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The energies and wave functions of the 1s, 25, 2p (m;=0), and 2p (m;==*1) levels of hydrogen in
a uniform magnetic field B (10° G<B £10" G) are calculated in two cylindrical adiabatic approxi-
mations, each of which includes the influence of the Coulomb field on the radial motion of the elec-
tron. For the lowest levels of each symmetry [i.e., the 1s, 2p (m;=0) and 2p (m;==*1) levels] our
calculations provide rigorously both upper and lower bounds on the true level energies and binding
energies. We present these cylindrical adiabatic upper and lower bounds on the binding energies to-
gether with the spherical adiabatic upper and lower bounds of Starace and Webster as well as all su-
perior variational lower bounds known to us in order to provide in one place stringent tests of past

(and future) calculations.

The very detailed 1984 eigenfunction expansion results of Rdsner,

Wunner, Herold, and Ruder are found to be consistent with the upper and lower bounds presented.

I. INTRODUCTION

The nonseparability of the Schrédinger equation for an
electron in combined Coulomb and uniform magnetic
fields makes the theoretical description of even so simple
a system as a hydrogen atom in a uniform magnetic field
quite difficult when the two field strengths are compar-
able. The intrinsic theoretical interest of such a problem
together with the obvious applications to astrophysical
phenomena have generated a great deal of interest in the
subject, which has been reviewed elsewhere.! ™ In partic-
ular, most recently there has been a veritable explosion of
interest in the accurate theoretical calculation of the bind-
ing energies for the low-lying levels of atomic hydrogen in
the case of magnetic field strengths comparable to and
greater than that of the Coulomb field. This case has
been seen as a challenge to newer methods of perturbation
theory’>~'® as well as for variational approaches!®—2*
which incorporate both the spherical and the cylindrical
symmetries inherent in the system.

In the present paper we present adiabatic approxima-
tion results in cylindrical coordinates for the lowest ener-
gy levels in atomic hydrogen, primarily for magnetic
fields above 10° G. This work complements the adiabatic
approximation results in spherical coordinates of Starace
and Webster,?> who were concerned primarily with mag-
netic fields below 10° G. As was the case in spherical
coordinates,?® our adiabatic approximations provide both
upper and lower bounds on the binding energies of the
lowest levels in hydrogen for each symmetry. Our
rigorous upper bounds together with either our rigorous
lower bounds or those of the best variational calculations
provide stringent tests of previous (and future) calcula-
tions for very high magnetic field strengths. While for
the highest field strengths considered our results are com-
parable or superior to perturbation calculations employing
many configurations or to variational calculations em-
ploying several parameters, nevertheless our adiabatic cal-
culations employ only a single configuration wave func-
tion and no parameters.

While there have been several previous adiabatic calcu-
lations in cylindrical coordinates,>*73! all but two of
them?®?? ignore the effect of the Coulomb field in the ra-
dial direction perpendicular to the magnetic field. In ad-
dition to treating the effect of the Coulomb field in the ra-
dial direction, we also consider formally the coupling ma-
trix elements between adiabatic channels. We calculate
explicitly the diagonal coupling matrix element within
each adiabatic channel. Omitting or including this matrix
element in our calculations provides, respectively, rigorous
lower or upper bounds on the lowest energy level for each
symmetry state of the system.

In Sec. II we present an exact formulation of the cou-
pled adiabatic equations in cylindrical coordinates for the
case of an electron in combined Coulomb and uniform
magnetic fields. In Sec. III we present the two adiabatic
approximations which are used in our calculations. Sec-
tion IV presents calculated adiabatic upper- and lower
bounds on the binding energies of the ls, 2p(m;==1),
and 2p(m;=0) levels as well as adiabatic approximation
results for the 2s level. It also contains our plots of
wave-function intensities as a function of magnetic field
strength and our conclusions on the comparison of our re-
sults with those of others. A preliminary report of this
work has been presented elsewhere.*?

