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The integrability underlying the quantum mechanics of nonintegrable pulsed systems is exam-
ined along the line exploited by Nakamura and Lakshmanan [Phys. Rev. Lett. 57, 1661 (1986)l.
Coupled dynamical equations for both quasienergies and quasieigenfunctions (rather than matrix
elements) with a nonintegrability parameter X taken as "time" are shown to be reduced to a clas-
sical Sutherland's system with internal complex-vector space. Their complete integrability togeth-
er with constants of motion are also exhibited.

Although quantum mechanics of classically noninte-
grable systems has received more and more interest, ' its
understanding still remains phenomenological. Theoreti-
cal tools borrowed from a field of random systems are not
always eA'ective here. The signer-Dyson distribution in
random matrix theory is sometimes inconsistent with
level-spacing distribution of quantum chaos. The novel
concept of fractals is not always practical in quantifying
"chaotic" wave functions, because of the finiteness of h.

About a quarter of a century ago, Dyson proposed a
theory of Brownian motion for energy levels by taking a
nonintegrability parameter as "time. " Recent chal-
lengers have derived coupled dynamical equations for en-
ergy eigenvalues and matrix elements. Eventually, how-
ever, most of their eAorts have been directed toward
confirming the eO'ectiveness of the random matrix theory
in the field of quantum chaos. On the contrary, Nakamu-
ra and Lakshmanan obtained dynamical equations for en-
ergy eigenvalues and eigenfunctions (rather than matrix
elements), showing their equivalence to the completely in-
tegrable Calogero-Moser's system with internal complex
vector space. Knowledge of quantum mechanics for an
arbitrary strength of nonintegrability can thereby be pro-
vided by the solutions of Lax-form equations. Since these
are findings limited only to autonomous Hamiltonian sys-
tems, the next and natural question is to ask an integrabil-
ity behind nonintegrable, driven nonautonomous systems.

In this Rapid Communication, we study quantum
mechanics of periodically pulsed systems which has re-
ceived considerable interest recently. We shall derive
equations of motion for both quasienergies and quasi-
eigenfunctions, which will then be shown to be reduced to
a Sutherland's system with internal complex-vector space.

Finally, its completely integrable nature will be exhibited.
Let us consider a quantum Hamiltonian

H(t) =Ho+XV g B(t 2nj ), —

which describes any quantum bound system subjected to
periodically pulsed field. Ho and V correspond to classi-
cally integrable part and nonintegrable perturbation, re-
spectively, and both of them are time (t)-independent
Hermitian operators (Hj =Ho, V =V). X denotes the
strength of nonintegrability. For the time-dependent
Schrodinger equation i hd

~
+)/dt =H(t)

~
+), its solution

just after the jth pulse is given by ~ +1)=U~
~
+o). Here U

is a one-period unitary operator defined in terms of time-
ordering operator T as follows:

r p 2n'+0

U—= U(X) =Texp ~ ( —i/6)H(t')dt'
+0

=exp( —iXV) Uo,

where V=V/I't and Un=exp[( —i/It)2trHn]. So, the ei-
genvalue problem

U(A, )
~
n(X)) =exp[ —ip„(k)]

~
n(X))

and its quasienergies fp„(A, )I (which are discrete because
of the nature of bound spectra) and quasieigenfunctions
f~n(A. ))] determine the quantum dynamics. Let us con-
sider a manifold with a definite symmetry. Then fp„(k)]
can be assumed to be nondegenerate, by ignoring a negli-
gible possibility of accidental degeneracies. f ~n(X))]
are complex orthonormal and form a complete set. Tak-
ing X as time, equations of motion for p„(X), p„(X)[—= V„„

(n(k)
~
V~n(—k))], ~n(X)), and &n(X)

~
can be obtained
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from the time derivative of Eq. (1) as follows:

dy„/dh =p„,
dp„/dh=i g V„V „({(1—exp[i(p —p„)]j ' —c.c.),

(2a)

(2b)

d
~
n)/dh = —i g ~

m)V „{1—exp[i(p„—p )lj
mAn

(2c)

