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The response of an electronic system to the creation of double and multiple core vacancies is in-

vestigated. Under certain conditions the calculations'are considerably simplified and a linked-
cluster theorem can be formulated for the corresponding core-hole spectra. Particular attention is

paid to the relation of properties of double and multiple core holes to those of the well-studied single
core holes.

I. INTRODUCTION

A vast number of experimental and theoretical work ex-
ists on the properties of core holes in atoms, molecules,
solids, and chemisorbed systems. ' Most of the work

-has been concerned with the determination of the core-
hole binding energies and the response of the system to
the sudden creation of a vacancy in the core. Improved
experimental techniques and the availability of synchro-
tron radiation prove useful for investigating the dynamics
of the core-hole creation and lead to new activities in the
field.

In contrast to the creation of single core holes only little
attention has been paid to the creation of multiple vacan-
cies and in particular to multiple core holes. Two-
electron —one-photon processes have been reported on in-
ert gases. For Ar it has been found that the cross sec-
tion for the E 'M ' double vacancy is only one order of
magnitude below that of the K ' single vacancy. Multi-
ple vacancies in solids have been investigated recently'
showing that the cross section for the creation of double
core holes decreases relative to that of single core holes
with increasing atomic number.

The fact that double core holes could be studied even
for heavier atoms indicates that such vacancies can be in-
vestigated experimentally for molecules, where, to the
knowledge of the author, no results are available yet. In
contrast to atoms, molecules have the additional advan-
tage that the various core vacancies can be localized at
different atomic sites. First numerical results' on the en-
ergies of molecular double core vacancies indeed demon-
strate that if the vacancies are at different atomic sites,
one is probing the chemical environment of these atoms
much more sensitively than in single-core-vacancy situa-
tions. In particular, double-core-hole spectroscopy should
provide interesting information on the bonding properties
in gas phase and chemisorbed molecules, molecular crys-
tals, and heteronuclear solids.

In the present manuscript the many-body theory associ-
ated with the sudden creation of multiple core holes is in-
vestigated making explicit use of the genuine properties of
core levels. The relevant Hamiltonian is discussed in Sec.
II and the spectrum, or equivalently, the various core

Green's functions, in Sec. III. Section IV is devoted to the
evaluation of the spectrum and some properties of the
spectrum are compared in Sec. V to those of the single-
core-hole spectrum.

II. THE CORE-VALENCE HAMILTONIAN

The Hamiltonian of an electronic system reads

II = y e;a; a!+ y

vivat

aj + —, y VtJk!at aj a!ak
i,j,k, l

where c.;, U;~, and Vzkl are the matrix elements of an un-
perturbed Hamiltonian, a one-particle potential U which
can, in principle, include an external potential, and of the
electron Coulomb interaction

~ijk! ~W; «)4, (r')
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respectively Itb; j denotes any complete orthonormal basis
of spin orbitals that diagonalizes the unperturbed Hamil-
tonian and Ia; I is the corresponding set of annihilation
operators.

The general Hamiltonian (1) can be simplified by mak-
ing explicit use of the genuine properties of core electrons.
Because of the large difference in energy and in the locali-
zation in space of core and valence electrons, it is com-
monly accepted that the eigenstates of the system can be
separated to a good approximation into a core and a
valence part. Imposing this separability of core and
valence electrons, the Hamiltonian (1) reduces to the
simpler core-valence Hamiltonian H„which, for a single
spatial core orbital of its kind, takes on the following ap-
pearance

The operator H, denotes the Hamiltonian of the valence
electrons. Choosing for convenience the Hartree-Fock
operator as the unperturbed Hamiltonian in (1), the P; and
c; become the Hartree-Fock orbitals and orbital energies
and H, reads
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H„=H, + V„,

Ho= g ~sat at ~ (3a)

Hc Ec(nct+ncl)+ Vccccnctnci+Ucc(nct+nci) i (3b)

where n =a am is the occupation-number operator and
the one-electron spin indices are denoted by ) and
There are two terms describing the interaction of the
valence and core electrons. The spin-flip term F,„may
not preserve the spin of the core electrons,

F„= —g V;„„~a;aj a«a„+H. c. ,
E,J

(3c)

and the second, more relevant interaction term takes on
the form

W,„=—( 1 n„)—g ( V;„j„—V„„,J )a; aJ + (c t +c J, ) . —

(3d)