II. EXACT FORMULATION

A. Schrédinger equation

The spin-independent Schrodinger equation in cylindri-
cal coordinates for an electron in combined Coulomb and
uniform magnetic fields is*
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L B

2m, v 2m,c s

o2

-—m Y(r)=EyY(r), (1)
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where the magnetic field B has been oriented along the z
axis, L, is the z component of the orbital angular momen-
tum operator, and m, is the electron mass. The operators
in large parentheses are those for the kinetic energy, the
linear Zeeman shift, the quadratic Zeeman shift, and the
Coulomb energy. We shall use atomic units henceforth
(i.e., m,=e =#=1) and introduce the strength parameter
a,

a=B/2c =(2.12715X 107" a.u. /G)B(G) . )
Equation (1) in atomic units thus becomes

[—+V24aLl,+5a%?—(p?+z2) 2 JY(r)=Ey(r) .  (3)

In order to compare our results with those of nearly all
other researchers, we have assumed in Egs. (1) and (3) that
the nucleus has infinite mass. Another reason for this as-
sumption is that so-called Z scaling of our results for hy-
drogen to other hydrogenic systems is only possible in the
infinite mass case.3* For the case considered here, i.e.,
neutral hydrogen atoms at rest in a magnetic field, our in-
finite mass results may be transformed rigorously to finite
mass results.®

Taking account of the azimuthal symmetry of the prob- -

lem, we substitute

Yr)=G p,z)e""¢(2m))-‘/2 )
into Eq. (3) to get the following equation for G (p,z):
L (m?—1/4) 2
ap? " 8z? o (p>422)172

—a2p2+2E']G(p,z):0. 5
In Eq. (5) the energy E’ is defined by
E'=E —am . . - (6)
B. Eipansion in adiabatic radial functions

The p-dependent terms in Eq. (5) may be used to gen-
erate a complete set of radial functions, as follows:

Lli__(mz—l/4)+ 2
dp? p* (p*+2?%)
= —2Wp D fum(z;p) . (D)

2.2
1/2 —ap fnm(z

In Eq. (7), the coordinate z is treated as a parameter and
the eigenvalue W, (z) is a z-dependent potential. Both
the potential W,,,(z) and the radial function f,,,(z;p) are
indexed sequentially by the integer n (2 1) as well as by
the magnetic quantum number m. Because Eq. (7) de-
pends on m only through m?, both W,,, and f,,, depend
only on | m |. We normalize the radial functions accord-
ing to

f0°° dpfnm(Z;P)fn’m(Z;p)=8nn’ . (®)

The solution, G (p,z), to Eq. (5) may be expanded in
terms of the adiabatic radial functions f,,, as follows:

zfnm

3PV nmvn(2) 9

In Eq. (9) we have introduced the z-dependent functions
Gn'mvr Where n' denotes the index of the adiabatic radial
function f,,,, m denotes the magnetic quantum number,
v is an integer (for bound states) denoting the energy
eigenvalue, E, and 7 denotes the reflection parity with
respect to the x-y plane of the function G (p,z). Since
frnm(z;p) is symmetric in z, this reflection symmetry is
carried by the function g. Note that the total parity P of
the wave function ¥(p,z,¢) defined in Eq. (4) is given by

P=x(—1)". (10)

Substituting Eq. (9) in Eq. (5), multiplying from the left
by fum(z;p), integrating over p, and using Egs. (7) and (8),
gives the following set of coupled equations for the func-
tions g:

2
ddz +2E, —2W . (2) |@umvn(2)
afn m aqn’mwr(z)
2
+ Z [fnm, -

2
f”m Gn'mva(2)=0, (11)

E{nm»

where we have used the following notation (with s =1 or
2) for the coupling matrix elements:

fwm.
nm»> a s

S

® *fu'm
.:_fo dp fum(z;p) /

(z;p) . (12)

C. Properties of the coupling matrix elements

Differentiation of the orthonormality equation (8) with
respect to z shows that the first derivative matrix ele-
ments in Eq. (12) are antisymmetric,

afn'm afnm
oz

fnm7 ’fnm (13)

This implies that the diagonal matrix elements vanish,

af nm

fnm, =0. ' (14)

Similarly, differentiation of the first-derivative coupling
matrix element [Eq. (12) with s =1] with respect to z re-
sults in the following expression for the second-derivative
coupling matrix element [Eq. (12) with s =2]:

afnm

nm?>

afnm afn’m
oz ’ oz

nm>

anm ’:_

(15)

The diagonal matrix element is thus seen to be negative
definite,

Ofum  Ofum
9z ’ oz

0. (16)
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III. ADIABATIC APPROXIMATIONS

