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Colored-noise-induced first-order phase transition in a single-mode dye laser
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We report the observation of a colored-noise-induced first-order nonequilibrium phase transition
in a single-mode dye laser. Although a second-order phase transition exists in the more usual

single-mode laser models, the order of the phase transition can be altered by including colored-noise
fluctuations in the pumping of the laser. The nonwhite character of the noise is shown to be crucial
to the onset of the characteristics of a first-order phase transition.

INTRODUCTION

The single-mode laser has been a useful physical system
in which to study noise in nonlinear dynamical systems.
Models including both additive white and either white or
colored multiplicative noise have been used to model the
photon statistics of a dye laser. ' Here we show that the
single-mode dye laser can undergo behavior analogous to
a first-order phase transition. The discontinuous change
of the most probable intensity as a function of pumping
shows this analogy. The transition is induced by fluctua-
tions in the effective pumping of the system, and we stress
that it is the nonwhite character of these fluctuations that
causes the transition to be of the first-order type instead
of the second order.

Lasers have long been a primary resource for both ex-
perimental and theoretical investigations of nonequilibri-
um phase transition analogies. In this vein, the single-
mode laser threshold has long been known to display a
second-order phase-transition analogy. Indeed, this
discovery marked the real beginning of the study of non-
equilibrium phase transitions. Variations on the phase-
transition analogy in the single-mode laser have been stud-
ied also. In particular, phase-transition analogies of the
first order' have been sought. The single-mode laser with
saturable absorber '" is known to exhibit such an analogy.
Multimode laser systems have also been examined in this
light and a first-order phase transition has been predicted
and observed in the two-mode dye laser. Recently there
has been speculation about the cause of yet another first-
order phase-transition analogy in multimode dye lasers.
In that case the phase transition concerns discontinuous
jumps in the power spectral density of the multimode dye
laser.

On a related front, the study of noise-induced transi-
tions has also been fruitful and, in particular, the study of
noise in nonlinear dynamical systems has produced in-
teresting results. The study of nonwhite noise in these
systems has stimulated even more interest. Colored-
noise-induced transitions have been studied by Kitahara,
Horsthemke, and Lefever. These studies stress the
robustness of the noise-induced transitions under the
change from a white-noise to a "colored"-noise driving
term. Here we emphasize that the nonzero correlation
time can have its own consequences. In this example the

nature of the phase transition is changed from the second
order to the first order.

The study of noise in lasers, which are relatively simple
nonlinear dynamical systems, has been particularly active
within the last few years. This study, concentrating on
the modeling of the intensity correlations in dye lasers
with noisy pumps, has been quite productive. ' The con-
sensus that has emerged from these studies is that the best
model of the dye laser is that of the "standard" stochastic
model with a colored-noise fluctuating pump added:

E=(a —E
~

2)E+rt(t)E+q(t),

( q*(t)q(t') ) =45(t t'), (q(t) ) =—0

(g"(t)g(t'))=gre ~' '~, (q(t))=0.
(2)

THEORY

The fact that the system of equations (1) and (2) with
white-noise pump fluctuations,

(g*(t)g(t')) =2Q5(t —t'),

does not show the equivalent phase transition has prob-
ably obscured the evidence for the transition in the past.

If we examine a simpler model, without including spon-
taneous emission fluctuations, we can show that this
first-order phase transition is indeed colored-noise in-
duced. This was already evident in the work of Sancho et

Here E is the complex field amplitude, a is the pump pa-
rameter, and q(t) and rt(t) are complex stochastic noise
terms representing spontaneous emission into the system
and fluctuations in the pumping, respectively. In this di-
mensionless form q(t) is scaled to have a fixed noise
strength and the colored noise g is an Ornstein-Uhlenbeck
process with a strength Q and a bandwidth I .

Here we bring together all of these topics and put forth
evidence for a colored-noise-induced phase transition in
the single-mode dye laser with a noisy pump. Although
evidence allowing the prediction of this transition has ap-
peared in the literature, ' '" the analogy appears not to
have been pointed out before. Evidence of its existence in
an experimental system is also presented.
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a/. ' To this end, we first examine the one-dimensional
white-noise model for the field amplitude:

x =ax —x'+g(t)x,
(~(t)g(t') & =2Q5(t t'), —(g(t) & =0

whose solution in the steady state is'

P(x)=W'x '+"~-e

Here the intensity of the laser I=x and

P h;«(I)=%I'~ ~ 'e

(5)

(8)

We must now combine Eq. (5) with the following rela-
tions,

where N and X' are normalization constants. The most
probable intensity, given the distribution (8), is

0 for a (2Q
a —2Q for a &2Q .

The most probable intensity is then a continuous function
of a, according to (7), although its first derivative is
discontinuous at the point where a=2Q. This is, as in
the case of.Ref. 2, analogous to a second-order phase tran-
sition.

We now allow g(t) to be a (real) colored noise, modeled
by an Ornstein-Uhlenbeck process,

tion to the two-dimensional problem available is the ma-
trix continued-fraction solution of Jung and Risken"
which requires numerical evaluation to determine its
structure. They have done this and produced distributions
for P(I) which are given in Ref. 11. These plots' demon-
strate a two-peaked distribution in I and hint at a first-
order phase transition in IMp as a function of either Q or
I . ' Thus, this evidence is suggestive of a first-order
phase transition with a being the control parameter.