The full Hamiltonian H as well as the core-valence
Hamiltonian H„commute with the spin operators S, and
S and also with the electron-number operator
X= g n~. The latter Hamiltonian commutes, more-
over, separately with the core-electron-number operator
X, =n„+n„and valence-electron-number operator
X„=g,. n; owing to the imposed core-valence separabili-

ty. Obviously, %=X,+X,. The correct spin symmetry
of the states arising due to the creation of core vacancies
is established by the spin-flip term. On the other hand,
the matrix elements of F,„are small, since they describe
the exchange interaction of core and valence electrons.
F„can be neglected in many situations and, if necessary,
its effect can be taken subsequently into account. Once
the spin-flip term is neglected, the core-valence Hamil-
tonian H„commutes also with n, „and n„. Consequent-
ly, we may substitute these core-occupation-number
operators by numbers 1 or 0 according to the occupancy
of the core orbitals. In the ground state all core orbitals
are occupied, we have n„=n„=1 and thus W,, vanishes
and the core and valence parts do not interact beyond the
Hartree-Fock level. If one or two core holes are created,
one or both of the operators n„and n„are put to zero
and the valence electrons now react to a one-particle po-
tential W.„ in addition to the potential V„ in Eq. (3a)
describing the usual interaction between the valence elec-
trons. The combination of both 8',„and V, renders the
single- or multiple-core-hole problem a "true" many-body
problem. It should be mentioned that H„does not
describe the decay of the core vacancies via x-ray and
Auger emission since the number of core electrons is

r y ( Vikjk Vikkj )nk''ai aj+ 2 y +ijkla' aj'alak
i,j k i,j,k, l

where here and in the following all the indices i, j, k, and
l do not include the core index c. The occupation number
nk of the orbital pk equals 1 (0) if pk is occupied (unoccu-
pied) in the Hartree-Fock ground state. The Hamiltonian
H, describes the core electrons and is given by

Hs u =Hv+Hs
n n

(Sa)

which is the Hamiltonian of the system with one active
localized core orbital ps and is given by H,„ in Eq. (2)

with c =s„. The sum of the first two terms on the right-
hand side of Eq. (4) thus constitutes the core-valence
Hamiltonian with independent' core electrons. The core
electrons on different atomic sites may interact directly by
the trivial electrostatic repulsion term

~s s = ~s s s s &s„+s (Sb)

where X, =n, , +n, , is the core-electron-number opera-
n n n

tor at the atomic site n, . or indirectly via the valence elec-
trons by the term

V8', ,n m Vls„'ts. tj laj s„t s.T+( t
l,J

V f Jja; a,.
l,J

+(st~st) +H. c. (Sc)

The term (Sc) describes how a core hole may hop from
one atomic site to another. Similarly to the spin-flip
term, this hopping term contains only exchange matrix
elements between core and valence electrons and
represents, therefore, a weak interaction. The term 8",

n m

can be safely neglected when the sites n and m are occu-
pied by atoms of a different kind, e.g., carbon and nitro-
gen atoms. It will be shown in Sec. III that even when the
sites n and m are occupied by the same kind of atoms, the
interaction 8,', is by far less important than the spin-

n m

flip terms F, „. Neglecting the hopping terms, the result-

ing core-valence Hamiltonian commutes with the N, and
n

if the spin-flip terms are omitted as well, H,„commutes

preserved. Very often one may treat this decay by first
calculating the stationary states and subsequently comput-
ing the line broadening using perturbation theory. ' '

The presence of additional atoms with core orbitals
complicates somewhat the situation, in particular when
core orbitals are delocalized over several equivalent atom-
ic sites due to symmetry requirements. However, in any
case of (deep) core electrons one may express the localized
core orbitals P, , k =1,2, . . . , as a superposition of
nonsymmetry-adapted core orbitals P, , n = 1,2, . . . ,n

each localized at its atomic site n. In the basis of such lo-
calized core orbitals the general core-valence Hamiltonian
takes on the following form, independently of whether the
system contains equivalent atomic sites:

H„=H„+gH,'+ g W, , + g W,", . (4)
n m, n m, n

(m &n) (m &n)

The operator H„ is the Hamiltonian of the valence elec-
trons given in Eq. (3a) and H," is defined throughout the

operator H, „n"
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with each of the core occupation number operators n, ,n

and n, „n =1,2, . . . . Consequently, we may, as in the
case of a single atom, replace these operators by numbers
according to the occupancy of core electrons in a given
state. Once this occupancy is defined in a given'situation,
the problem can be reduced to the treatment of the
valence electrons alone. The potential seen by these elec-
trons depends solely on the core vacancies introduced at
specific atoms and not on the core electrons localized on
the other atoms.

III. THE MULTIPLE-CORE-HOLE SPECTRUM

Green's functions ' ' provide a powerful tool to obtain
information on the electronic system undergoing a sudden
change in the number of core electrons. The one-particle
Green's function, for example, reads

G „(t)= i(P—o I
TIa (t)a„ I I Po ), (6a)

where go denotes the ground-state wave function of the
S-electron system and T is the Wick time-ordering opera-
tor. Using the core-valence Hamiltonian (2) this Green's
function reduces to (a closed-shell system is assumed)

G„(t)=G„„(t)=G„„(t)=i (Po I
a, a, (t)

I Po ) (6b)

for t & 0 and vanishes for t & 0. At time t & 0 a core elec-
tron is ejected out of the system and returned to the sys-
tem at a later time (t =0). G«(t) describes the probabili-
ty amplitude in recovering the initial state

I Po ) as a
function of time. The core-hole spectrum P(co) as a func-
tion of energy co is defined by

P (co)=ImG«(co)

where G«(co) is the Fourier transform of G„(t) and Eo is
the ground-state energy. The core-hole spectrum (7) is
indeed closely re,lated to an experimentally measurable
spectrum. The ionization spectrum of an electronic sys-
tem obtained by photon or electron impact reduces under
the conditions of the sudden approximation ' to P(co)
in the above equation.