Solution of the infinite set of coupled differential equa-
tions (11) constitutes an exact solution to the problem of
an electron in combined Coulomb and uniform magnetic
fields. Practically, of course, one obtains an approximate
solution by truncating the infinite set of coupled equations
to some finite set. In other words, one ignores some of
the coupling matrix elements defined in Eq. (12). Ordi-
narily one must justify this truncation by a detailed con-
sideration of the magnitudes of the coupling matrix ele-
ments. One may show, however, that the two adiabatic
approximations defined below provide rigorous lower and
upper bounds to the system’s lowest energy level of each
symmetry.® (The symmetry of the system is defined by
the magnetic quantum number m and by the parity P or,
equivalently, the reflection parity 7 [cf. Eq. (10)].) Thus
the energy levels (or, equivalently, the binding energies)
calculated by the adiabatic approximations below are
meaningful results even without a detailed analysis of the
strength of the coupling matrix elements. The hydrogenic
designations of the energy levels we have calculated by
solving the adiabatic equations below are listed in Table I.

A. Lower-bound adiabatic approximation

If we neglect -all coupling matrix elements in Eq. (11),
‘we obtain

1 d?
B +Wum(2)
Solution of Eq. (17) for fixed n and m gives a spectrum of
eigenvalues E; and their corresponding eigenfunctions
Gnmva- One may prove’® that for a value of n appropriate
to the lowest energy level for a given m and 7, the lowest
energy E. computed from Eq. (17) is a lower bound on
the lowest exact energy for the same m and 7. Equation
(17) has been studied by Baldereschi and Bassani?® and by
Tanaka and Shinada.?®

B. Upper-bound adiabatic approximation

qnmwr(z):E;/qnmvﬂ(z) . (17)

If we neglect all off-diagonal coupling matrix elements
in Eq. (11), we obtain

T T I T L l
6 n=1 @
L m=0 J
Q4 N
j
S 4
2 / \ 4
' P (j(_ ’ \\'\\\ . E
Pd K ~==
o ) N A ==
(0] 0.2 04 06 08 10 12
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p
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TABLE 1. Hydrogenic designations and threshold shifts for
calculated energy levels.

Parity Hydrogenic  Threshold shift
n m v 7 =u(—1)" designation® a(n+ |m|+m)
1 o1 + + 1s(m;=0) a
1 0 2 + + 2s(m;=0) a
1 o1 — — 2p(m;=0) a
1 +1 1 4+ — 2p(my=+1) 3a
1 -1 1 + — 2p(my=—1) a

#Appropriate in the limit of zero magnetic field.

0 f um
dz?
:E;qnmwr(z) .. (18)

2
l_d__+an(z)_%

- ) d22 Qnmwr(z)

fnm’

Equation (18) differs from Eq. (17) by the inclusion of the
diagonal second-derivative coupling matrix element,
which from Eq. (16) is seen to contribute a positive-
definite upward shift to the energy spectrum. One may
prove®® that for a value of n appropriate to the lowest en-
ergy level for a given m and =, the lowest energy E., com-
puted from Eq. (18) is an upper bound on the lowest exact
energy for the same m and 7.

IV. RESULTS AND DISCUSSION

We have solved Egs. (7), (17), and (18) for the wave
functions, potentials, and low-lying energies of a hydrogen
atom in a uniform magnetic field for field strengths
0.05=a <1000 corresponding to magnetic fields in the
range 0.235X10° GSB <4.70X 102 G. We present here
our detailed results for the wave functions, potentials, and
binding energies of the 1s, 2s, and 2p levels of hydrogen.
Our rigorous upper and lower bounds for the 1s and 2p
binding energies provide very stringent tests of past and -
future calculations for these levels.

Sln n=1 (b)
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N
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FIG. 1. Plots of the lowest (i.e., n =1) functions f,,(z;p) as a function of p!/2 for z =0. Functions with magnetic quantum num-
ber m =0 are shown in (a) and those with m =1 are shown in (b). Results for the following four values of the magnetic field strength
parameter are shown: dash-dot curves, a=0.05; dashed curves, a=2.5; dash—double-dot curves, a=100; solid curves, a=1000.
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A. Wave functions and potentials

The lowest (i.e., n =1) radial functions f,,(z;p) ob-
tained as the solution of Eq. (7) (for m =0 and 1 and
z=0) are shown in Fig. 1 for the four magnetic field
values corresponding to a=0.05, 2.5, 100, and 1000. One
observes very clearly the contraction of f,,, toward lower
values of p as a increases. This is due to the increasing
magnitude of the quadratic Zeeman term in Eq. (7). One
observes as well that the m =1 functions have a greater
radial extent than the m =0 functions due to the orbital
angular momentum centrifugal barrier.

