' in which Eq. (25) was integrated. In
previous treatments the intensity of the Langevin source
was corrected starting from the value for equilibrium
thermal fluctuations. For the analytic integration of Eq.
(25) see Refs. 13 and 14. We have adjusted the Gaussian
widths so that they exhibit an adequate competition be-

tween the fast drift towards the CM and the diffusive ef-
fect provided by the random source as given in Eq. (34).
The fast transient in the experimental data corresponds to
the time interval required to reach the lowest steady state
(cf. Refs. 9—12).

CONCLUSION

In this work we have been concerned with a Crinzburg-
Landau regime in the order-parameter space for the onset
of a convective-roll pattern. In correspondence with the
order-parameter equation for the two-dimensional smec-
tic, there exists a CM-reduced FP equation which repro-
duces the transition to the convective state. The competi-
tion between the fast drift towards the CM and the dif-
fusion provided by the inherent fluctuations determines
scaling relations among the small characteristic parame-
ters of the system. These parameters are (a) the Gaussian
width of probability about the CM, (b) the unfolding pa-
rameter for the pitchfork bifurcation in the order-
parameter space, (c) the effective-diffusion coefficient
representing the strength of the intrinsic fluctuations,
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