Analogously, the two-particle, three-particle, etc. ,
Green's function and the corresponding spectra may be
introduced to describe the sud'den simultaneous ejection of
two, three, or even more core electrons. To be specific we
discuss in the following the case of two core electrons.
The results can be straightforwardly extended to describe
more core electrons. It suffices to consider two spatial
core orbitals carrying the indices s& and s2. The annihila-
tion of two core electrons in a closed-shell system leads to
dicationic states of either singlet or triplet character.
There are several two-particle Green's functions relevant
for the double-core-hole spectrum. They mn be defined in
analogy to Eq. (6),

„(t)= i (tg I
TIb (t)b„j

I go ),— (Sa)

where the bm now refer to products of core annihilation
operators introduced in the following:

b) =a, ~a, , ~ b2=a, ,~a, ~ b3=a

1
b45 ——~ (a, ,a, , +a...a, , ), b6 ——a, ,a, ,

(Sb)

The double-core-hole spectrum thus obtained reads

P(co)= J Cte'"'(go~I mt~(t)
I
bio~),

iH t —iH t~~( t} e CU ~~e CV

(10a)

(lob)

This spectrum is of relevance since the, poles of the
Green's functions involved explicitly exhibit the energies
needed to create the various double-core-hole states and
the corresponding residues contain important information
about the wave functions. There is also a possible experi-
mental realization of the above spectrum. The impact of
a fast charged particle on the system may lead to the
simultaneous ejection of two core electrons described by
Eq. (10).

The evaluation of the spectrum (10) is simplified by
noting that the operation of the core-valence Hamiltonian
(4) on the various b„

I go ) can be written as

6

~-b.
I fo & = g ~ .b

I fo &, (11)
m=1

where the A „are operators operating on the valence

Application of the three operators b~, b2, and b4 on the
ground states gives rise to dicationic singlet states whereas
the remaining operators correspondingly lead to triplet
states. The operators b

&
and b2 create double core vacan-

cies where both vacancies are at the same atomic site and
thus possess different properties than the other operators
which create two vacancies each at a different atomic site.
We denote the corresponding double-core-hole states by—2 —2 —1 —'1s), s2, and s) s2

The 36 Green's functions S „ introduced above are
not independent of each other. In particular, the three
"triplet" functions $33 955 and 966 are essentially iden-
tical and represent the magnetic quantum number M =1,
0, and —1, respectively, of the triply degenerate dimtionic
states. Obviously, all nondiagonal. Green's functions
9'~„, m&n, where the operators b and b„correspond
to different spin quantum numbers of the resulting dica-
tionic states, vanish. Furthermore, the functions
and S„~ contain the same information. We are thus left
with seven distinct Green's functions 9'&$ 822 933 944,
S &2, 9'&4, and Sq4, out of which the latter three contri-
bute only little to the double-core-hole spectrum as will be
seen below. In the special situation where the two atomic
sites are equivalent by symmetry, we furthermore find
9' » and 9'22 to be essentially identical (if the point group
to which the system belongs contains degenerate irreduci-
ble representations and more equivalent sites are present,
the situation is somewhat more subtle).

The most general double-core-hole spectrum is obtained
by introducing a "transition operator" u as a superposi-
tion of the double annihilation operators b„, 'n =1—6,
with amplitude w„according to

6~= gr„b„.
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electrons only and thus commute with the b„. This find-
ing can be used to eliminate all the core electrons from the
Green's functions and, in particular, from the expression
(10) of the spectrum. The resulting functions and spec-
trum then depend solely on the coordinates of the valence
electrons. With the aid of Eq. (11) the spectrum (10) takes
on the form

& yy' —~ "is ysby' iy' jy
l,j

a, b =1,2; y, y'= y~ . (13a)

In order to elucidate the origin of the individual terms, we

&(~)= f (12)

where A is a six-dimensional matrix Hamiltonian with
elements A „~ acting in the space of valence electrons and
~ is a column vector with the amplitude ~.„, n =1—6, as

N„
elements. The quantities Eo" and $0" are the ground-
state energy and wave function of the valence electrons

only, i.e., H, go" Eo'$——0". It should be mentioned that
the various Green's functions introduced in Eq. (8) can be
obtained from the spectrum (12) by evaluating this spec-
trum for specific values of the i„, e.g., by putting r, =1
and all the other ~„=0 we obtain the imaginary part of
8 ~~(m) out of which also the real part can be determined
by applying well-known relations.