(2d)

—i VU ( n)+Ud ( n)/dh = —ip„exp( —ip„) ~
n)+exp( —ip„)d ~

n)/dh

Its left-hand side

—i g ~
m&V „exp( —ip„)+g ~

m) exp( —ip )&m
~
(d

~
n&ldh)

m m

—i
~ n&p„exp( —ip„) i g—

~
m) V „exp( —ip„) —i g ~

m) V „{1—exp[i(p„—p )lj 'exp( —ip ),
mWn

d&n ~/dh =i g &m
~
V~„{1—exp[i(P —p„)]j

mWn

The derivation of Eqs. (2a) and (2b) is self-evident. Equation (2c) has been derived as follows: h derivative of Eq. (1)
yields

where

&m
~
(d

~
n)/dh) = —iV „(I—exp[i(p„—p )])

for m an together with &n
~
(d

~
n)/dh) =0 are used.

Suppressing the common term —i
~
n)p„exp( —ip„), we

obtain Eq. (2c) together with its complex con'ugate [Eq.
(2d)]. [Strictly speaking, the equality &n

~
(d n)/dh) =0

is not appropriate in general. But this problem can be
resolved in a way noted in Ref. 6(b).]

In order to elucidate a completely integrable nature of
Eqs. (2a)-(2c), it is convenient to rewrite these equations
in a perfectly canonical form. Let us define A„as

A„V„{1 —exp[i(P„—P ) l j

I

which reduces to

A„=&n ( V
~
m) —&n ) UtvU ) m)

=&n
) V —UOVU, (

m) =&n
( A

(
m& .

The operator A is X independent and proves to be Hermi-
tian. Let xo be the lowest eigenvalue of A; then the opera-
tor A=A —xoI becomes a h-independent and nonnegative
Hermitian. A can thereby be decomposed as A=—LtL.
Here L is an appropriate h-independent operator which
has its unique inverse L '. A„ thus becomes

A„~ =&n
~
L L

~ m)+xone„~ .

A„„=0 is self-evident from Eq. (3), which means
&n~L L ~n) —xo. By using Eqs. (3) and (4), Eq. (2b)
becomes

dp„/dh=i g &n ~LtL ~m)&m ~LtL ~n) ~1 —exp[i(P„—p )]
~

({1—exp[i(p —p„)]j ' —cc.)
mWn

g &n (LtL (m)&m (LtL [n)cos[(p„—p )/2]sin [(p„—p )/2] .
mWn

(2b')

In the similar way, Eqs. (2c) and (2d) become

d(L
~
n))/dh = ( —i/4) g L

~
m)&m

~
L tL

~
n)

mWn

x sin [(p„—p~ )/2], (2c')

d( &n( L )t/dh=(i 4/) g &n
~

LtL
I m&&m ILt

mWn

&& sin [(p„—p )/2] . (2d')

Equations (2a) and (2b')-(2d') describe the dynamics
for both quasienergies and quasieigenfunctions and take a
perfectly canonicaI formalism. In fact, let us introduce a
classical N-particle Hamiltonian with internal complex-

I

vector space for each particle:

H- g —,'p„'+ —,
' g g &n~r. 'I. (m&&m(L'L~n)

n 1 n 1 m 1

(mWn)

(6b)

d(&n ( Lt)/dh {H,&n
~

Ltj = —BH/BiL ( n) . (6d)

x ~ sin [(p„—p )/2], (5)

where &n ~L t L
~
m) is now read as a scalar product of

complex dual vectors. N can be either finite or infinite.
Applying Poisson brackets similar to those in Ref. 6, one
has canonical equations from Eq. (6) as

dy„/dh-{H, y„j =aH/ap. , (6a)

dp„/dh - {H,p„j - —BH/8&„,

d(iL [ n&)/dh = {H,iL ( n&j aH/a&n [ L t, (6c)
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In Eqs. (6), [, ] are Poisson brackets, giving
[pn, Pm] 8n, m, [(n

~
L t,iL

~
m)] =8„,etc. (see Ref. 6).