The eigenvalues of Eq. (7), W,,,(z), which are the po-
tentials used in Egs. (17) and (18), are shown in Fig. 2 for
n=1and m =0 and 1. In order to compare these poten-
tials easily for different values of the magnetic field, each
is plotted with respect to its asymptotic value,
Wum(z— 0 )=aln + |m | ), which is labeled as zero in
the figure. (See the discussion of threshold energy shifts
in Sec. IV B below.) By thus removing this threshold en-
ergy shift, we see clearly that W,,,(z) is quite flat and
only weakly dependent on the magnetic field for |z | 2 1.
For |z | =0, on the other hand, W,,,(z) becomes increas-
ingly negative as the magnetic field strength increases.
Comparison of Figs. 2(a) and 2(b) shows the effect of the
magnetic quantum number, m: for m =1 the potentials
W,m(2) are much shallower than those for m =0 in the
region |z | =0.

The z-dependent wave functions g,,,,,,(z) obtained from
Eq. (18), are shown in Figs. 3(a)—3(d) for the states corre-
sponding to the hydrogen 1s, 2s, 2p(m;=0), and
2p(m;==1) states, respectively. Table I shows the
correspondence between the quantum numbers nmvmr and
the hydrogenic designations applicable for zero magnetic
field. As was the case for the radial functions f,,,(z;p),
one sees here that for increasing magnetic field the wave
functions g,,..(z) move closer to |z | =~0. Because of
this contraction in z, the amplitude of the major antinode

Wyo(2)

of gpm..(z) increases in each case. This increase in ampli-
tude is most dramatic for the two v"=1" states in Figs.
3(a) and 3(d), which have only a single antinode centered
about z =0.

The adiabatic approximation to G (p,z), defined in Eq.
(4), consists of setting G (p,z) equal to a single term in the
sum in Eq. (9), i.e.,

G (p,2) = frum (20 ) nmvn(2) , (19)

where f,,,(z;p) is the solution of Eq. (7) and gpp,.,(2) is
obtained from either Eq. (17) or Eq. (18). In Figs. 4—7 we
show this adiabatic approximation to | G(p,z)|? using
functions g,,.,-(2) calculated from Eq. (18) for the 1s, 2s,
2p(m;=0), and 2p(m;=+1) states of hydrogen. The
nmvw quantum numbers for these states are given in
Table I. Each figure shows how the squared absolute-
probability amplitude contracts toward the origin with in-
creasing magnetic field. Note that to show the probability
distribution clearly, parts (a) and (b) of each figure are
plotted on a different scale from parts (c) and (d). Note
also the increasing similarity of the probabilities for the
1s and 2p (m;= *1) states with increasing magnetic field;
these states differ only in the m; quantum number.

B. Binding energies

The binding energy of an electron in a Coulomb poten-
tial is altered in the presence of a uniform magnetic field.
By solving Eq. (7) in the limit that z— 0, we find

Wom(z) — aln+|m|). (20)
Z— 0
Substituting Eq. (20) into Eq. (17) and using Eq. (6) we
obtain the asymptotic limit of Eq. (17),

1 d?

_Ed—zz——{-—a(l’l + Im l +m) qnmvﬂ(z)zEVQva‘ﬂ .

(21)

Wy (2)

FIG. 2. Plots of the potentials W,,,(z) as a function of z relative to the asymptotic value W,,(z— «)=a(n + |m |), which is
here set equal to zero for ease of comparison of results for different values of a. Potentials with » =1 and m =0 are shown in (a) and
those with n =1 and m =1 are shown in (b). Results for the following four values of the magnetic field strength parameter are
shown: dash-dot curves, =0.05; dashed curves, a=2.5; dash—double-dot curves, a=100; solid curves, a=1000.
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FIG. 3. Plots vs z!/2 of the z-dependent wave functions g,y,,.(z) obtained from Eq. (18) corresponding to the following four hydro-
gen states: (a) 1s(m;=0); (b) 25 (m;=0), (c) 2p (m;=0); and (d) 2p (m;==+1). The quantum numbers nm v are shown in each figure
and are defined in the text. Results are presented in each instance for the following four values of the magnetic field strength param-
eter: dash-dot curves, a=0.05; dashed curves, a=2.5; dash—double-dot curves, a=100; solid curves, a=1000.
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FIG. 4. Absolute square of the adiabatic approximation to the probability amplitude G (p,z) [cf. Eq. (19)] for nmvr=101+ corre-
sponding to the 1s m; =0 level of hydrogen for four values of the magnetic field strength parameter « [cf. Eq. (2)].
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FIG. 5. Absolute square of the adiabatic approximation to the probability amplitude G (p,z) [cf. Eq. (19)] for nmvmr=102+ corre-
sponding to the 2s (m;=0) level of hydrogen for four values of the magnetic field strength parameter a [cf. Eq. (2)].
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FIG. 6. Absolute square of the adiabatic approximation to the probability amplitude G (p,z) [cf. Eq. (19)] for nmv7=101— corre-
sponding to the 2p (m;=0) level of hydrogen for four values of the magnetic field strength parameter a [cf. Eq. (2)].
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FIG. 7. Absolute square of the adiabatic approximation to the probability amplitude G (p,z) [cf. Eq. (19)] for nmvr=1114 corre-
sponding to the 2p (m;=+1) level of hydrogen for four values of the magnetic field strength parameter « [cf. Eq. (2)].