The matrix Hamiltonian A can be explicitly expressed
in terms of the auxilary operators

—( 8;,(n, , =O, n, ,= 1)), (14a)

where ( W) is the average value of the operator 8' in the
unperturbed (here, Hartree-Fock) ground state, and obtain

V„=—g(V;, ,~, , —V;, »,J)(a;a~ n;5jj) '—. (14b)

Of course, a potential V„defined analogously is obtained
by setting y= g.

The matrix Hamiltonian now takes on the appearance

collect them in groups arising from different interaction
operators in the core-valence Hamiltonian,

22 11 & ll 11- 22 22-(Q~ +Qi » &= —.(Q —Qi~+Q i —Qi »&2
(13b)

2 1Z„.=Q,y, Z = (Z„+Z„) .
'V2

The quantities X~ and Zzz appear in the spin-flip and
hopping operators I, , and 8", , respectively, discussed
in detail in Sec. II. The quantity F originates from the
exchange part of the potential seen by the valence elec-
trons when a vacancy is created in the orbital P, z. Assa

mentioned in Sec. II, this potential is determined by put-
ting n, z

——0 in W», see Eq (3d. ). We define the poten-
tial for the valence electrons (y= T)

V„= 8; „(n, , =O, n, , = 1)
a a a

H))(tl)
H»(t~) Z'

H»((g) X+
H)q(tl)

X 0
F X+

H, 2(l t) —X
H)p(tt)

(15a)

Since the matrix Hamiltonian is Hermitian, there is no
need to explicitly show the lower triangle in Eq. (15a).
The diagonal elements of A read

H,b(yy')= —E, —e,, + V. .., , +H,

+ —,(V,~+ V,r + Vga+ Vbr ), (15b)

where a (b) = 1,2 and y(y') = t, l.
Because of the core-valence separability we have been

able to eliminate all core operators from the expressions
for the Green's functions or, equivalently, from the ex-
pression for the single-, double-, or multiple-core-hole
spectrum. Core properties enter only through the orbital
energies c, , the electrostatic repulsion integrals V. . . ,n nmnm
and, most importantly, through the Coulomb and ex-
change integrals V;, js and V;, , j. In the case of the

pr'oduction of double core vacancies, the resulting matrix
Hamiltonian (15a) describes the motion of the valence
electrons in the field of two core holes. The problem be-
comes intricate because of the additional intrinsic interac-
tion of t'he valence electrons and the indirect interaction
of the double-core-hole configurations. As can be seen
from Eqs. (15a) and (13), the latter interaction contains
only exchange integrals of core and valence orbitals and is
thus of secondary importance.

The nondiagonal elements of A in (15a) are of varying
relevance. The matrix Hamiltonian has been divided into
two parts as indicated in Eq. (15a). The upper left corner
of A describes double core holes where the two vacancies
are at the same atom. Since A

~2
——0, there is no direct

coupling between the s 1 and s2 vacancies and the dou-
ble vacancy at one site can only hop to the other atomic
site through the indirect coupling to the vacancies of the
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s~ 's2 type. Because of the substantial energy gap be-
tween the two types of vacancies and the smallness of the
matrix elements of Z, we may put $ &2(t) = $2&(t) =0 to
an excellent approximation and even neglect all the cou-
pling Z», Z», and Z+ between the s, and s& 's2 ' va-
cancy types. The above-mentioned energy gap is dictated,
for a given atomic species, by the difference in electrostat-
ic repulsion energy V. .. , and V. .., appearing in the

diagonal elements of A, see Eq. (15b). The latter energy
depends on the internuclear distance between the atomic
sites involved and is of the order of 10 eV or less. The
former energy is the repulsion energy of two core elec-
trons at the same atomic site and amounts to about 100
eV already for an atom as light as a carbon atom. If
desired, the influence of the Z», Z», and Z+ operators
can be taken into account by straightforward perturbation
theory.

The lower right corner A of A in (15a) describes the
valence electronic motion following the creation of a dou-
ble core hole s~ 's2 ' where each vacancy is located at a
different atomic site. The infinitely many eigenstates of
this four-dimensional Hamiltonian A can be arranged in
a series of four closely related states, a threefold degen-
erate dicationic triplet and a dicationic singlet. If the
nondiagonal elements of A are neglected, most of the re-
sulting eigenstates will not be eigenstates of the spin
operator. The states which derive from the unperturbed
double vacancy with no valence electrons excited, the so-
called main states, are only slightly affected by the nondi-
agonal elements of A . Numerical calculations' on the
double core vacancies of acteylene show that the energy
difference between the singlet and triplet states is rather
srpa11. These computations have been carried out twice,
with and without imposing the core-valence separability,
demonstrating the usefulness of assuming this separability
in evaluating double core vacancies.

