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A theory of the quantum-beat laser is developed using a general Fokker-Planck approach. An ex-

plicit expression for the diffusion coefficient for the relative phase angle of the two modes is derived.
It is shown that the diffusion coefficient can vanish under certain conditions.

I. INTRODUCTION

In a recent paper' it was shown that the linewidth and
the attendant uncertainty of the difference frequency be-
tween two laser modes may be eliminated by preparing the
laser medium in a coherent superexposition of two upper
states as in quantum-beat experiments. ' Such a
"quantum-beat laser" has potential for application in vari-
ous areas of precision measurement, e.g., gravitational-
wave detection ' and tests of metric theories of gravita-
tion .

The arguments of Ref. 1 were of a general nature but
expressions for the various laser parameter, e.g., gain and
cross-coupling coefficients were not given. In this paper
we develop a more general Fokker-Planck approach to
this problem and derive an explicit expression for the dif-
fusion constant for the relative phase angle of the two
modes. The conditions under which this diffusion con-
stant vanishes are given.

Before getting into the detailed calculations, let us first
advance the notion that the linewidth and attendant un-
certainty in the difference frequency between two laser
modes may be eliminated by preparing the laser n1edium
in a coherent superposition of two upper states as in
quantum-beat experiments. The heterodyne beat note be-
tween the two laser modes arising from these states can,
under the appropriate conditions, be freed of
spontaneous-emission noise. That this might be the case
can be shown semiclassically as follows. Consider the
atom of Fig. 1. The atomic state vector is given by

I
g&=« '

I
a)+Pe ' Ib)+ye

which implies that for the spontaneously emitted (semi-
classical) fields E) and E2,

—i(P —P }—iv)t

note, however, that the random phase P, cancels in the
heterodyne cross term
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Similar conclusions are obtained when the field is quan-
tized. The fully quantized state of the atom-field complex
1s
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where
I

1; ) is the state a;
I
0), i = 1,2 and a; (a; ) are the

creation (destruction) operators for photons having fre-
quency v;. Hence the expectation value of the electric
field operator E1,

E) ——8')(a, e ' ' +adj. ),
is easily seen to vanish, that is

(E )(=8' a)'y( Iac)e ' ' c.c.=O.
This happens because the states

I
a) and I c) are orthog-

onal. Similar arguments show that (E2) likewise van-
ishes. However, the expectation value of the operator
product E 1E2 does not vanish,

—t(k( —kp) r+i(v( —p)t

That is, the spontaneously emitted photons at v1 and v2
are correlated. This is the fully quantized analogy of the
preceding semiclassical discussion.

Motivated by such arguments in Ref. 1, we were led to

and
—i(pb —p ) —iv2t

E2 ——e 2e

where 8') is proportional to cty* and e2 to Py*. Now the
phase factors p, and pb are fixed by preparing the atoms
in a coherent superposition of

I
a ) and

I
b ). However,

the phase of the
I
c) level P, is a random variable, and

therefore the fields (E() and (E2) average to zero. We FIG. 1. Energy-level diagram for the quantum-beat laser.
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investigate the relative spontaneous-emission laser
linewidth when the (three-level) lasing atoms are prepared
in a coherent superposition of the upper two levels. The
main result of this paper is the Fokker-Planck equation
for the relative phase 8=81—8q and the sum phase

p =8]+83. This is given by Eq (2. 4) of the present paper.
In the steady-state limit, and taking all gain coefficients
and field amplitudes to be equal, the equation of motion
for the phase distribution P(8,p) is given by

P(8,p)=a sing (8,p)+ (1—cos16t) 3 (8,p)
aP n 0P

2p' BO'

2 (1+cosg), (8,p),BP
8p2 Bp

where /=8+(v] —v2 —v3)t, the frequency v3 is the "mi-
crowave" frequency as in Fig. 1, and o, is the linear gain
coefficient.

Hence we see that the diffusion coefficient for the rela-
tive phase angle, which is proportional to (1—cosg), van-
ishes when the angle P itself vanishes. Since the frequen-
cy difference P locks to "zero," we see that the phase dif-
fusion in the relative phase angle can indeed vanish.
However, the phase diffusion in the sum phase angle, p, is
not zero, but scales as (1+cosf). The correct physical
picture then is that the phasor vectors corresponding to
the two electric fields are strongly coupled, but are in fact
fluctuating in unison so that the sum phase angle is
diffusing at twice the usual diffusion rate while the differ-
ence phase angle is noise quenched.

In Sec. II we derive the density matrix equation of
motion in general operation form and translate this into a
P-representation Fokker-Planck equation in Sec. III.