The binding energy of the vth eigenstate for fixed n, m, values of the threshold shift a(n + | m | +m) are present-

and 7 is thus given by ed in Table I. By subtracting our calculated lower (upper)
‘ bounds for the energies E, from the threshold shift, we
Lpye=aln+|m | +m)—E, . (22)  obtain rigorous upper (lower) bounds on the binding ener-

gies I,,,,,~ Note that the binding energies of the
For the s and p levels considered in this paper, the 2pm;==1 levels are degenerate since the difference, 2a,

"TABLE II. Binding energy (in a.u.) of the hydrogen ground state in a uniform magnetic field.

Spherical (in italics) and Eigenfunction
present cylindrical (in roman) Variational expansion
a? , B adiabatic results lower results
(au) (10° G) “ Upper bound Lower bound bound of RWHR?
0.05 0.235 0.‘5475b ) 0.5474° 0.547 53¢ 0.547527 (3)
0.15 0.705 0.6296° 0.6280" 0.629 18¢ 0.629 187 (4)
0.20 0.940 0.6657° 0.6622° 0.664 38° 0.664 606 (4)
0.30 1.41 0.7307° 0.7217° 0.726 87¢ 0.727 463 (7)
0.50 2.35 0.8418° 0.8167° 0.83117° 0.831169 (7)
1.00 4.70 1.0600 0.9832 1.02223¢ 1.022214 (11)
1.50 7.05 1.1982 1.1006 1.164 53¢ 1.164 533 (11)
2.50 11.8 1.4094 1.2682 ‘ 1.38037°
12.5 58.8 2.4087 2.2982 2.388 83f
50.0 235.0 3.8027 3.7360 3.786 62f 3.790 (12)
'100.0 470.0 4.7387 4.6462 4.72251F 4.727 (12)
1000.0 4700.0 9.3102 9.2754 9.283 99f 9.305 (12)

3g=(2.12715%10"° a.u./G)B(G).

®From A. F. Starace and G. L. Webster, Ref. 25, Table III. .

°From E. R. Vrscay, M. Math. thesis, University of Waterloo, 1977, as published in Ref. 21, Table VI.

9From D. M. Larsen, J. Phys. Chem. Solids 29, 271 (1968). ‘

‘From E. P. Pokatilov and M. M. Rusanov, Fiz. Tverd. Tela (Leningrad) 10, 3117 (1968) [Sov. Phys.—Solid State 10, 2458 (1969)].
fFrom P. C. Rech, M. R. Gallas, and J. A. C. Gallas, Ref. 24. .
fFrom W. Rosner, G. Wunner, H. Herold, and H. Ruder (RWHR), Ref. 16. The number of expansion terms for each value of the
magnetic field is shown in parentheses following the binding energy.
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TABLE III. Binding energy (in a.u.) of the hydrogen 2p (m;=0) state in a uniform magnetic field.