The states which, on the unperturbed level of approxi-
mation, are described by a double core vacancy accom-
panied by an excitation of the valence electrons, the so-
called satellite states, are stronger affected by the coupling
in A than the main states. Without the coupling ele-
ments in A there appear degeneracies and quasidegenera-
cies of the satellite states which are partly lifted by intro-
ducing these couplings and vice versa. Since the coupling
operators are "weak, " we may determine their effect by
using low-order and low-dimension quasidegenerate per-
turbation theory once the states of the diagonal elements
of A are known.

The double-core-hole spectrum (12) becomes a superpo-
sition of six spectra P„(co) if the matrix Hamiltonian A is
assumed diagonal,

(16)

P3 ( co ) =P6 ( co ), P4 ( co ) =P5 ( co )

+33( co ) = &66 ( co ), &~~( co ) = & 5 5( co )

S„m(co)=0, n+m

and if the two sites s& and s2 are equivalent by symmetry
requirements, also P&(co)=Pz(co). The above relations
formally contradict the exact findings discussed above in
that the triplet spectrum P5(co) is not equal to the other
triplet spectra P3(co) and P6(co), but rather equals the
singlet spectrum Pq(co). This is not surprising in view of
the fact that, as discussed in Sec. II, we have abandoned
spin symmetry by neglecting the spin-flip term. In Eq.
(17), P4(co) and P5(co) simulate an averaged singlet-triplet
spectrum. Inclusion of the interaction terms will produce
a "split" of states leading to the exact result
9 33 —8 66 —S55+944 However, as mentioned above,
the quantitative effect of the interaction terms is rather
small and may be neglected in many cases or, if desired,
computed subsequently.

Alternatively one may, of course, evaluate the full spec-
trum (12) via a configuration-interaction calculation for
the matrix Hamiltonian A or A similarly to the case of
vibronic coupling in molecules. To this end one can

N~
use the eigenfunctions g of the valence Hamiltonian H,
to construct a supermatrix with 4 &(4 matrices

(g~"
~

A
~

g„") as elements. This supermatrix decouples
into four submatrices out of which three, representing the
triplet dicationic states, are essentially identical. The
eigenvalues of the submatrices give the positions of the
lines in the spectrum and the square of the first element
of the corresponding -eigenvector multiplied by the ap-
propriate

~
r„~ yields the intensities of these lines. This

method is numerically elaborate in particular if many
lines of the spectrum are to be calculated.

In Sec. IV we attempt the evaluation of the double-
core-hole spectrum neglecting the nondiagonal elements
of A in Eq. (15a). These nondiagonal:elements contain
only exchange integrals V;, , &

between core and valence

electrons. The Hamiltonians appearing as the diagonal
elements of A contain the more important Coulomb in-
tegrals V;, ~, , but also exchange integrals V;, , ~. Thets„ps~ "n n~

question may arise, why not neglect the latter exchange
integrals as well and thus simplify the evaluation of the
spectrum? It can be shown, however, that the errors in-
troduced by neglecting the exchange integrals in the diag-
onal of A are substantially larger than those encountered
by neglecting them in the nondiagonal part of A . In
second-order-perturbation theory, for instance, products
of Coulomb and exchange integrals are neglected in the
first case, while in the second case only products of ex-
change integrals are omitted [see also explicit expressions,
Eqs. (18a) and (18b), in Ref. (16) for the single-core-hole
situation].

where the explicit form of the operators A „„,n = 1—6, is
given in Eq. (15b). As can be inferred from Eq. (15b), the
spectra or, equivalently, the corresponding Green's func-
tion P„„(co)are not independent of each other. One rath-
er finds the following relations:

IV. EVALUATION OF THE SPECTRUM

The single-, double-, etc. , core-hole spectrum can be
rewritten to be the Fourier transform of the ground-state
autocorrelation function of a matrix Hamiltonian operat-
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ing only in the space of the valence electrons. The dimen-
sion of the matrix Hamiltonian is given by the number of
possibilities to create a single-, double-, etc., core vacancy
under consideration. We begin here with the evaluation of
the double-core-hole spectrum and concentrate first on the
case of the two vacancies being located at the same atomic
site. Following the discussion of Sec. III we may, because
of the small matrix elements of the hopping operator

and the large energy gaps involved, neglect the
n m

presence of possible core orbitals on other atoms and con-
sider one active atomic site only. The core-valence Ham-
iltonian to be considered is given by Eqs. (2) and (3).
Since the spin-flip operator has zero effect when operating
on the ground state

I $0 & as well as on a„a„
I $0 &, it can

be omitted in an exact manner. Consequently, we are left
with the problem of calculating P&(co) or, equivalently,
$~~(co), see Eqs. (17) and (18), using the Hamiltonian
II~&(TJ) defined in Eq. (15b) which does not contain the
spin-flip operator (notice that, for convenience, we put
c =s, ).