V=fig](a]
I
a) &c

I
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I
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I
)

—
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I 1)= la, n] —l,n2),

c,n, , n

(3a)

(3b)

(3c)

The Schrodinger equation for the matrix element
& n], n2 I pF I

n'], n 3 ) is therefore

where a&, a1, a2, a2, are the destruction and creation
operators for the fields in modes of frequencies v] and v2,
respectively; g1 and g2 are the coupling constants associ-
ated with the

I
a ) -

I
c ) and

I
b )-

I
c ) transitions, respec-

tively; and v3 is the frequency of the field which induces
the transition between levels

I a) and
I
b) and it is as-

sumed to be at resonance with the
I
a )-

I
b ) transition,

1.C., V3 Na ~b
In order to derive the equation of motion for the re-

duced density matrix for the field p~ we first obtain an
equation for the off-diagonal matrix element,

& n], n2 I pp I n], n 2 )

= &a,n], n2
I p I

a, n], n2) + &b, n], n2
I p I

b, n'], n2 )

+&c,n], n2
I p I

c,n'], n'2),

(2)

where p is the atom-field density matrix and a trace over
atomic states is taken. Let us define the following atom-
field states:

II. EQUATION OF MOTION FOR THE DENSITY
MATRIX

H=Hp+ V, (la)

Ifo —— g ~W Ii&&il+~v]a]a]+~v3a2ai
i =a, b, c

(jb)

We consider a system of three-level a'toms, as shown in
Fig. 1, which are being pumped in the state

I
a ) at a rate

r, . The laser cavity is arranged such that it would
resonantly contain both modes v1 and v2. The transitions
between levels

I
a )-

I
c ) are assumed dipole allowed. The

dipole-forbidden
I

a )-
I
b & transition is induced by some

external means (such as, for instance, by applying a strong
magnetic field for a magnetic dipole-allowed transition).
The corresponding Rabi frequency is denoted by Qe
where II and P are the real amplitude and phase. We
shall treat the

I
a )-

I

b ) transition semiclassically and to
all orders in the Rabi frequency. The

I
a)-

I
c) transi-

tions will be treated fully quantum mechanically but only
to the second orde'r in the corresponding coupling con-
stants.

The Hamiltonian for the system is

& n]n2
I pF I

n ],n2)
l

( I 13P31' P]3 ~3']')n]'~n]+I
7l ) ~1l ) + 1

l

~
( ~23P32' P23'~3'2')n&~n&+1

n2~n2+1

l
( +3]p]3'+ ~32P23' P31' +l'3' P32' ~2'3' ) (4)

We must now evaluate p31 p$3 p32' and p23.
The wave vector

I g & can be expanded in terms of the
eigenstates of the atom-field system,

Ig)= g g 2;, Ii m„m),
l =u, b, c m&, m&

where A; ~ is the probability amplitude for finding the
atom in state

I
i ) and the fields of modes 1 and 2 in the

states
I m]) and

I mz ), respectively. We first treat the
I
a)-

I
b) transition semiclassically to all orders in II.

The equations of motion for the amplitudes A,„„andQll ) 1l2

Ab„„are
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ly l Q —ly —lv3t
~ann l ~a ~ann + e ~bnn

1 2 1n2 1 2 T„=ig]~n, r. 1 1 1+-
y —i Q y y+i (6]—0/2)

ly l Q ly+lV t
~bnn l ~b ~bn n + e ~an n1 2 2 1 2 1 2

where t]],'=t];t+n]v;+n2v2 (i =a,b, c) and y is the decay
constant for the levels a, b, and c (for simplicity we have
taken them equal). If the atoms are injected at random in-
itial times to in level

~

a ), the solution of Eqs. (6) and (7)
1s

—i (co' —iy/2)( t —to )
A,„„(t)=e

T]2 = ]g2~—&zra
1 1
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0 F (8a) 1 1

y+iA y

—iP —cobt+ico to —(y/2)(t —to)
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X sin (t —to)—A„„0 F
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Qy+i
2

e iN(t) (13b)

(13b)

where A„„are the probability amplitudes for the field

only. The equation of motion for the amplitude A« „ iscn1n2

with 61——COa —
COC

—V1, k2 ——COb —O)c —V2, and
p(t) =(v] —v2 —v3)t —p. In a similar manner we obtain

ly
~cn1n2 ~c

2 ~cn1n2 lg1 +1~an1 —1n2

]g2~n2Ab n] n2 —1

p23'=T22(n], n2 —1
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+T21(n] n2 1 ~pI'
~
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where

(14)

&&(g]V n]A. ..
+g2~n2Ab. .., ](r)l (10)

Here we treat the
f
a )-

[
c ) and

[
b ) -

f

c ) transitions to
the lowest order only. It follows, on integrating Eq. (9),
that
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Acn n12 tO