Spherical® (in italics) and Eigenfunction
present cylindrical (in roman) Variational expansion
a? B adiabatic results lower results

(a.u.) (10° G) Upper bound Lower bound bound of RWHR®

0.05 0.235 0.1629 0.1524 0.162 38° 0.162410 (6)

0.5 2.35 0.2622 0.2557 0.2596°¢ 0.260007 (16)

1.0 4.70 0.2991 0.2950 0.296¢ 0.297711 (23)

1.5 7.05 0.3210 0.3181 0.320040 (24)
2.5 11.8 0.3483 0.3464
12.5 . 58.8 0.4223 0.4219

50.0 : 235.0 0.4638 0.4637 0.463618 (12)

100.0 470.0 0.4775 0.4774 0.476532 (12)

1000.0 4700.0 0.4956 0.4956 0.495595 (12)

da=(2.12715X 10~'° 2,u./G)B (G).
YFrom A. F. Starace and G. L. Webster, Ref. 25, Table IV.
°From D. M. Larsen, J. Phys. Chem. Solids 29, 271 (1968).

9From R. R. dos Santos and H. S. Brandi, Phys. Rev. A 13, 1970 (1976).
‘From W. Rosner, G. Wunner, H. Herold, and H. Ruder, Ref. 16. The number of expansion terms for each value of the magnetic

field is shown in parentheses following the binding energy.

in the threshold shifts exactly cancels the difference of the
same amount in the energy levels.

We present our cylindrical adiabatic results for the
binding energies corresponding to the 1s, 2p(m;=0),
2p(m;==1), and 2s states of hydrogen in Tables II-V.
For the 1s and 2p states our results are rigorous upper
and lower bounds on the true binding energy. In order to
be most useful to future researchers, we have, firstly, com-
bined our present cylindrical adiabatic results with the
previous spherical adiabatic results of Starace and Web-
ster;?®> only the best available adiabatic upper and lower
bounds are shown. Secondly, we have compared our re-
sults to the best available variational lower bounds on the
binding energies that are known to us whenever these are
superior to our adiabatic lower bounds. Lastly we have
compared these rigorous upper and lower adiabatic and
variational bounds to the very detailed eigenfunction ex-
pansion results of Rosner et al.'®

The binding energies for the 1s level are shown in Table
II. One sees that the cylindrical adiabatic bounds become
superior to the spherical adiabatic bounds*® for magnetic
field strength parameters a on the order of unity. The
rather large difference between the cylindrical upper and
lower bounds (on the order of 0.1 a.u.) is due to the poor
representation of the s state near p=z =0 by cylindrically
symmetric wave functions. This poor representation re-
sults in rather large diagonal coupling matrix elements
(fum>0%fum /022). Note, however, that these matrix ele-
ments do not enter into the calculation of our upper
bounds on the 1s binding energies. When these upper
bounds are combined with the best available variational
lower bounds, then the differences between the bounds
never exceeds about 0.03 a.u. The eigenfunction expan-
sion results of Rosner et al.!® are consistent with the
upper and lower bounds presented in all cases except pos-
sibly a very slight discrepancy with a variational lower-

TABLE 1IV. Binding energy (in a.u.) of the hydrogen 2p (m;=+1) state in a uniform magnetic field.

Spherical® (in italics) and Eigenfunction

present cylindrical (in roman) Variational expansion

a? B adiabatic results lower results
(a.u.) (10° G) Upper bound Lower bound bound of RWHR*®
'0.05 0.235 0.2013 0.1882 0.200 81° 0.200 846 (5)
0.5 2.35 0.4595 0.4524 0.456° 0.456 597 (13)
1.0 4.70 0.6021 0.5964 0.59774 0.599613 (15)
1.5 7.05 0.7059 0.7008 0.702¢ 0.703 547 (17)
2.5 11.8 0.8619 0.8575 0.86°

50.0 235.0 2.6360 2.6338 2.6348 (12)

100.0 470.0 3.3483 3.3464 3.3471 (12)

1000.0 4700.0 6.9523 6.9513 6.9520 (12)

ag=(2.12715x10"° a.u./G)B(G).
YFrom A. F. Starace and G. L. Webster, Ref. 25, Table V.
°From D. M. Larsen, J. Phys. Chem. Solids 29, 271 (1968).

9From R. R. dos Santos and H. S. Brandi, Phys. Rev. A 13, 1970 (1976).
*From W. Rosner, G. Wunner, H. Herold, and H. Ruder, Ref. 16. The number of expansion terms for each value of the magnetic

field is shown in parentheses following the binding energy.
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TABLE V. Binding energy (in a.u.) of the hydrogen 2s state in a uniform magnetic field.

Spherical® (in italics) and Eigenfunction
present, cylindrical (in roman) Variational expansion
a? B adiabatic results lower results

(a.u.) (10° G) Upper® Lower® bound of RWHR!