It is a central result of the quantum theory of many-
particle systems that the various Green's functions and
other relevant quantities like the vacuum amplitude can
be expanded in Feynman diagrams. ' ' We introduce in
Fig. 1 the symbols we use in the diagrammatic expansion
of the Cireen's functions and vacuum amplitude. The
straight line shown in this figure represents the so-called
free one particle Ctree-n s function given explicitly by (I
and n are one-particle indices)

G~„(t)=i5 „e [6( t)n ——6(t)(1 n)], (18)—

where 6(t) is the usual step function. A straight line
pointing downwards, i.e., t (0 and v =1, is called a hole
line and a line pointing upwards, i.e., t ~ 0 and n~ =0, is
referred to as a particle line. For the details of drawing
and evaluating the diagrams of a given quantity we refer
readers to textbooks. ' ' The diagrams of S~~(t) up to
second order are explicitly shown in Fig. 2.

The Green's function S»(t) for the double core hole
s

~ can be written as

V, (r') =(V„+V„)6(r'—r)6( r')— (20)

and the interactions V~, and V» have been defined in Eq.
(14b). It now follows that

Q =ie ' ' ' ' ' R, (T2, T( )/Rp(Tp, T(), (21)

where Ro and R, are vacuum amplitudes for different
perturbations of the valence electrons,

N„Z, (T„T,) = &y,
'

I U, (T„T,)
I P." &, (22a)

N„
&t(Tz Ti)= &0o"

I
Ut(T2»i)

I

00" & (22b)
N

$0" is the unperturbed ground-state wave function of the
valence electrons.

The vacuum amplitudes are subject to the well-known
linked-cluster theorem

&o(T2 T&)=exp[co(T2 T&)l

R, (T2, T) ) =exp[C, (T2, T) )],
(22c)

(22d)

The functions Co and C, are given by the sum of all con-
nected diagrams of Ro and R„respectively. Introducing
their difference

where

. &Po I
T[«T2 Tl)~1(r@i] I ko &

&Po I
U(Tz Ti)

I bo &

is the unperturbed ground-state (here Hartree-Fock)
wave function, b& denotes the operator b~ [see Eq. (8b)] in
the interaction picture, and U is the time-development
operator for the core-valence Hamiltonian H„. In analo-
gy to the single-core-hole situation, ' the core operators
can be eliminated from the expression (19b). We intro-
duce two time-development operators Uo( T2, T~ ) and
U, (T2, T&), operating only in the space of valence elec-
trons, for the Hamiltonians H, and the time-dependent
Hamiltonian H„+ V~(t'), respectively, where

kS)(tS)( k8)(ls)t kst(S)(~ kat(s)i~ )

FIG. 1. The definition of the symbols used in the diagrammatic expansion of the two-particle Careen s function S~~{t) defined in
Eq. (Sa}.
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s) )lI s,
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FIG. 2. The diagrams of the two-particle Green s function g»(t) up to second order (core-valence Hamiltonian considered).

C(t)= lim [C,(T2, Ti)—Co(T2, T, )],
T1~—oo

T2 ~+ oo

(23) ~s ~2~s —~s s s s
1 11111

V', 1J', 1
—V', 1., 11 ( V', ~P, 1+V', 1J', 1)

we readily obtain our linked-cluster theorem for the
double-core-hole Green's function (t (0) —(V', 1., 1J+V', 1., ii» (26)

—i(2c, —V sss )t(t)1 1111 C(t) (24) ls fs lj

Since the function Co contains all connected diagrams
with wiggly interaction lines only and C, contains all con-
nected diagrams with wiggly interaction lines and/or in-
teraction points (see Fig. 1), the function C(t) is equal to
the sum of all connected diagrams which contain at least
one interaction point. The diagrammatic contents of this
linked-cluster theorem is depicted in Fig. 3.

A major consequence of the above analysis is that the
single-core-hole and double-core-hole spectra, where both
vacancies are at the same atomic site, are closely related.
The creation of a single core vacancy s&

' has been
shown' to lead to the following expression for the one-
particle Careen's function (t (0)

This result is readily interpreted. If two core vacancies
are created at the same atomic site, the valence electrons
feel the spin free poten-tial of two missing charges in the
core. These two charges are subject to electrostatic repul-
sion given by V. .s, .s1 1s1 1

While the derivation of the double-core-hole spectrum
(24) with the two vacancies at the same site is free from
approximations beyond the core-valence separability, an
analogous derivation for the spectrum with the vacancies
at different atomic sites requires the neglect of the spin-
flip term, or, more precisely, a diagonal A (see Sec. III).
Once A is assumed diagonal, the following results are ob-
tained (t (0):

—rc, t
G, „,(t) =ie ' e (25a)