Equations (6) can be found to be exactly the same as Eqs.
(2a) and (2b')-(2d'). Equations (5) and (6) constitute a
Sutherland many-particle system' generalized so as to
include an internal complex vector space for each particle.
The number of degrees of freedom for the system in Eqs.
(6) is N(N+1), consisting of N for the position momenta
of N particles (quasienergies) and N2 for the internal
freedom (quasieigenfunctions).

We now show the astonishing fact that Eqs. (6), despite
their complicated appearance, are completely integrable.
Let us define N x N matrices P, @,I,L as

P„=b„p„+(I—8„)i(n ~Lt L ~m)2 'cot[(P„—p )/2]

C nm ~nm0n

r„=(1 —8„)i(n
~
L t L

~
m)2 sin [(y„—y )/2],

L =(L (1),L
~
2), . . . , L

~
n), . . . , L )N)),

where L in) are ¹omponent column vectors. A Lax
representation of Eqs. (6) is then written as d@/dk

diag(P), dP/dX =[I,P], dL/dk = LI, togethe—r with
their Hermitian conjugates dPt/dk = [I,Pt], dL t/dk

I L t. (Note I t = —I . ) Thus, if we would have the
knowledge of quasienergies and quasieigenfunctions at
k =+0 (i.e., in the integrable limit), those at A, e0 will be
provided by solving the above matrix equations, e.g. , by
means of the inverse scattering method or of the algebraic
method.

In marked contrast with autonomous systems in Ref. 6,
the spectrum [p„(X)] is periodic in energy with a period of
2rr, as is recognized in Eq. (1). In other words, the gen-
eralized Sutherland system that has been obtained is
defined on a ring chain with the length of 2z. The con-
stants of motion in involution consist of three types: (i)
I„=n ' Tr (P") (ii) 1 (~ " ) =Tr (P"L ~'"'L ), (iii)
E„=n 'Tr(LtL)", " where n =1,2, . . . , N, and M "
are diagonal traceless constant matrices with
k =1,2, . . . , (N —1) which are linearly independent. The
total number of constants of motion is equal to the degree
of freedom noted below Eqs. (6). The validity of these
constants of motion can be checked in a periodically
pulsed quantum spin system, where Hilbert space is in
finite dimensions and all the bound quasienergies are cal-
culable in a wide range of nonintegrability (i.e., magnetic
field B). The spectrum in Fig. 1 was obtained by numeri-
cal diagonalization of Eq. (4) in Ref. 3 for various pB
values (p is the Bohr magneton multiplied by g value).
Energies are depicted in a fundamental "Brillouin" zone.
We have recognized the absence of any accidental degen-
eracy in Fig. 1. Then, by examining through this figure
together with numerical data for matrix elements, I ~

(to-
tal momentum), I2+ 4 E2 (total energy), etc. , are found
not to show any change, irrespective of the change in the

00
0 0 0.5 1 0

FIG. 1. Field-dependent quasienergy diagram for a pulsed-
quantum spin system with spin magnitude S =16 in Ref. 3.
Manifold with an even parity is depicted in fundamental zone
(0 ~ E/Q ~ 1). 2'/It and pB (scaled by the easy-plane aniso-
tropy energy) should be read as p and A. , respectively, in the
present text.

pB value. (An analogous study for a kicked quantum ro-
tor will be made whose Hilbert space is infinite dimension-
al. But, inevitable matrix-truncation procedures will
make us confirm the presence of constants of motion less
rigorously. )

Constants of motion above wi11 play a vital role in quan-
titative descriptions of quantum recurrence and of other
complicated dynamics. Since both Calogero-Moser's and
Sutherland's systems without complex-vector space are
typical examples of a completely integrable classical parti-
cle system with interparticle interactions of doubly period-
ic Weierstrass function type P(z

~ co, co') [note, e.g. ,
P(z

~
ee, ee) =z and P(z ~0,iver/2) = —,

' sin (z/2)], '

the latter system with internal complex vector space will
be indicated as a more universal dynamical system which
underlies the quantum chaos. Its integrability can be
shown in the same way as the present procedure.
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