T22 tg2 ~n2 r 1

y —iQ
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2

1
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2

where A, „1„and Ab„„1 can be obtained by ap-

propriately shifting n] and n2 in Eqs. (8a) and (8b).
We can now determine p13 by summing the contribu-

t]on A«1„(t)A*, , (t) of all atoms which are injected
1

' 2 cn1n2

at random times at a rate r„ i.e.,

T2] =ig]~n, r. 1 1+-
y —iQ y 0y+i

2

(15a)

t

P13 ——r, dtoA, „, 1n t 3*, , t

On substituting from Eqs. (8a) and (10) we obtain, after
some straightforward algebra,

p]3 ——T]1 (n] —l, n2
~
p1,

~

n 1
—l, n2 )

+ T]2(n] —l, n2
~ pF ~

n], n2 —1),

1 1+y+iQ y

0y+i
2

e
—iw(t) (15b)

where
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It then follows, on substituting for p13, p», p32 and

p23 from Eqs. ( 12), ( 14), ( 15), and ( 16) in Eq. (4), that

pF QW——,J (a;,Q; )pF, (18)

1 1+ y+lQ 0y+i A2+—
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where

~ 12pF 2 [1221Q la2pF+Ci12PFQ la2

(~12+~21)a 1PFQ2 ]e' (19b)
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with
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In Eq. (18) we ignored the cavity-loss terms because they
do not contribute to the diffusion constant of the relative
phase angle.

III. FOKKER-PLANCK EQUATION
AND VANISHING OF DIFFUSION CONSTANT

FOR RELATIVE PHASE

We now derive the Fokker-Planck equation for the
coherent-state representation for the field P( 8'1, 8'2)
which is defined by

PF J~(@»@2)
l
+»+2)(~l @2 d +id

Here
~

8'l, 8'2) is the coherent state which is an eigenstate
of al and a2 with eigenvalues 8'1 and 8'2 respectively.
By using the relations
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0;=i ln
PI'

(i =1,2), (23d)

we can reduce the density operator equation (18) to a c-
number equation for P. The resulting Fokker-Planck
equation in terms of the variables pl, p2, 8 and iM, where

g lg2ra
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Z Z
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(20c) with
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dll ————,
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Q
. 1
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i.e., the field detunings from the corresponding atomic
lines are equal to half the Rabi frequency of the driving
field that coherently mixes the level ~a) and

~

b) and
they are much larger than the atomic decay constant. In
this case (for details, see Appendix A)

D(8) =
2 (1—cosf),

4 2 (29)

This gives a condition on the detunings, the Rabi frequen-
cy of the driving field that couples levels

~

a) and
~

b),
and the decay constants of the atomic levels.

Another interesting condition under which the spon-
taneous emission in the two modes gets highly correlated
ls (with gl ——g2 ——g, pl ——p2 ——p)

(28a)

&11 &22 12 .
y +21

D(p, )= + + e ' + e' +c.c. ,
32 p1 p2 plp2 plp2

(25g)

where

2
g ~a

Ap=
2p

(30)

D(p, ) = 2 +c.c. ,
8pl

&22
D(p2) =

2 +c.c. ,
Sp2

T

1
D(B,p) =—

8 2

&22 +c.c.
P2

D(pl, p2) = —,
'

(a12e ' +a21e' )+cc.
D(p1, 8)= (a21e' +a12e ' )+c.c. ,if —if

8p2

D(pl, IJ ) = (a21e' —a12e ' )+c.c. ,
16p2

l
D(p2, 1u)= (a12e ' —a21e' )+c.c. ,

16p1

(25}1)

(25i)

(25j)

(25k)

(251)
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When /=0, the vanishing of the diffusion constant takes
place.

In order to establish the stability of these conditions, a
nonlinear theory of the quantum-beat laser needs to be
formulated. The present approach, however, shows in a
simple way that it is possible for a two-mode laser to have
a vanishing diffusion constant for the relative phase angle.
It is interesting to note that the conditions under which
D(B)=0 does not lead to a vanishing of D(p) where

p = (81+82) /2. Physically we can understand the
quenching of the spontaneous emission fluctuations in the
relative phase 0 by referring to Fig. 2. Here we consider
the "random walk" of the tips of electric field phases of
the two modes in the complex a phase. If we ignore the
amplitude fluctuations, the phase fluctuations in the field
associated with the spontaneous emission allows the tips
of the field to diffuse out around a circle in the complex

D(p2, 8) = (a12e ' +a21e' )+c.c. ,
Sp1

(25o)

and (/=8+/).
We are interested in finding conditions under which the

diffusion constant D(8) for the relative phase angle
(9=t91—62 of the two modes vanish. Here we mention
two such conditions.

When /=0, pl =p2 ——p then D(8) =0 if

Re(al 1 +a22 a12 a21)

This equation is satisfied (with gl ——g2) when

(26) Re &;

FIG. 2. Random walk of the correlated electric field phasors
of magnitudes p} and p2 in the complex 8' plane.
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plane. When D(8)=0, the spontaneous emission in the
two modes becomes highly correlated so that the relative
phase angle 8 is "locked" to a particular value (say 80).
The average phase variable p has, however, nonvanishing
diffusion.