1 2 1212 n(t)=i5„e ' ' '''' e ", n=3 —6

(27)
where C(t) is defined identically to C(t) except that the
time-dependent interaction V1(t') in Eq. (20) is replaced
by V1(t') which reads

v, (t') = v„e(t' —t)(e —t ) . (25b)

The difference in the derivation of the expressions (24)
and (25) is that Eq. (25) can only be derived by neglecting
the spin-flip term while Eq. (24) has been derived includ-
ing this term (see above). It follows that given an explicit
expression for the single-core-hole spectrum, we may
readily obtain the double-core-hole spectrum by simply re-
placing in this expression the core orbital energy and
Coulomb and exchange matrix elements by new quantities
according to

where C„(t) is defined identically to C(t) in Eqs. (23),
(20), and (22) except that the time-dependent interaction
V1(t') in Eq. (20) is replaced by the appropriate interac-
tions

( V1, + V2, )e(t' —t)e( t'), —
—,'(v»+ v„+v„+v„)e(t' —t)e( —t ),
( V11 + vpt )e(t' —t)e( —t')

for n =3, 4 (5), and 6, respectively. In other words, the
diagrams for the functions C(t), C(t), and C„(t),
n =3—6, are all identical except that the meaning of the
interaction point is different in each case [see, e.g. , Eq.
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FIG. 3. On the linked-cluster theorem. Upper part: An example for the decoupling of diagrams Lower part: The diagrammatic
contents of the linked-cluster theorem.

(26) and Fig. I].
In analogy to Eq. (26), the double-core-hole spectrum

upon creation of two vacancies at different sites can be
obtained from the single-core-spectrum by the substitu-
tion

~s ~s +s —~s s s s1 1 2 1 2 1 2

V. SOME PROPERTIES OF THE SPECTRUM

In this section we briefly discuss the gross features of
the double-core-hole spectrum in relation to the single-
core-hole spectrum. It is well-known that a spectrum can
be described in terms of its moments. The moments
M of a spectrum P (co) are defined by

2

~, „„,—~;,, „,„-- X 1 ( ~,'„„'„.+ ~'.'j ..)
n =1 J (eo E) P(co)dco— (30)

(V;, r .n+ ~'.r' „r'j)]
(28)

where the spin indices y and y' must be inserted accord-
ing to the case in question. It is obvious now that analo-
gous expressions can be obtained for the triple-,
quadruple-, etc., core-hole spectra. Neglecting exchange
interaction between core and valence electrons we may
readily write down the general result for r core vacancies,

where the parameter E may serve to simplify the calcula-
tion, since physical relevant quantities do not depend on
its choice. If the spectrum P(co) can be determined as a
Fourier transform of a Green's function subject to a
linked-cluster theorem as derived in Sec. IV, the moments
can be related directly to the connected diagrams in the
exponential. For example, for the spectrum resulting
upon creation of s &, one obtains with the aid of Eq. (24)
and the choice E =2c., —V. .. , the following relation:

1 1sl 1sl

.,- X ".— X
n=1 n, m

(n &m)
(29)

m

M~ =
I
r

I

2i eci i~
I i =o'

PPg
(31)

Visijsi~ g I'is js„
n =1

where there is no need for spin indices and up to two of
the s„can be equal, e.g. , s&

——sz&s3 sg.

An equivalent, but more explicit, expression for the mo-
ments can be obtained starting from Eq. (16) for the spec-
tra. With the choice E =c, , the moments of the single-

1

core-hole spectrum read
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= II'(&0' zo' —m.

+ &(I",n, r —I",~,n)

X(a a —n.5")J 1 V (32)
W(s& )=2W(s& ) . (35a)

measure for the width of the spectrum. Neglecting terms
which are products of exchange integrals, we find via Eq.
(32) and the rule (26) a simple relation between the width
of the double-core-hole spectrum, where both created va-
cancies are at the same atomic site, and that of the single-
core-hole spectrum

where y=g or g. In the analogous expression of Ref. I6
the term Eo ' —H, has been erroneously omitted, but this
omission has no influence on the first three moments Mo,
M&, and M2. The corresponding expressions for the mo-
ments in the various double-core-vacancy situations can
be easily determined using the rules (26) and (28).

The zeroth moment Mo gives the total intensity of the
spectrum. The center of gravity of the spectrum E, s is
given by E +M~/ Mo. Because of the Hartree-Fock po-
tential used in this work, the first contribution to M&
arises in third-order perturbation theory. For the single-
core-hole spectrum this quantity is given by'

It is difficult to extract from Eq. (32) and rule (28) a sim-
ple relation for the widths of the spectra in the situation
where each vacancy is at a different atomic site. Because
of m =2 in Eq. (32) for the second inoment, mixed prod-
ucts of Coulomb integrals belonging to different sites ap-
pear which are not present in the single-hole case. In the
special situation, where both atoms are equivalent because
of symmetry requirements, as is the case in, e.g., the nitro-
gen molecule or ethylene, we may introduce the
symmetry-adapted delocalized orbitals Ps =(P, +P, )/
V 2 and P„=(P, —P, )/v 2 and use the facts that

E,.s (s i
') =Es, +Xs,s, ( ~ ) ~ (33) Vis&js& + Vis2js2 Vigj g + Viuju

(34a)

—]. —1

'i + '2 'i'Z'i'Z

+ &..., ( n& ) + &...,( ~ ) . (34b)

Apart from the electrostatic repulsion, the center of gravi-
ty of a double-core-hole spectrum is the sum of the
centers of gravity of the corresponding single-core-hole
spectra.