Sancho et al. have worked on an approximate solution
to this problem, and the first evidence of this transition is
given in Ref. 10. They derive an equation for x in a
large-I approximation. In this approxima'tion the solu-
tion to (5), subject to Eq. (10)—(12), is

r

P(I)=P„„,«(I) 1 —— +1—1 a 2Q+a I
1 2Q 2

(13)
where P h;„was given in (8).

Although Eq. (13) is not particularly transparent in
form, Sancho et al. have performed an ad hoc exponentia-
tion of this result in order to extend their result to smaller
I and, in the process, they have created a more tractable
expression. Considering the term in square brackets in
(13) to be the first two terms of a Taylor expansion, they
write

P(I ) =M' ~ ' ex I' 2Q

q= —rq+rv gf(t)
(f(&)f(&') & =2&(&—t'), (f(t) & =0 (12)

4Q+2a —I II—
2gr 2gr

to complete the model. In this case the only analytic solu- (14)
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FIG. 1. Normalized distributions of the experimental laser intensity P(I) taken at three different laser working points. Curve a,(I)=32. The initial point of the distribution, P(0), is approximately 50. Curve b, (I ) =590. The initial point of the distribution,

P(0), is approximately 0.54. Curve c, (I ) =890, P(0) =0. Intensities are given in arbitrary units.
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FIG. 2. Plot of the experimentally determined most probable
intensity vs the mean intensity of the dye laser showing the
first-order phase-transition analogy.

FIG. 4. Plot of the most probable intensity vs the mean in-

tensity taken from simulations of Eqs. (1)—(3). The noise pa-
rameters were fixed at Q =5000 and I =1000.

The extrema of (14) are given by

2 +1 ——1 —+ —1=02 I~ 2Q a I 2Q
I a a I a a

is presented there also. Although it is not shown there
that the system can be continuously driven through what
would be called a first-order-phase transition, it is obvious
now that this can occur.

with I & 0 . (15)

For a & 2Q (15) gives a unique positive value for the max-
imum of the distribution (14). For a & 2Q, however, I=0
is a local maximum and, if I is small enough, another lo-
cal maximum and a minimum appear in the distribution.
The positive roots of (15) are discussed by these authors
and the regions of one and two maxima of P(I ) are out-
lined in that reference. A "phase diagram" of this system

5.0—

EXPERIMENTAL PROCEDURE

The dye laser used for these measurements has been
described previously. ' It consists of a three-mirror
standing-wave cavity with three intracavity etalons to
maintain single-mode operation at all pumping levels.
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FIG. 3. Distributions of laser intensity P(I) as extracted
from simulations of Eqs. (1)—(3), taken with four different aver-
age pump parameters: curve a, a =400, curve b, a =1000, curve
c, a =2100, and curve d, a =5000. The noise parameters were
fixed at Q =5000 and 1 =1000.
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FIG. 5. Plot of the mean intensity vs the true control param-
eter, the pump parameter a. The noise parameters were fixed at
Q =5000 and 1 =1000.
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Pumping of the dye laser was achieved by focusing an
argon-ion laser into the flowing gain medium in a dye cell
with quartz windows. The dye solution was 2&10 mo-
lar rhodamine 6-G in an alcohol and water solution. The
tight focusing of the pump laser, combined with any tur-
bulence in the dye Aow, can cause rather large fluctua-
tions in the effective pumping of the system. The light
output was gathered and focused onto a fast photodiode.
The voltage output was amplified and fed into a fast
analog-to-digital converter which was interfaced to a com-
puter. Approximately 30000 data points were collected at
10—200 kilosamples per second. These samples had 11
bits of resolution and were sorted into 250 bins for
display. The mean output intensity of the laser is deter-

mined independently with a second, integrating, photo-
diode so that the gain into the transient digitizer may be
adjusted. The intensity data is displayed using an arbi-
trary linear scale where M ) =2000 corresponds approxi-
mately to 1 mW of power at -6000 A.

Sample P(I) distributions are shown in Fig. 1. The dis-
tributions shown indicate the behavior at three working
points of the laser. At the lowest operating points the in-
tensity distribution has a single peak at zero intensity (see
Fig. 1, curve a ). As the pumping is increased, the peak at
zero intensity decreases while a second peak appears at a
nonzero value of the intensity (see Fig. 1, curve b). At
some point this second peak becomes larger than the
zero-intensity peak. At working points well above thresh-
old we find only a single peak in the distribution at a
nonzero intensity value (see Fig. 1, curve c).