2
8 I"a

2
+ 2

1 @+i' 1

y+&

+ —+1 y —iQ y —iQ
y y2+ Q2 y2+ Q2

IV. CONCLUDING REMARKS

We have shown that in a quantum-beat laser the
spontaneous-emission noise in the two modes can be made
highly correlated under certain conditions. It is
worthwhile to mention that in a recent paper, Kennedy
and Swain show the high correlation between the two
modes well above threshold in a coupled two-mode laser.
A careful analysis of their results, however, indicates that
the diffusion constant for the relative phase angle of the
two modes D(8) [p(1,—1) in the notation of Ref 8] in
the coupled two-mode laser is equal to C/2n, independent
of how far above threshold the laser is operating. (Here C
is the cavity-loss parameter and n is the mean number of
photons in either mode). An alternative derivation of
their results using a Fokker-Planck approach is given in
Appendix B. Well above threshold (a»C; a being the
gain coefficient) there is therefore a reduction of order
C/a. This is in contrast with the results of this paper
where we show a cancellation of all the terms proportion-
al to a/n (since a =C near threshold) in the diffusion con-
stant D(8).
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We have assumed g1 ——g2 ——g. It follows from Eq. (Al)
that

2
g ~a

Rex)) =
2 2+ 2 2+y' y'+Q' (y +fl')

(A2)

When 0 »y, Eq. (A2) simplifies considerably and we ob-
tain

I

8 I"a
Rem) )—

2
1 1

y 02+ (A3)

Similarly

2
g Ia

Reo'22—
2

1 1

y Q~ +O (A4)

Also
2

g Ia
CX]2+(12]=

2

2
R I'a

2

2 2(y+iQ)
) ()"+&')

2 +0
y2 Qy

4iQy
(~2+@2)2

APPENDIX B: DERIVATION OF D(0)
IN THE COUPLED TWO-MODE LASER MODEL

OF REF. 8 USING THE FOKKER-PLANCK APPROACH

It follows, on substituting for Re ~», Reo.22, and a»+a»
from Eqs. (A3)—(A5) in Eq. (25f), that D(8) is given by
Eq. (29).

APPENDIX A: SIMPLE ASYMPTOTIC FORM
FOR a;J. WHEN b g

——h2 ——Q/2 AND 0»y
It follows from Eq. (20a) that, when b. 1 b, 2 b, and—— ——

A=A/2,

Here we derive the diffusion coefficient for the relative
phase angle of the two modes in the coupled two-mode
laser model of Ref. 9. The equation of motion for the
matrix elements p(n1, n2', m1, m2)=(n1, n2

~ p~ ~
m1, m2)

of the reduced density matrix for the field is 8,

B
p(n1, n2, m1, m1)= — (n1+—1+m1+1)+ (m1 n1+m2 n—2) p(n1, n2, m1, m2)—

C+A+ nm p(n1 —l, n2, m, —l, m2) ——(n1+m1)p(n1, n2,'m1, m2)

+C[(n1+1)(m1+1)]' p(n1+ l, n2,'m1+ l,m2)+[1~2], (B1)

where A,B,C are the gain, saturation, and cavity-loss parameters, respectively, for either mode and

B g2
1U'(n1 2 m 1 m2) + (m1+n1+m2+n2+4)+ (ml n1+m2 n2)2A 163 p(n1, n2', m1, m2) . (82)

This equation for the density matrix can be translated into an equivalent equation for the coherent-state representation
I'(8'1, N'2) via the relation
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p(n), n2,'mt, m2)= f P( 8'), 8'2)e ' ' d'S )d'S', .
~n]!m t!n2!m2!

(83)

The resulting equation for P(8'&, 8'q) is

B
4~ a8', B8', ax*,

c'a aS,+ 8'2+ 8'*, + „8'2 P,
2 r)S'i t)8'2 BS'i r)8'2

(84)

where

p.

M= 1 — S]+ 82+ g +I+ +& —(2+
I

&~
I

+
~

~2~ )
2A t) 8') r) 8'2 BS') r) 8'2

2 2 —1

16 g2 c)8', '+ t)8', ' t)8'*, ' r)S,*
(85)

~e now change the variables from 8';, 8',*. (i =1,2) to
p,. (i = 1,2), 0, and p in accordance with Eqs.
(23a)—(23d). It can then be shown, in a straightforward
manner, that the diffusion constant is

2 (3 —C)
2BC

it follows that

(87)

D(8) =
2B

D(&)= C
2n

(88)

In deriving Eq. (86) we assumed p, =p2 —n and n &&l.
Since

This result, which is independent of how far above thresh-
old the laser is operating, is in agreement with the results
of Kennedy and S'wain.
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