Equations (33) and (34) are essentially exact within the
framework of core-valence separability. The spin-flip
term actually not included in Eq. (32) does not affect the
results for the center of gravity of the spectra. The exact
moments can be obtained from the more correct expres-
sion (12) for the double-core-hole spectrum and from the
corresponding expression (15) of Ref. 16 for the single-
core-hole spectrum. The spin-flip term does not contri-
bute to the ground-state expectation value of the matrix
Hamiltonian A and thus also not to the center of gravity
of the spectra. The situation is different for the second
moment which depends, except in the case of the s&

spectrum, on the spin-flip term. The contribution of this
term to the spectral moments is, however, small. For the
single-core-hole spectrum the contribution of this term to
the second moment M2/Mo is

& 4o"
I

X'X
I

Wo" &,

which contains only products of exchange integrals of
core and valence electrons [X=I/M2(X+ —X ), X+ are
defined in Eq. (13)].

The quantity W=[M2/Mo —(M&/Mo) ]'~ is a direct

where X, , ( oo ) is the static part of the self-energy

part, ' i.e., the sum of all those diagrams of the self-
energy part which are independent of energy. The center
of gravity of the double-core-hole spectra P&(co) and
P3(co), see Eq. (16), are now readily determined,

~igjg = Viuju

Neglecting exchange terms, one then finds

W(s ) 's2 '
) = W(g ')+ W(u '), (35b)

where the widths of the single-core-hole spectra of the
delocalized vacancies are equal, i.e., W(g ') = W(u ').
Interestingly, the first moment M ~ (s ~

'
) is equal to

M~(g ') contrary to the situation found for the corre-
sponding second moments. Neglecting again exchange
terms and using V;, J, —V;, J,

——2VgJ„, one obtains the

following relation for these moments:

N
M2(s[ ')=M2(g ')+ l//o". y vg, ~„,a;aj.

i,J

2 N
Po'

(35c)

We thus expect the widths W(g ') and W(s& 's2 ') of
the delocalized-hole and double-hole spectra to be sub-
stantially smaller than W(s

&

'
) and W(s

& ), respectively,
for the localized-hole and double-hole spectra. The spec-
trum of a single delocalized hole is a hypothetical spec-
trum obtained by replacing s& in Eq. (32) for the spectral
moments by the index g (or u). The spectrum following
the creation of the s

&

's
2

' double vacancy is, on the other
hand, producible in reality and exhibits all the interesting
features of a delocalized-hole spectrum.

VI. SUMMARY

Making use of properties inherent to core levels, the
response of the system to the creation of vacancies in the
core can be evaluated. The resulting single-, double-, etc.,
core-hole spectrum has been expressed as the Fourier
transform of the ground-state autocorrelation function of
a matrix Hamiltonian which describes the motion of the
valence electrons in the field of the vacancies. The dimen-
sion of the matrix Hamiltonian equals the number of pos-
sibilities to create a single-, double-, etc., vacancy. The
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nondiagonal elements of these Hamiltonians describe
weak interactions between the various vacancy configura-
tions, like the spin-flip of a core hole and the hopping of a
core hole from one atomic site to another. The interac-
tion involved is of the exchange type between core and
valence electrons and can be neglected in many cases or
subsequently taken into account by perturbation theory.
Once these weak interactions are neglected, the theory is
considerably simplified and a useful linked-cluster
theorem is obtained. The various spectra are related to an
exponential function exp[C(t) j, where a diagrammatic ex-
pansion is given for C(t).

It has been shown that there is an intimate relation be-
tween the single-core-hole spectrum and the double-, and
multiple-core-hole spectra. Given an explicit expression
for any property of a single core hole, the analogous quan-
tity for a double or multiple core-hole can be readily
determined via a simple substitution rule. This rule takes
account of the nature of the vacancy. In benzene, for in-

stance, there are four double core holes of different nature
(spin symmetry not considered). The two vacancies can
be located at the same atomic site or at different sites in
ortho, meta, and para positions. The differences in, e.g.,
relaxation energies for these types of vacancies can be ra-
tionalized using the above rule. ' From the analysis of the
double-core-hole binding energies of benzene and a few
other molecules it has become clear' that these holes
probe their environment much more sensitively than sin-
gle core holes. Experimental spectroscopy of double core
holes could be of great interest.
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