If we plot the value of the most probable intensity, IMp,
versus the mean value of the intensity, (I ), we see a stan-
dard first-order phase-transition analogy. This is shown
in Fig. 2. Well above threshold (I ) is a linear function of
the pump parameter while near threshold it is rather slow-
ly varying with the pump strength. Although it might be
preferable to plot IMp versus the pump parameter a, this
parameter is impossible to determine from the model (5)
with (11) and (12) unless one knows the parameters Q and
I 14, 15

Monte Carlo simulations were performed using the
model (1)—(3). These simulations are described else-
where. ' ' Representative results of these calculations are
shown in Fig. 3. It is again obvious that there is a discon-
tinuous jump in the most probable intensity as the pump
parameter is varied. The most probable intensity, as a
function of the mean intensity, is plotted in Fig. 4. The
parameters Q and 1 are given definite values in order to
perform the simulations. Plotting versus pump parameter
is, ig this case, possible. The relationship of the true con-
trol parameter a (approximately a linear function of the
pump intensity) to the mean intensity (I ) is given in Fig.
5.

As suggested by the work of Sancho et al. ' the phase
transition is also visible as a function of both the noise
strength Q and the noise bandwidth I . The first-order
phase transition in IMp for the model (1)—(3) is shown in
Figs. 6(a) and 6(b) as a function of Q and I, respectively.
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FIG. 6. (a) Plot of the most probable intensity vs the noise
strength Q. The other parameters were fixed at a=1000 and
I =1000. (b) Plot of the most probable intensity vs the noise
bandwidth I . The other parameters were fixed at a = 1000 and
Q =5000.

DISCUSSION

First-order phase transitions were predicted in models
of dye lasers that included triplet states some years ago by
Schaefer and Willis' and Dembinski and Kossakowski. '

Roy' has shown that the singlet-triplet model used by
these authors is completely equivalent to the laser with a
saturable absorber. In this model the triplet states act as a
built-in saturable absorber in the system. Roy and Man-
del' have shown that, when the triplet states are allowed
to play a role, large relative intensity fluctuations are to be
expected. This phenomenon was already observed in ear-
lier experiments on a single-mode dye laser, but it was
attributed to pumping fluctuations even at that time.
Further experiments on single-mode dye lasers attempted
to extract P(I) by inverting the measured photocount dis-
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tribution p(n). ' The inversion of p(n) to obtain P(I) is
nonunique and the inversion technique used in that work
may not have shown a double-peaked distribution for
P(I) even if it was present. In any event, Kaminishi et
al. ' concluded that there was no evidence for a first-order
phase transition or for triplet effects in the single-mode
dye laser.

In agreement with Kaminishi et al., we explain our re-
sults here as being due to pumping fluctuations, however,
we do see clear evidence of a first-order phase transition
in the direct measurements of P(I). The transition seen
here does not seem to have its origin in the inclusion of
triplet states in the dye model or the presence of a satur-
able absorber. Rather, its most natural explanation seems
to be that it is a noise-induced transition, and can be ex-
plained in terms of a simple, phenomenological, single-
mode laser model that includes pumping fluctuations. It
is in a unique class, even in terms of noise-induced transi-
tions, in that it requires not just the presence of a multipli-
cative noise but the presence of a colored multiplicative
noise.

It should be noted that the choice of parameters in the
simulations is somewhat less than certain. The simulation
results presented in Figs. 3—6 are meant to verify that
the model of Eqs. (1)—(3) does indeed reproduce the im-
portant phase-transition-like behavior of the dye laser.
The actual values of the parameters used are not neces-
sarily optimum, and thus the shape of the experimental
distributions should not be expected to be reproduced in
great detail. One feature of the fit to the experimental
distributions that will not be improved by changing the
parameter values is the asymmetry of the high-intensity
peak. The model of Eqs. (1)—(3) seems to be unable to
produce an asymmetric peak for the "on" state of the dye
laser. A similar situation is found in the case of the two-
mode dye laser which also exhibits a first-order phase
transition. Measurements of P(I) for one of the two
modes have been carried out and an asymmetry in the

"on" state peak for that mode was found. The asymmetry
of the measurements in Fig. 1, curves b and c, is very
reminiscent of what was seen there. At that time, the
asymmetry in the two-mode laser was thought to be due
to backscattering coupling the modes in the ring cavity.
It is apparent, however, that unless backscattering from
elements external to the cavity are affecting the laser, the
single-mode results cannot be explained in the same way.

It is quite possible that the true source of this asym-
metry is due to something rather more fundamental. The
model (1) is a simple third-order theory of the laser and it
is quite possible that higher-order saturation effects are
suppressing the high-intensity side of this peak in the
P(I) distribution. It is easily seen that when the theory is
extended to include terms of the fifth order in E, there is
an asymmetry induced in the intensity distribution that
resembles that seen in Fig. 1, curves b and c.

In conclusion, we point out that the single-mode dye
laser with a noisy pump is another example of a system
displaying a noise-induced phase-transition analogy. It is,
however, the order of the phase transition which it exhib-
its that depends on the noise. In this case the order of the
phase transition depends critically on the correlation time
of the driving fluctuations in its pump.

Note added in proof. In J. M. Sancho, M. San Miguel,
H. Yamazaki, and T. Kawakubo, Physica 116A, 560
(1982), the "phases" of the system modeled by Eqs. (5)
and (10) are further discussed and investigated experimen-
tally in an electrical circuit. We thank Dr. J. M. Sancho
for bringing this work to our attention.
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