0.05 0.235 0.1503 0.0873 0.14807¢ 0.148 089 (7)

0.5 2.35 0.1594 0.1357 0.1584° 0.160469 (23)

1.0 4.70 0.1744 0.1574 0.173 944 (24)

1.5 7.05 0.1832 0.1702 0.18259 (23)
2.5 11.8 0.1945 0.1853
12.5 58.8 0.2289 0.2262

50.0 235.0 0.2565 0.2555 0.256 19 (12)

100.0 470.0 0.2700 0.2690 0.268 97 (12)

1000.0 4700.0 0.3063 0.3061 0.30624 (12)

2q=(2.12715% 10" '° a.u./G)B(G).
YFrom A. F. Starace and G. L. Webster, Ref. 25, Table VI.

°The terms ‘“upper” and ‘“‘lower” here serve solely to distinguish our results obtained, respectively, without any coupling matrix ele-
ments and with only the diagonal coupling matrix element included. Since the 2s level is the second lowest m =0 even parity state,
our results are not rigorous upper and lower bounds on the 2s level energy.

9From D. M. Larsen, J. Phys. Chem. Solids 29, 271 (1968).
°From A. Baldereschi and F. Bassani, Ref. 28.

fFrom W. Résner, G. Wunner, H. Herold, and H. Ruder, Ref. 16. The number of expansion terms for each value of the magnetic

field is shown in parentheses following the binding energy.

bound result for a=1.

Our binding energies for the 2p(m;=0) and
2p(m;==1) results are presented in Tables III and IV.
Only for a=0.05 are the spherical adiabatic results* su-
perior to our cylindrical adiabatic results. Furthermore,
for ¢ 212.5 the difference between our upper and lower
bounds never exceeds about 4X107* awu. in the
2p(m;=0) case and 2X 1073 a.u. in the 2p(m;==*1)
case. This great improvement from the ls case stems
from the weaker influence of the diagonal coupling matrix
element on the lower bound results; for the m;=0 case,
the function qo;_(z) is zero at z =0, where the coupling
matrix element is largest; for the m;=1 case, the radial
function f,(z;p) is kept away from the z axis (where
p=0) by the centrifugal term in Eq. (7). For values of
greater than about unity, there are no variational lower-
bound results known to us which improve upon our own
adiabatic lower bounds. Indeed, in the 2p(m;=0) case
our upper and lower bounds are nearly identical (up to our
order of accuracy, 10~* a.u.) Whereas the eigenfunction
expansion results of Rosner et al.!® lie between our
bounds for all magnetic field strengths in the
2p(m;==1) case, they lie slightly outside our bounds for
a=50 and 100 in the 2p (m;=0) case. For a=1000 they
agree exactly with our identical upper and lower bounds
to the 2p(m;=0) binding energy. Note, however, that
our results are obtained with a single ‘“configuration”
wave function, whereas RGsner et al. employ 12 or more
configurations. That we are able to do as well as they is
due in large part to the inclusion of the Coulomb field po-
tential in the calculation of our radial functions and to the
resulting parametric z dependence of our functions.

Our results for the 2s binding energy are presented in
Table V. Since this state is not the lowest one of its sym-
metry, our results obtained from Egs. (17) and (18) are not

rigorous bounds on the system’s energy. We nevertheless
label our computed binding energies as “upper” and
“lower” to identify the equations used to obtain them.
We see once again that the spherical adiabatic results are
to be preferred only for « £0.05. Our upper and lower re-
sults differ by no more than 3x 1073 a.u. for a>12.5.
Furthermore, for 21, the eigenfunction expansion re-
sults of Rosner et al.'® lie between our upper and lower
binding energies. Variational lower-bound results are
given for ¢ =0.05 and 0.5. Each of these lies between our
upper and lower results.

C. Conclusions

We conclude that the adiabatic approximation in
cylindrical coordinates is an efficient procedure for pro-
ducing reliable upper and lower bounds for discrete ener-
gies of hydrogenic systems, especially for excited levels.
When combined with the best available variational lower
bounds on the binding energy, in those cases where these
are superior (i.e., for a values of the order of unity and for
the 1s ground state), the upper and lower bounds present-
ed here provide a stringent test of past and future calcula-
tional efforts. Except for a very few isolated instances,
our upper and lower bounds are consistent with the eigen-
function expansion results of Rosner et al.'® The wave
functions and probability densities presented here graphi-
cally show clearly the magnetic-field-induced deforma-
tions of atomic states.
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